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Semantics

Naive Extensions
Given an AF F = (A, R). A set S ⊆ A is a naive extension of F, if

• S is conflict-free in F

• for each T ⊆ A conflict-free in F, S 6⊂ T

Example

b c d ea

naive(F) =
{
{a, c},
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Given an AF F = (A, R). A set S ⊆ A is a naive extension of F, if
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Semantics

Naive Extensions
Given an AF F = (A, R). A set S ⊆ A is a naive extension of F, if

• S is conflict-free in F

• for each T ⊆ A conflict-free in F, S 6⊂ T

Example

b c d ea

naive(F) =
{
{a, c}, {a, d}, {b, d}, {a}, {b}, {c}, {d}, ∅

}
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Semantics (ctd.)

Grounded Extension [Dung, 1995]
Given an AF F = (A, R). The unique grounded extension of F is defined as the
outcome S of the following “algorithm”:

1 put each argument a ∈ A which is not attacked in F into S; if no such
argument exists, return S;

2 remove from F all (new) arguments in S and all arguments attacked by
them (together with all adjacent attacks); and continue with Step 1.

Example

b c d ea

ground(F) =
{
{a}}
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Semantics (ctd.)

Complete Extension [Dung, 1995]
Given an AF (A, R). A set S ⊆ A is complete in F, if

• S is admissible in F

• each a ∈ A defended by S in F is contained in S
• Recall: a ∈ A is defended by S in F, if for each b ∈ A with (b, a) ∈ R,

there exists a c ∈ S, such that (c, b) ∈ R.

Example

b c d ea

comp(F) =
{
{a, c},
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Semantics (ctd.)

Complete Extension [Dung, 1995]
Given an AF (A, R). A set S ⊆ A is complete in F, if

• S is admissible in F

• each a ∈ A defended by S in F is contained in S
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Semantics (ctd.)

Complete Extension [Dung, 1995]
Given an AF (A, R). A set S ⊆ A is complete in F, if

• S is admissible in F

• each a ∈ A defended by S in F is contained in S
• Recall: a ∈ A is defended by S in F, if for each b ∈ A with (b, a) ∈ R,
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Example
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comp(F) =
{
{a, c}, {a, d}, {a}, {c}, {d}, ∅
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Semantics (ctd.)

Properties of the Grounded Extension
For any AF F, the grounded extension of F is the subset-minimal complete
extension of F.

Remark
Since there exists exactly one grounded extension for each AF F, we often write
ground(F) = S instead of ground(F) = {S}.
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Semantics (ctd.)

Preferred Extensions [Dung, 1995]
Given an AF F = (A, R). A set S ⊆ A is a preferred extension of F, if

• S is admissible in F

• for each T ⊆ A admissible in F, S 6⊂ T

Example

b c d ea

pref (F) =
{
{a, c}, {a, d}, {a}, {c}, {d}, ∅

}
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Semantics (ctd.)

Stable Extensions [Dung, 1995]
Given an AF F = (A, R). A set S ⊆ A is a stable extension of F, if

• S is conflict-free in F

• for each a ∈ A \ S, there exists a b ∈ S, such that (b, a) ∈ R

Example

b c d ea

stable(F) =
{
{a, c}
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Semantics (ctd.)

Stable Extensions [Dung, 1995]
Given an AF F = (A, R). A set S ⊆ A is a stable extension of F, if

• S is conflict-free in F

• for each a ∈ A \ S, there exists a b ∈ S, such that (b, a) ∈ R

Example

b c d ea

stable(F) =
{
{a, c}, {a, d}, {b, d}, {a}, {b}, {c}, {d}, ∅,

}
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Semantics (ctd.)

Some Relations
For any AF F the following relations hold:

1 Each stable extension of F is admissible in F

2 Each stable extension of F is also a preferred one

3 Each preferred extension of F is also a complete one
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Semantics (ctd.)

Semi-Stable Extensions [Caminada, 2006]
Given an AF F = (A, R). A set S ⊆ A is a semi-stable extension of F, if

• S is admissible in F

• for each T ⊆ A admissible in F, S+ 6⊂ T+

• for S ⊆ A, define S+ = S ∪ {a | ∃b ∈ S with (b, a) ∈ R}

Example

b c d ea

semi(F) =
{
{a, c}, {a, d}, {a}, {c}, {d}, ∅

}
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Semantics (ctd.)
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Semantics (ctd.)

Stage Extensions [Verheij, 1996]
Given an AF F = (A, R). A set S ⊆ A is a stage extension of F, if

• S is conflict-free in F

• for each T ⊆ A conflict-free in F, S+ 6⊂ T+

• recall S+ = S ∪ {a | ∃b ∈ S with (b, a) ∈ R}

Ideal Extension [Dung, Mancarella & Toni 2007]
Given an AF F = (A, R). A set S ⊆ A is an ideal extension of F, if

• S is admissible in F and contained in each preferred extension of F

• there is no T ⊃ S admissible in F and contained in each of pref (F)

Eager Extension [Caminada, 2007]
Given an AF F = (A, R). A set S ⊆ A is an eager extension of F, if

• S is admissible in F and contained in each semi-stable extension of F

• there is no T ⊃ S admissible in F and contained in each of semi(F)
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Semantics (ctd.)

Properties of Ideal Extensions
For any AF F the following observations hold:

1 there exists exactly one ideal extension of F

2 the ideal extension of F is also a complete one

The same results hold for the eager extension and similar variants [Dvořák et
al., 2011].
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Semantics (ctd.)

Resolution-based grounded Extensions
[Baroni,Giacomin 2008]
A resolution β of an AF F = (A, R) contains exactly one of the attacks (a, b),
(b, a) for each pair a, b ∈ A with {(a, b), (b, a)} ⊆ R.

A set S ⊆ A is a resolution-based grounded extension of F, if
• there exists a resolution β such that ground((A, R \ β)) = S

• and there is no resolution β′ such that ground((A, R \ β′)) ⊂ S

Example

b c d ea

ground∗(F) =
{
{a, c},
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Semantics (ctd.)

Resolution-based grounded Extensions
[Baroni,Giacomin 2008]
A resolution β of an AF F = (A, R) contains exactly one of the attacks (a, b),
(b, a) for each pair a, b ∈ A with {(a, b), (b, a)} ⊆ R.

A set S ⊆ A is a resolution-based grounded extension of F, if
• there exists a resolution β such that ground((A, R \ β)) = S

• and there is no resolution β′ such that ground((A, R \ β′)) ⊂ S

Example

b c d ea

ground∗(F) =
{
{a, c}, {a, d}}
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cf2 Semantics [Baroni, Giacomin & Guida 2005]

Definition (Separation)
An AF F = (A, R) is called separated if for each (a, b) ∈ R, there exists a path
from b to a. We define [[F]] =

⋃
C∈SCCs(F) F|C and call [[F]] the separation of F.

Example
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cf2 Semantics (ctd.)

Definition (Reachability)
Let F = (A, R) be an AF, B a set of arguments, and a, b ∈ A. We say that b is
reachable in F from a modulo B, in symbols a⇒B

F b, if there exists a path from a
to b in F|B.

Definition (∆F,S)
For an AF F = (A, R), D ⊆ A, and a set S of arguments,

∆F,S(D) = {a ∈ A | ∃b ∈ S : b 6= a, (b, a) ∈ R, a 6⇒A\D
F b}.

By ∆F,S, we denote the lfp of ∆F,S(∅).
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cf2 Semantics (ctd.)

cf2 Extensions [G & Woltran 2010]
Given an AF F = (A, R). A set S ⊆ A is a cf2-extension of F, if

• S is conflict-free in F

• and S ∈ naive([[F −∆F,S]]).

Example
S = {c, f , h}, S ∈ cf (F).
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cf2 Semantics (ctd.)

cf2 Extensions [G & Woltran 2010]
Given an AF F = (A, R). A set S ⊆ A is a cf2-extension of F, if

• S is conflict-free in F

• and S ∈ naive([[F −∆F,S]]).

Example
S = {c, f , h}, S ∈ cf (F), ∆F,S(∅) = {d, e}.
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cf2 Semantics (ctd.)

cf2 Extensions [G & Woltran 2010]
Given an AF F = (A, R). A set S ⊆ A is a cf2-extension of F, if

• S is conflict-free in F

• and S ∈ naive([[F −∆F,S]]).

Example
S = {c, f , h}, S ∈ cf (F), ∆F,S({d, e}) = {d, e}.
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cf2 Semantics (ctd.)

cf2 Extensions [G & Woltran 2010]
Given an AF F = (A, R). A set S ⊆ A is a cf2-extension of F, if

• S is conflict-free in F

• and S ∈ naive([[F −∆F,S]]).

Example
S = {c, f , h}, S ∈ cf (F), ∆F,S = {d, e}, S ∈ naive([[F −∆F,S]]).
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Relations between Semantics

conflict-free

naive

stage

stable

admissible

complete

preferred

semi-stable

ideal eager

grounded

res.b. grounded

cf2

Figure: An arrow from semantics σ to semantics τ encodes that
each σ-extension is also a τ -extension.
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Exercises

1 Give an AF F such that stable(F) = ∅ and semi(F) 6= {∅}.

2 Show that the following statement holds for any AF F.
If stable(F) 6= ∅ then stable(F) = semi(F) = stage(F).

3 Select three different semantics σ,σ′,σ′′ out of {pref , ideal, semi, eager,
ground, stable} of your choice and provide three pairs of AFs such that

• σ(F1) = σ(G1) but σ′(F1) 6= σ′(G1)
• σ′(F2) = σ′(G2) but σ′′(F2) 6= σ′′(G2)
• σ′′(F3) = σ′′(G3) but σ(F3) 6= σ(G3)
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