Complexity Theory Exercise 6: Diagonalization 14th December 2022

Exercise 6.1. Find the fault in the following proof of $P \neq NP$.

- 1. Assume that P = NP.
- 2. Then SAT \in P and thus there exists a $k \in \mathbb{N}$ such that SAT \in DTime (n^k) .
- 3. Because every language in NP is poly-time reducible to SAT, we have NP \subseteq DTime (n^k) .
- 4. It follows that $\mathsf{P} \subseteq \mathsf{DTime}(n^k)$.
- 5. By the Time Hierarchy Theorem there exist languages in $\mathsf{DTime}(n^{k+1})$ that are not in $\mathsf{DTime}(n^k)$, contradicting $\mathsf{P} \subseteq \mathsf{DTime}(n^k)$.
- 6. Therefore, $P \neq NP$.

Exercise 6.2. Show the following.

- 1. $TIME(2^n) = TIME(2^{n+1})$
- 2. $\text{TIME}_{*}(2^{n}) \subset \text{TIME}_{*}(2^{2n})$
- 3. NTIME $(n) \subset PSPACE$

Exercise 6.3. Define a function that is computable but not time-constructible.

Exercise 6.4. Consider the function pad: $\Sigma^* \times \mathbb{N} \to \Sigma^* \#^*$ defined as $\mathsf{pad}(s, \ell) = s \#^j$, where $j = \max(0, \ell - |s|)$. For some language $\mathbf{A} \subseteq \Sigma^*$ and $f \colon \mathbb{N} \to \mathbb{N}$ define $\mathsf{pad}(\mathbf{A}, f) = \{\mathsf{pad}(s, f(|s|)) \mid s \in \mathbf{A}\}.$

Show all of the following satements.

- 1. Show that, if $\mathbf{A} \in \text{DTIME}(n^6)$, then $\text{pad}(\mathbf{A}, n^2) \in \text{DTIME}(n^3)$.
- 2. Show that, if NEXPTIME \neq EXPTIME, then P \neq NP.
- 3. Show for every $\mathbf{A} \subseteq \Sigma^*$ and $k \in \mathbb{N}$ that $\mathbf{A} \in \mathcal{P}$ if and only if $\mathsf{pad}(\mathbf{A}, n^k) \in \mathcal{P}$.
- 4. Show $P \neq DSPACE(n)$.
- 5. Show NP \neq DSPACE(n).

Exercise 6.5. You are given two oracles and one of them is the set **TRUE QBF**, but you do not know which one. Design a polynomial algorithm that decides **TRUE QBF** using these oracles.