

Hannes Strass

Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Games with Missing Information: Solving

Lecture 7, 12th Jun 2023 // Algorithmic Game Theory, SS 2023

Previously ...

- In complete information games, players know the rules, possible outcomes and each other's preferences over outcomes.
- In **perfect information** games, moves are sequential and all players know all previous moves.
- In extensive-form games, information is not necessarily complete or perfect.
- Uncertainty of players (due to missing information) can be modelled by information sets and chance nodes (moves by Nature).
- Bayes' Theorem shows how to compute with conditional probabilities.
- The law of total probability relates marginal to conditional probabilities.

Overview

Example: Simplified Poker

Behaviour Strategies and Belief Systems

Weak Sequential Equilibria

Solving Simplified Poker

Example: Simplified Poker

Simplified Poker: Game Description

Binmore's Simplified Poker

- Two players, Ann and Bob, each put \$1 into a jackpot.
- They then draw one card from a deck of three cards: {1, 2, 3}.
- Ann can either check (pass on), or raise (put another \$1 into the jackpot).
- Next, Bob responds:
 - If Ann has checked, then Bob must call, that is, a showdown happens:
 Both players show their cards and the player with the higher (number) card receives the jackpot.
 - If Ann has raised, then Bob can decide between fold (withdraw from the game and let Ann get the jackpot) or call (put another \$1 into the jackpot and then have a showdown).

Simplified Poker: Formal Model

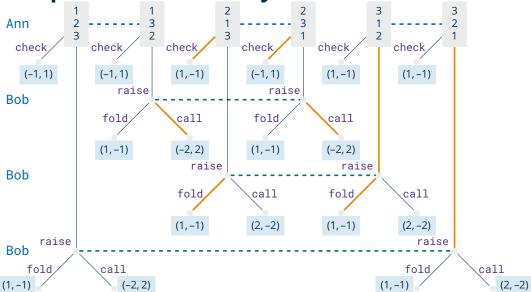
Simplified Poker can be modelled as an extensive-form game as follows:

```
    P = {Ann, Bob, Nature}

• \mathbf{M} = (M_{App}, M_{Bob}, M_{Nature}) with
    - M_{\rm Ann} = \{ \text{check, raise} \},
    - M_{\text{Rob}} = \{\text{fold, call}\},
    - M_{\text{Nature}} = \{ \text{deal123}, \text{deal132}, \text{deal213}, \text{deal231}, \text{deal312}, \text{deal321} \}.
• \mathfrak{I} = {\mathfrak{I}_1, \ldots, \mathfrak{I}_6} with
    - J_1 = \{[\text{deal123}], [\text{deal132}]\}, J_2 = \{[\text{deal213}], [\text{deal231}]\},
        J_3 = \{ [\text{deal312}], [\text{deal321}] \} \text{ with } p(J_1) = p(J_2) = p(J_3) = \text{Ann,}
    - J_4 = \{ [deal132, raise], [deal231, raise] \},
        J_5 = \{ [deal213, raise], [deal312, raise] \},
        J_6 = \{ [\text{deal123, raise}], [\text{deal321, raise}] \} \text{ with } p(J_4) = p(J_5) = p(J_6) = \text{Bob.}
```

• $\mathbf{u} = (u_{Ann}, u_{Bob})$ with the functions as shown next in the game tree.

Simplified Poker: Analysis



Simplified Poker: Open Questions

What happens in the two remaining cases?

- 1. Should Ann raise (i.e. bluff) if she has a 1?
- 2. Should Bob call (the bluff) if he has a 2?

Behaviour Strategies and Belief Systems

Behaviour Strategies (1)

Definition

Let G be an extensive-form game with players P and information sets \mathfrak{I} .

- 1. A **pure strategy** for player $i \in P$ is a function s_i that assigns a possible move to each of player i's information sets.
- 2. A **behaviour strategy** for player $i \in P$ is a function π_i that assigns a probability distribution over possible moves to each of player i's information sets.
- $s_i(\mathcal{I}_j)$ denotes the move taken by player i at information set $\mathcal{I}_j \in \mathcal{I}$.
- $\pi_i(\mathbb{I}_j)(m_k)$ is the probability that player i will make move m_k at information set \mathbb{I}_i . For readability, we will write this as $\pi_i(m_k \mid \mathbb{I}_i)$.
- As usual, a pure strategy s_i with $s_i(\mathcal{I}_j) = m_k$ can be seen as a behaviour strategy π_i with $\pi_i(m_k | \mathcal{I}_i) = 1$ and $\pi_i(m_\ell | \mathcal{I}_i) = 0$ for $m_\ell \in M_i$, $\ell \neq k$.

Behaviour Strategies (2)

Example (Simplified Poker)

Consider information set $\mathfrak{I}_1=\{[\text{deal123}],[\text{deal132}]\}$ where Ann has a 1. With $\pi_{\text{Ann}}(\mathfrak{I}_1)=\left\{\text{check}\mapsto\frac{1}{2},\text{raise}\mapsto\frac{1}{2}\right\}$, she bases her decision to bluff (with her 1) on a (balanced) coin flip.

A behaviour strategy profile π induces expected payoffs for all players:

$$u_i(\boldsymbol{\pi}) = \sum_{t \in T} P(t \mid \boldsymbol{\pi}) \cdot u_i(t)$$

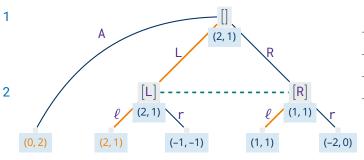
where $P(h | \pi)$ is the probability that history h is reached whenever play happens according to profile π : inductively, define $P([] | \pi) := 1$ and

$$P([h;m] \mid \boldsymbol{\pi}) := \pi_{p(\mathfrak{I}_h)}(m \mid \mathfrak{I}_h) \cdot P(h \mid \boldsymbol{\pi})$$

- where $\mathfrak{I}_h \in \mathfrak{I}$ is the unique information set with $h \in \mathfrak{I}_h$,
- and π_{Nature} is obtained from the probability distributions specified by G.

Towards Solution Concepts: Example

Consider the following extensive-form game G_4 and its normal form:



(1, 2)	ℓ	r
Α	(0, 2)	(0, 2)
L	(2, 1)	(-1, -1)
R	(1, 1)	(-2, 0)

- The normal form game has two pure Nash equilibria: (A, r) and (L, ℓ).
- Arguably, only (L, ℓ) respects sequentiality:
 - If play reaches {[L], [R]}, then 2 will choose ℓ.
 - Knowing this, 1 will choose L.
- → Adapt subgame perfect equilibria to information sets?

Subgames of Extensive-Form Games

Definition

Let *G* be an extensive-form game. A **subgame** *G'* of *G* consists of:

- A non-terminal history $h' \in H$ of G, the **root** of G',
- all histories $H' \subseteq H$ of G that start with h' (including $T' = H' \cap T$), and
- all other aspects of *G* restricted to *H'* (players, moves, information sets, turn function *p*, probability distributions for Nature, and utilities),

where for all $\mathfrak{I}_j \in \mathfrak{I}$, either $\mathfrak{I}_j \cap H' = \mathfrak{I}_j$ or $\mathfrak{I}_j \cap H' = \emptyset$.

Observation

If G' is a subgame of G, then its root h' is in information set $\{h'\}$.

Example

 G_4 only has the trivial subgame, itself.

Towards Solution Concepts: Stocktaking

- Viewing an extensive-form game as a normal-form game, we could obtain (mixed) Nash equilibria.
- That did not fully work even for perfect-information sequential games:
- There, we used a stronger solution concept: subgame perfect equilibria, where strategies must play best responses in all subgames.
- With information sets, not every decision point corresponds to a subgame.
- Information sets off the equilibrium path might be relevant.

Example (G_4)

- G_4 has only itself as subgame, so equilibrium (A, r) is "subgame perfect".
- In (A, r), information set $\{[L], [R]\}$ is reached with probability zero.
- To define playing best responses "everywhere": What is the expected
 payoff from information set {[L], [R]} when play happens as in (A, r)?
- ightharpoonup We will additionally model players' beliefs about histories ...

Belief Systems

Definition

Let G be an extensive-form game with n players and information sets \mathfrak{I} .

A **belief system** for G is a tuple $\beta = (\beta_1, ..., \beta_n)$ of functions β_i that assign

- to each $\mathfrak{I}_j \in \mathfrak{I}$ with $p(\mathfrak{I}_j) = i \neq \text{Nature}$
- a probability distribution $\beta_i(\mathfrak{I}_j)$ on histories $h \in \mathfrak{I}_j$.
- We denote $\beta_i(\mathfrak{I}_i)(h)$ by $\beta_i(h \mid \mathfrak{I}_i)$;
- the value $\beta_i(h \mid \mathcal{I}_j)$ reflects player i's (where $i = p(\mathcal{I}_j)$) belief about the likelihood that h has actually occurred, given that i knows to be in \mathcal{I}_i .

Example (Simplified Poker)

- In belief system β_{Ann} with $\beta_{Ann}(\mathfrak{I}_1) = \left\{ [\text{deal123}] \mapsto \frac{1}{2}, [\text{deal132}] \mapsto \frac{1}{2} \right\}$, Ann considers "Bob has a 2" and "Bob has a 3" to be equally likely.
- If $\beta_{Bob}([deal123, raise] | \mathcal{I}_6) = 0$, then Bob is sure that Ann does not bluff.

Assessments

Definition

Let G be an extensive-form game with non-Nature players $1, \ldots, n$.

An **assessment** of *G* is a pair (π, β) consisting of a profile $\pi = (\pi_1, ..., \pi_n)$ of behaviour strategies and a belief system $\beta = (\beta_1, ..., \beta_n)$.

Example (Simplified Poker)

Consider the assessment (π', β') with

- $\pi'_{Ann}(\mathfrak{I}_1) = \left\{ \mathsf{check} \mapsto \frac{1}{2}, \mathsf{raise} \mapsto \frac{1}{2} \right\}$, and playing optimally elsewhere,
- $\pi'_{Bob}(\mathfrak{I}_{6})=\left\{ \mathsf{fold}\mapsto \frac{1}{2}, \mathsf{call}\mapsto \frac{1}{2}\right\}$, and playing optimally elsewhere;
- $\beta'_{Ann}(\mathfrak{I}_1)$, $\beta'_{Ann}(\mathfrak{I}_2)$, and $\beta'_{Ann}(\mathfrak{I}_3)$ all uniform distributions,
- where in \mathcal{I}_4 and \mathcal{I}_5 Bob is sure that Ann does not raise with a 2, and
- $\beta'_{\text{Bob}}(\mathfrak{I}_{6}) = \left\{ [\text{deal123, raise}] \mapsto \frac{1}{4}, [\text{deal321, raise}] \mapsto \frac{3}{4} \right\}.$

Expected Utility for Assessments

Definition

Let G be an extensive-form game and (π, β) be an assessment of G.

The **expected utility** for player i at information set \mathcal{I}_j according to (π, β) is

$$E_i(\mathfrak{I}_j, \boldsymbol{\pi}, \boldsymbol{\beta}) := \sum_{h \in \mathfrak{I}_j} \left(\beta_i(h \mid \mathfrak{I}_j) \cdot \sum_{t \in T} \left(P(t \mid h, \boldsymbol{\pi}) \cdot u_i(t) \right) \right)$$

where $P(h' | h, \pi)$ is the probability that history h' is reached when playing according to π from history h on.

Obviously, $P(h \mid h, \boldsymbol{\pi}) = 1$ and $P([h'; m] \mid h, \boldsymbol{\pi}) = \pi_{p(\mathfrak{I}_{h'})}(m \mid \mathfrak{I}_{h'}) \cdot P(h' \mid h, \boldsymbol{\pi}).$

Example (Simplified Poker)

$$E_{\text{Bob}}(\mathfrak{I}_{6}, \boldsymbol{\pi}', \boldsymbol{\beta}') = \frac{1}{4} \cdot \left(\frac{1}{2} \cdot (-1) + \frac{1}{2} \cdot 2\right) + \frac{3}{4} \cdot \left(\frac{1}{2} \cdot (-1) + \frac{1}{2} \cdot (-2)\right) = -1$$

Weak Sequential Equilibria

Best Responses and Sequential Rationality

Definition

Let (π, β) be an assessment for an extensive-form game G with players P.

- 1. Player *i*'s strategy π_i is a **best response** to π_{-i} at information set $\mathfrak{I}_j \in \mathfrak{I}$ iff π_i maximises $E_i(\mathfrak{I}_j, (\pi_{-i}, \pi_i'), \beta)$ among all possible behaviour strategies π_i' .
- 2. Assessment (π, β) is **sequentially rational** iff for all players $i \in P$, strategy π_i is a best response at each information set \mathfrak{I}_j with $p(\mathfrak{I}_j) \in \{i, \text{Nature}\}$.

Example (Simplified Poker)

- In $(\pi', \pmb{\beta}')$ seen earlier, π'_{Bob} is a best response to π'_{Ann} at \mathfrak{I}_6 , because any $\pi''_{Bob}(\mathfrak{I}_6) = \{ \text{fold} \mapsto (1-q), \text{call} \mapsto q \}$ would likewise achieve a payoff of $E_{Bob}(\mathfrak{I}_6, (\pi'_{Ann}, \pi''_{Bob}), \beta') = \frac{1}{4} \cdot (-1+q+2q) + \frac{3}{4} \cdot (-1+q-2q) = \frac{-1+3q-3-3q}{4} = -1$.
- In contrast, π_{Ann} is not a best response to π_{Bob} at \mathfrak{I}_1 as we shall see.

Consistency of Beliefs: Example

In $(\boldsymbol{\pi}', \boldsymbol{\beta}')$ seen earlier, we had

$$\begin{split} \pi'_{\mathsf{Ann}}(\mathfrak{I}_1) &= \left\{\mathsf{check} \mapsto \frac{1}{2}, \, \mathsf{raise} \mapsto \frac{1}{2}\right\}, \,\, \mathsf{and} \\ \beta'_{\mathsf{Bob}}(\mathfrak{I}_6) &= \left\{[\mathsf{deal123}, \, \mathsf{raise}] \mapsto \frac{1}{4}, [\mathsf{deal321}, \, \mathsf{raise}] \mapsto \frac{3}{4}\right\} \end{split}$$

However, Bob's beliefs about \mathcal{I}_6 seem inadequate, as

$$P([\text{deal123, raise}] \mid \boldsymbol{\pi}') = \frac{1}{6} \cdot \frac{1}{2} = \frac{1}{12} \text{ and}$$

$$P([\text{deal321, raise}] \mid \boldsymbol{\pi}') = \frac{1}{6} \cdot 1 = \frac{1}{6} = 2 \cdot P([\text{deal123, raise}] \mid \boldsymbol{\pi}')$$

A more realistic likelihood estimate of the situation given by π' would be

$$\beta_{\mathsf{Bob}}''(\mathfrak{I}_{6}) = \left\{ [\mathsf{deal123}, \mathsf{raise}] \mapsto \frac{1}{3}, [\mathsf{deal321}, \mathsf{raise}] \mapsto \frac{2}{3} \right\}$$

Consistency of Beliefs: Definition

Definition

Let G be an extensive-form game and (π, β) be an assessment for G.

Assessment (π, β) satisfies **consistency of beliefs** iff for all information sets $\mathfrak{I}_{j} \in \mathfrak{I}$ and for all histories $h \in \mathfrak{I}_{j}$, we have:

$$\beta_{P(\mathbb{J}_j)}(h \mid \mathbb{J}_j) = \frac{P(h \mid \boldsymbol{\pi})}{\sum_{h \in \mathbb{J}_j} P(h \mid \boldsymbol{\pi})} = \frac{P(h \mid \boldsymbol{\pi})}{P(\mathbb{J}_j \mid \boldsymbol{\pi})} \quad \text{whenever} P(\mathbb{J}_j \mid \boldsymbol{\pi}) > 0$$

Example (Simplified Poker)

The assessment (π', β') seen earlier does not satisfy consistency of beliefs.

Observation

Given a profile π of behaviour strategies, we can use the definition above to construct a belief system β that satisfies consistency of beliefs.

Weak Sequential Equilibria

Definition

Let *G* be an extensive-form game.

An assessment (π, β) for G is a **weak sequential equilibrium** iff it is both sequentially rational and satisfies consistency of beliefs.

Theorem (Kreps and Wilson, 1982)

Every extensive-form game with perfect recall and a finite set *H* of histories has a weak sequential equilibrium.

Recall: Perfect recall means that players know their own previous moves.

Example

Simplified Poker has perfect recall and is finite, therefore has a weak sequential equilibrium.

Some Special Cases

Theorem

Let G be a sequential game with perfect information and G' its associated extensive-form game (using singleton information sets).

Every subgame-perfect equilibrium of G corresponds to a weak sequential equilibrium of G'.

Theorem

Let G be a strategic (normal-form) game (with simultaneous moves) and G' be its associated extensive-form game (using sequentialised moves and move hiding).

Every mixed Nash equilibrium of G corresponds to a weak sequential equilibrium of G'.

In both cases, we add a belief system satisfying consistency of beliefs.

Solving Simplified Poker

Solving Simplified Poker (1)

What happens in the two remaining cases?

Should Ann raise (i.e. bluff) if she has a 1? Should Bob call (the bluff) if he has a 2?

- Denote by $\pi^* = (\pi^*_{Ann}, \pi^*_{Bob})$ the behaviour strategy profile where both players act optimally according to our previous analysis, and additionally
- Ann resolves to bluff (with a 1) with probability p, π_{Ann}^* (raise $|\mathfrak{I}_1\rangle = p$,
- Bob resolves to call (with a 2) with probability q, $\pi^*_{\mathsf{Bob}}(\mathsf{call} \mid \mathfrak{I}_{\mathsf{6}}) = q$.
- Denote by $\boldsymbol{\beta}^*$ the belief system that is consistent with $\boldsymbol{\pi}^*$.
- We know $P([\text{deal123}] \mid \boldsymbol{\pi}^*) = P([\text{deal132}] \mid \boldsymbol{\pi}^*) = \frac{1}{6}$, so $P(\mathfrak{I}_1 \mid \boldsymbol{\pi}^*) = \frac{1}{3}$ and
- $\beta_{Ann}^*([\text{deal123}] | \mathcal{I}_1) = \beta_{Ann}^*([\text{deal132}] | \mathcal{I}_1) = \frac{1}{2}.$
- 1. How should Ann choose the value of p?
- 2. How should Bob choose the value of q?

Solving Simplified Poker (2)

$$\begin{split} P(\mathbb{J}_6 \,|\, \pmb{\pi}^*) &= P([\text{deal123, raise}] \,|\, \pmb{\pi}^*) + P([\text{deal321, raise}] \,|\, \pmb{\pi}^*) \\ &= P([\text{deal123}] \,|\, \pmb{\pi}^*) \cdot \pi_{\text{Ann}}^*(\text{raise} \,|\, \mathbb{J}_1) + P([\text{deal321}] \,|\, \pmb{\pi}^*) \cdot \pi_{\text{Ann}}^*(\text{raise} \,|\, \mathbb{J}_3) \\ &= \frac{1}{6} \cdot p + \frac{1}{6} \cdot 1 \end{split}$$

Therefore,

$$P([\text{deal123, raise}] \mid \mathcal{I}_{6}, \boldsymbol{\pi}^{*}) = \frac{P([\text{deal123, raise}] \mid \boldsymbol{\pi}^{*})}{P(\mathcal{I}_{6} \mid \boldsymbol{\pi}^{*})} = \frac{\frac{\rho}{6}}{\frac{\rho}{6} + \frac{1}{6}} = \frac{\rho}{\rho + 1}$$

$$P([\text{deal321, raise}] \mid \mathcal{I}_{6}, \boldsymbol{\pi}^{*}) = \frac{P([\text{deal321, raise}] \mid \boldsymbol{\pi}^{*})}{P(\mathcal{I}_{6} \mid \boldsymbol{\pi}^{*})} = \frac{\frac{1}{6}}{\frac{\rho}{6} + \frac{1}{6}} = \frac{1}{\rho + 1}$$

Ann's goal is to make Bob indifferent between his two moves in \mathcal{I}_6 , that is:

$$E_{\mathsf{Bob}}(\mathsf{fold}, \mathfrak{I}_6, \boldsymbol{\pi}^*) = E_{\mathsf{Bob}}(\mathsf{call}, \mathfrak{I}_6, \boldsymbol{\pi}^*)$$

Solving Simplified Poker (3)

We have the below payoff when Bob plays fold at I_6 with probability 1:

$$\begin{split} E_{\text{Bob}}(\text{fold}, \mathcal{I}_6, \pmb{\pi}^*) &= P([\text{deal123, raise}] \mid \mathcal{I}_6, \pmb{\pi}^*) \cdot u_{\text{Bob}}([\text{deal123, raise, fold}]) + \\ &\quad P([\text{deal321, raise}] \mid \mathcal{I}_6, \pmb{\pi}^*) \cdot u_{\text{Bob}}([\text{deal321, raise, fold}]) \\ &= \frac{p}{p+1} \cdot (-1) + \frac{1}{p+1} \cdot (-1) = -1 \end{split}$$

and likewise, if Bob plays a pure call at \mathfrak{I}_6 :

$$\begin{split} E_{\text{Bob}}(\text{call}, \mathbb{J}_6, \pmb{\pi}^*) &= P([\text{deal123, raise}] \mid \mathbb{J}_6, \pmb{\pi}^*) \cdot u_{\text{Bob}}([\text{deal123, raise, call}]) + \\ &\quad P([\text{deal321, raise}] \mid \mathbb{J}_6, \pmb{\pi}^*) \cdot u_{\text{Bob}}([\text{deal321, raise, call}]) \\ &= \frac{p}{p+1} \cdot 2 + \frac{1}{p+1} \cdot (-2) = \frac{2p-2}{p+1} \end{split}$$

So overall, Ann's goal is to choose p such that

$$-1 = \frac{2p-2}{p+1}$$
 whence we obtain $p = \frac{1}{3}$.

Solving Simplified Poker (4)

It remains to calculate $q=\pi_{\mathsf{Bob}}^*(\mathsf{call}\,|\, \mathfrak{I}_{\mathsf{6}}).$

Intuitively, Bob's goal is to make Ann indifferent between her two moves in \mathfrak{I}_1 :

$$E_{\mathsf{Ann}}(\mathsf{check}, \mathcal{I}_1, \boldsymbol{\pi}^*) = E_{\mathsf{Ann}}(\mathsf{raise}, \mathcal{I}_1, \boldsymbol{\pi}^*)$$

For the left-hand side, we obtain the expected utility of a pure check at \mathcal{I}_1 :

$$\begin{split} &E_{\rm Ann}({\rm check}, \mathcal{I}_1, \boldsymbol{\pi}^*) \\ &= P([{\rm deal} 123] \mid \mathcal{I}_1, \boldsymbol{\pi}^*) \cdot u_{\rm Ann}([{\rm deal} 123, {\rm check}]) + \\ &P([{\rm deal} 132] \mid \mathcal{I}_1, \boldsymbol{\pi}^*) \cdot u_{\rm Ann}([{\rm deal} 132, {\rm check}]) \\ &= \frac{1}{2} \cdot (-1) + \frac{1}{2} \cdot (-1) = -1 \end{split}$$

Solving Simplified Poker (5)

For the right-hand side, we get the expected utility of a pure raise at \mathfrak{I}_1 :

$$\begin{split} &E_{\text{Ann}}(\text{raise}, \mathbb{J}_{1}, \pmb{\pi}^{*}, \pmb{\beta}^{*}) \\ &= P([\text{deal123}] \mid \mathbb{J}_{1}, \pmb{\pi}^{*}) \cdot \pi_{\text{Bob}}(\text{fold} \mid \mathbb{J}_{6}) \cdot u_{\text{Ann}}([\text{deal123}, \text{raise}, \text{fold}]) + \\ &P([\text{deal123}] \mid \mathbb{J}_{1}, \pmb{\pi}^{*}) \cdot \pi_{\text{Bob}}(\text{call} \mid \mathbb{J}_{6}) \cdot u_{\text{Ann}}([\text{deal123}, \text{raise}, \text{call}]) + \\ &P([\text{deal132}] \mid \mathbb{J}_{1}, \pmb{\pi}^{*}) \cdot \pi_{\text{Bob}}(\text{fold} \mid \mathbb{J}_{4}) \cdot u_{\text{Ann}}([\text{deal132}, \text{raise}, \text{fold}]) + \\ &P([\text{deal132}] \mid \mathbb{J}_{1}, \pmb{\pi}^{*}) \cdot \pi_{\text{Bob}}(\text{call} \mid \mathbb{J}_{4}) \cdot u_{\text{Ann}}([\text{deal132}, \text{raise}, \text{call}]) \\ &= \frac{1}{2} \cdot (1 - q) \cdot 1 + \frac{1}{2} \cdot q \cdot (-2) + \frac{1}{2} \cdot 0 \cdot 1 + \frac{1}{2} \cdot 1 \cdot (-2) = \frac{1}{2} \cdot (1 - q - 2q - 2) \end{split}$$

Overall, Bob's goal is thus to choose q such that

$$-1 = \frac{-3q-1}{2}$$
 whence we obtain $q = \frac{1}{3}$.

Solving Simplified Poker: Takeaways

- Bluffing can be part of a rational strategy (playing against rational opponents):
 - Ann bluffs a third of the times she has her worst possible hand,
 - which is justified because Bob will call that raise only a third of the times.
- The expected value of the game for the obtained π^* is

$$U_{\text{Ann}}(\boldsymbol{\pi}^*) = \frac{p - 3pq + q}{6} = \frac{1}{18} = -U_{\text{Bob}}(\boldsymbol{\pi}^*)$$

so Ann has an advantage. Thus players switch roles after each round.

- If Ann deviates from π^* , then Bob will best-respond (punish) by adapting q:
 - for $p > \frac{1}{3}$ setting q = 1, and
 - for $p < \frac{1}{3}$ setting q = 0.

Solving (heads-up limit Texas hold'em) Poker

Bowling et al. [2015] consider heads-up limit hold'em poker to be "essentially weakly solved":

- There are $3.16 \cdot 10^{17}$ possible states, and $3.19 \cdot 10^{14}$ decision points.
- They used an algorithm called counterfactual regret minimisation (CFR⁺):
 - Uses self-play and in hindsight, computes regret (utility difference to best decision) of taken moves.
 - Obtains successive approximations to a Nash equilibrium.
 - Took 900 core-years of computation, on 200 nodes of 24 cores each.
 - Solution quality can be assessed via so-called exploitability:
 Expected loss of by the computed strategy against the worst-case opponent.
- Essentially solved: Lifetime of play $(70y \cdot 365d \cdot 12h \cdot 200 \text{ games})$ cannot statistically differentiate the game from being solved (at 95% confidence).
- Game-theoretic value is between 87.7 and 89.7 mbb/g (milli-big-blinds per game) for the dealer (the player moving first).

Conclusion

Summary

- A behaviour strategy assigns move probabilities to information sets.
- A belief system assigns probabilities to histories in information sets.
- An **assessment** is a pair (behaviour strategy profile, belief system).
- A **sequentially rational** assessment plays best responses "everywhere".
- An assessment satisfies consistency of beliefs whenever the belief system's probabilities match what is expected from everyone playing according to the behaviour strategy profile.
- An assessment is a weak sequential equilibrium iff it is both sequentially rational and satisfies consistency of beliefs.
- Mixed Nash equilibria for normal-form games and subgame perfect equilibria for sequential perfect-information games are special cases of weak sequential equilibria for extensive-form games.

