

Artificial Intelligence, Computational Logic

ABSTRACT ARGUMENTATION

Introduction to Formal Argumentation II

slides adapted from Stefan Woltran's lecture on Abstract Argumentation

Sarah Gaggl

ICCL Summer School 2016

Outline

1 Argumentation Semantics

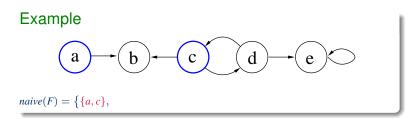
2 Exercises

Naive Extensions

- S is conflict-free in F
- for each $T \subseteq A$ conflict-free in $F, S \not\subset T$

Naive Extensions

- S is conflict-free in F
- for each $T \subseteq A$ conflict-free in $F, S \not\subset T$



Naive Extensions

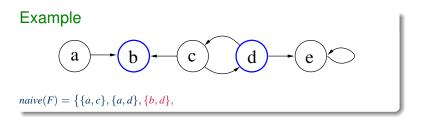
Given an AF F = (A, R). A set $S \subseteq A$ is a naive extension of F, if

- S is conflict-free in F
- for each $T \subseteq A$ conflict-free in $F, S \not\subset T$

Example a b c d e naive(F) = {{a, c}, {a, d},

Naive Extensions

- S is conflict-free in F
- for each $T \subseteq A$ conflict-free in $F, S \not\subset T$



Naive Extensions

Given an AF F = (A, R). A set $S \subseteq A$ is a naive extension of F, if

- S is conflict-free in F
- for each $T \subseteq A$ conflict-free in $F, S \not\subset T$

Example a b c d e naive(F) = {{a, c}, {a, d}, {b, d}, {a}, {b}, {c}, {d}, {\theta}}

Grounded Extension [Dung, 1995]

Given an AF F = (A, R). The unique grounded extension of F is defined as the outcome S of the following "algorithm":

1 put each argument $a \in A$ which is not attacked in F into S; if no such argument exists, return S;

2 remove from F all (new) arguments in S and all arguments attacked by them (together with all adjacent attacks); and continue with Step 1.

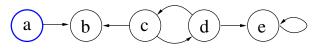
Grounded Extension [Dung, 1995]

Given an AF F = (A, R). The unique grounded extension of *F* is defined as the outcome *S* of the following "algorithm":

put each argument $a \in A$ which is not attacked in *F* into *S*; if no such argument exists, return *S*;

2 remove from *F* all (new) arguments in *S* and all arguments attacked by them (together with all adjacent attacks); and continue with Step 1.

Example



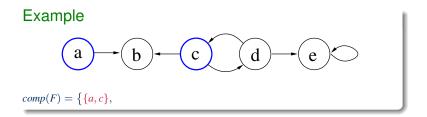
 $ground(F) = \left\{ \left\{ a \right\} \right\}$

Complete Extension [Dung, 1995]

- S is admissible in F
- each $a \in A$ defended by S in F is contained in S
 - Recall: a ∈ A is defended by S in F, if for each b ∈ A with (b, a) ∈ R, there exists a c ∈ S, such that (c, b) ∈ R.

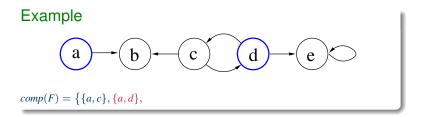
Complete Extension [Dung, 1995]

- S is admissible in F
- each $a \in A$ defended by S in F is contained in S
 - Recall: a ∈ A is defended by S in F, if for each b ∈ A with (b, a) ∈ R, there exists a c ∈ S, such that (c, b) ∈ R.



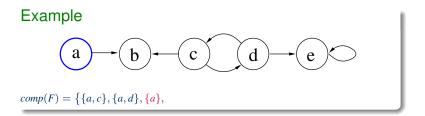
Complete Extension [Dung, 1995]

- S is admissible in F
- each $a \in A$ defended by S in F is contained in S
 - Recall: a ∈ A is defended by S in F, if for each b ∈ A with (b, a) ∈ R, there exists a c ∈ S, such that (c, b) ∈ R.



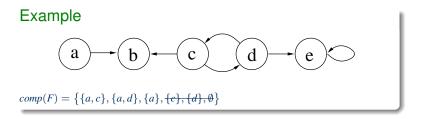
Complete Extension [Dung, 1995]

- S is admissible in F
- each $a \in A$ defended by S in F is contained in S
 - Recall: a ∈ A is defended by S in F, if for each b ∈ A with (b, a) ∈ R, there exists a c ∈ S, such that (c, b) ∈ R.



Complete Extension [Dung, 1995]

- S is admissible in F
- each $a \in A$ defended by S in F is contained in S
 - Recall: a ∈ A is defended by S in F, if for each b ∈ A with (b, a) ∈ R, there exists a c ∈ S, such that (c, b) ∈ R.



Properties of the Grounded Extension

For any AF F, the grounded extension of F is the subset-minimal complete extension of F.

Properties of the Grounded Extension

For any AF F, the grounded extension of F is the subset-minimal complete extension of F.

Remark

Since there exists exactly one grounded extension for each AF *F*, we often write ground(F) = S instead of $ground(F) = \{S\}$.

Preferred Extensions [Dung, 1995]

- S is admissible in F
- for each $T \subseteq A$ admissible in $F, S \not\subset T$

Preferred Extensions [Dung, 1995]

Given an AF F = (A, R). A set $S \subseteq A$ is a preferred extension of F, if

- S is admissible in F
- for each $T \subseteq A$ admissible in $F, S \not\subset T$

Example

$$a \rightarrow b \rightarrow c \rightarrow e \bigcirc$$

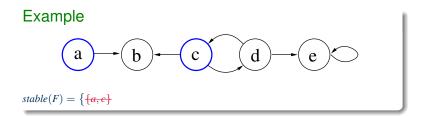
 $pref(F) = \left\{ \{a, c\}, \{a, d\}, \{a\}, \{c\}, \{d\}, \emptyset \right\}$

Stable Extensions [Dung, 1995]

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$

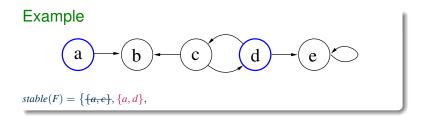
Stable Extensions [Dung, 1995]

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$



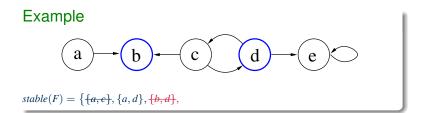
Stable Extensions [Dung, 1995]

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$



Stable Extensions [Dung, 1995]

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$



Stable Extensions [Dung, 1995]

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$



Some Relations

For any AF *F* the following relations hold:

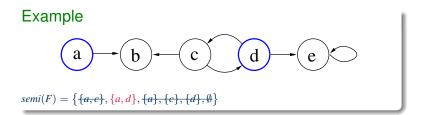
- Each stable extension of F is admissible in F
- 2 Each stable extension of F is also a preferred one
- 3 Each preferred extension of F is also a complete one

Semi-Stable Extensions [Caminada, 2006]

- S is admissible in F
- for each $T \subseteq A$ admissible in $F, S^+ \not\subset T^+$
 - for $S \subseteq A$, define $S^+ = S \cup \{a \mid \exists b \in S \text{ with } (b, a) \in R\}$

Semi-Stable Extensions [Caminada, 2006]

- S is admissible in F
- for each $T \subseteq A$ admissible in $F, S^+ \not\subset T^+$
 - for $S \subseteq A$, define $S^+ = S \cup \{a \mid \exists b \in S \text{ with } (b, a) \in R\}$



Stage Extensions [Verheij, 1996]

- S is conflict-free in F
- for each $T \subseteq A$ conflict-free in $F, S^+ \not\subset T^+$
 - recall $S^+ = S \cup \{a \mid \exists b \in S \text{ with } (b, a) \in R\}$

Stage Extensions [Verheij, 1996]

Given an AF F = (A, R). A set $S \subseteq A$ is a stage extension of F, if

- S is conflict-free in F
- for each $T \subseteq A$ conflict-free in $F, S^+ \not\subset T^+$
 - recall $S^+ = S \cup \{a \mid \exists b \in S \text{ with } (b, a) \in R\}$

Ideal Extension [Dung, Mancarella & Toni 2007]

- S is admissible in F and contained in each preferred extension of F
- there is no *T* ⊃ *S* admissible in *F* and contained in each of *pref*(*F*)

Stage Extensions [Verheij, 1996]

Given an AF F = (A, R). A set $S \subseteq A$ is a stage extension of F, if

- S is conflict-free in F
- for each $T \subseteq A$ conflict-free in $F, S^+ \not\subset T^+$
 - recall $S^+ = S \cup \{a \mid \exists b \in S \text{ with } (b, a) \in R\}$

Ideal Extension [Dung, Mancarella & Toni 2007]

Given an AF F = (A, R). A set $S \subseteq A$ is an ideal extension of F, if

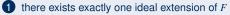
- S is admissible in F and contained in each preferred extension of F
- there is no $T \supset S$ admissible in *F* and contained in each of pref(F)

Eager Extension [Caminada, 2007]

- S is admissible in F and contained in each semi-stable extension of F
- there is no $T \supset S$ admissible in F and contained in each of semi(F)

Properties of Ideal Extensions

For any AF F the following observations hold:



2 the ideal extension of *F* is also a complete one

The same results hold for the eager extension and similar variants [Dvořák et al., 2011].

Resolution-based grounded Extensions [Baroni,Giacomin 2008]

A resolution β of an AF F = (A, R) contains exactly one of the attacks (a, b), (b, a) for each pair $a, b \in A$ with $\{(a, b), (b, a)\} \subseteq R$.

A set $S \subseteq A$ is a resolution-based grounded extension of F, if

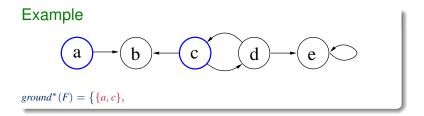
- there exists a resolution β such that $ground((A, R \setminus \beta)) = S$
- and there is no resolution β' such that $ground((A, R \setminus \beta')) \subset S$

Resolution-based grounded Extensions [Baroni,Giacomin 2008]

A resolution β of an AF F = (A, R) contains exactly one of the attacks (a, b), (b, a) for each pair $a, b \in A$ with $\{(a, b), (b, a)\} \subseteq R$.

A set $S \subseteq A$ is a resolution-based grounded extension of F, if

- there exists a resolution β such that $ground((A, R \setminus \beta)) = S$
- and there is no resolution β' such that $ground((A, R \setminus \beta')) \subset S$

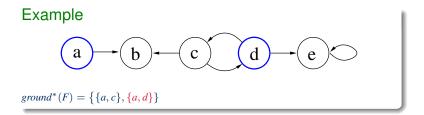


Resolution-based grounded Extensions [Baroni,Giacomin 2008]

A resolution β of an AF F = (A, R) contains exactly one of the attacks (a, b), (b, a) for each pair $a, b \in A$ with $\{(a, b), (b, a)\} \subseteq R$.

A set $S \subseteq A$ is a resolution-based grounded extension of F, if

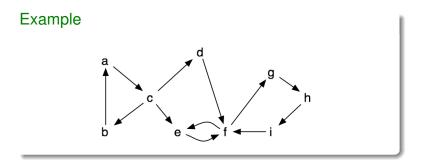
- there exists a resolution β such that $ground((A, R \setminus \beta)) = S$
- and there is no resolution β' such that $ground((A, R \setminus \beta')) \subset S$



cf2 Semantics [Baroni, Giacomin & Guida 2005]

Definition (Separation)

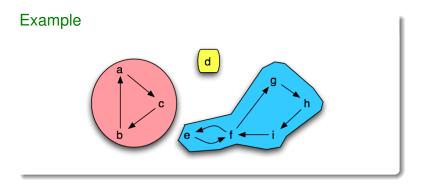
An AF F = (A, R) is called separated if for each $(a, b) \in R$, there exists a path from *b* to *a*. We define $[[F]] = \bigcup_{C \in SCCs(F)} F|_C$ and call [[F]] the separation of *F*.



cf2 Semantics [Baroni, Giacomin & Guida 2005]

Definition (Separation)

An AF F = (A, R) is called separated if for each $(a, b) \in R$, there exists a path from *b* to *a*. We define $[[F]] = \bigcup_{C \in SCCs(F)} F|_C$ and call [[F]] the separation of *F*.



cf2 Semantics (ctd.)

Definition (Reachability)

Let F = (A, R) be an AF, *B* a set of arguments, and $a, b \in A$. We say that *b* is reachable in *F* from *a* modulo *B*, in symbols $a \Rightarrow_F^B b$, if there exists a path from *a* to *b* in $F|_B$.

Definition (Reachability)

Let F = (A, R) be an AF, *B* a set of arguments, and $a, b \in A$. We say that *b* is reachable in *F* from *a* modulo *B*, in symbols $a \Rightarrow_F^B b$, if there exists a path from *a* to *b* in $F|_B$.

Definition $(\Delta_{F,S})$

For an AF F = (A, R), $D \subseteq A$, and a set S of arguments,

$$\Delta_{F,S}(D) = \{ a \in A \mid \exists b \in S : b \neq a, (b,a) \in R, a \not\Rightarrow_F^{A \setminus D} b \}.$$

By $\Delta_{F,S}$, we denote the lfp of $\Delta_{F,S}(\emptyset)$.

cf2 Extensions [G & Woltran 2010]

Given an AF F = (A, R). A set $S \subseteq A$ is a cf2-extension of F, if

- S is conflict-free in F
- and $S \in naive([[F \Delta_{F,S}]])$.

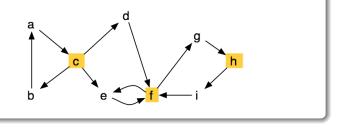
cf2 Extensions [G & Woltran 2010]

Given an AF F = (A, R). A set $S \subseteq A$ is a cf2-extension of F, if

- S is conflict-free in F
- and $S \in naive([[F \Delta_{F,S}]])$.

Example

 $S = \{c, f, h\}, S \in cf(F).$



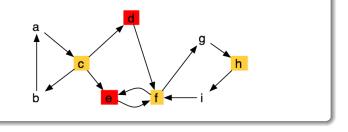
cf2 Extensions [G & Woltran 2010]

Given an AF F = (A, R). A set $S \subseteq A$ is a cf2-extension of F, if

- S is conflict-free in F
- and $S \in naive([[F \Delta_{F,S}]])$.

Example

 $S = \{c, f, h\}, S \in cf(F), \Delta_{F,S}(\emptyset) = \{d, e\}.$



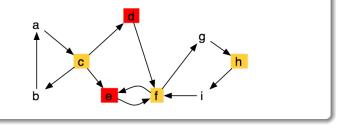
cf2 Extensions [G & Woltran 2010]

Given an AF F = (A, R). A set $S \subseteq A$ is a cf2-extension of F, if

- S is conflict-free in F
- and $S \in naive([[F \Delta_{F,S}]])$.

Example

 $S = \{c, f, h\}, S \in cf(F), \Delta_{F,S}(\{d, e\}) = \{d, e\}.$



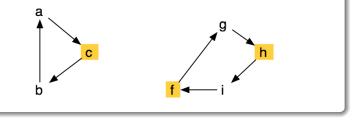
cf2 Extensions [G & Woltran 2010]

Given an AF F = (A, R). A set $S \subseteq A$ is a cf2-extension of F, if

- S is conflict-free in F
- and $S \in naive([[F \Delta_{F,S}]])$.

Example

 $S = \{c, f, h\}, S \in cf(F), \Delta_{F,S} = \{d, e\}, S \in naive([[F - \Delta_{F,S}]]).$



Outline

Relations between Semantics

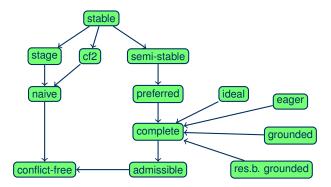


Figure: An arrow from semantics σ to semantics τ encodes that each σ -extension is also a τ -extension.

Outline

Exercises

- **1** Give an AF F such that $stable(F) = \emptyset$ and $semi(F) \neq \{\emptyset\}$.
- 2 Show that the following statement holds for any AF F. If $stable(F) \neq \emptyset$ then stable(F) = semi(F) = stage(F).

3 Select three different semantics $\sigma, \sigma', \sigma''$ out of {*pref*, *ideal*, *semi*, *eager*, ground, stable of your choice and provide three pairs of AFs such that

- $\sigma(F_1) = \sigma(G_1)$ but $\sigma'(F_1) \neq \sigma'(G_1)$
- $\sigma'(F_2) = \sigma'(G_2)$ but $\sigma''(F_2) \neq \sigma''(G_2)$
- $\sigma''(F_3) = \sigma''(G_3)$ but $\sigma(F_3) \neq \sigma(G_3)$

P. Baroni, P. E. Dunne, and M. Giacomin.

On the resolution-based family of abstract argumentation semantics and its grounded instance. Artif. Intell., 175(3-4):791–813, 2011.

P. Baroni and M. Giacomin.

Semantics of abstract argument systems.

In Argumentation in Artificial Intelligence, pages 25-44. Springer, 2009.

P. Baroni, M. Giacomin, and G. Guida.

SCC-Recursiveness: A General Schema for Argumentation Semantics. Artif. Intell., 168(1-2): 162–210. Springer, 2005.

T.J.M. Bench-Capon and P.E.Dunne.

Argumentation in AI, AIJ 171:619-641, 2007

M. Caminada.

Semi-stable semantics. In Proc. COMMA 2006, pages 121–130. IOS Press, 2006.

M. Caminada.

Comparing two unique extension semantics for formal argumentation: ideal and eager In Proc. BNAIC 2007, pages 81–87, 2007.

S. Coste-Marquis, C. Devred, and P. Marquis.

Symmetric argumentation frameworks. In Proc. ECSQARU 2005, pages 317–328. Springer, 2005.

Y. Dimopoulos and A. Torres.

Graph theoretical structures in logic programs and default theories. Theor. Comput. Sci., 170(1-2):209–244, 1996.

P. M. Dung.

ICCL Summer School 2016

Introduction to Formal Argumentation

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358. 1995.

P. M. Dung, P. Mancarella, and F. Toni.

Computing ideal sceptical argumentation. Artif. Intell. 171(10-15):642–674, 2007.

P. E. Dunne.

Computational properties of argument systems satisfying graph-theoretic constraints. Artif. Intell., 171(10-15):701–729, 2007.

P. E. Dunne.

The computational complexity of ideal semantics I: Abstract argumentation frameworks. In Proc. COMMA'08, pages 147–158. IOS Press, 2008.

P. E. Dunne and T. J. M. Bench-Capon.

Coherence in finite argument systems. Artif. Intell., 141(1/2):187–203, 2002.

P. E. Dunne and T. J. M. Bench-Capon.

Complexity in value-based argument systems. In Proc. JELIA 2004, pages 360–371. Springer, 2004.

W. Dvořák, P. Dunne, and S. Woltran.

Parametric properties of ideal semantics. In Proc. IJCAI 2011, pages 851–856, 2011.

W. Dvořák and S. Woltran

On the intertranslatability of argumentation semantics. J. Artif. Intell. Res. 41:445–475, 2011.

S. Gaggl and S. Woltran.

cf2 semantics revisited.

In Proc. COMMA 2010, pages 243-2540. IOS Press, 2010.

S. Gaggl and S. Woltran.

Strong equivalence for argumentation semantics based on conflict-free sets. In Proc. ECSQARU 2011, pages 38–49. Springer, 2011.

S. Gaggl and S. Woltran.

The cf2 argumentation semantics revisited. Journal of Logic and Computation, 23(5):925-949, 2013.

E. Oikarinen and S. Woltran.

Characterizing strong equivalence for argumentation frameworks. Artif. Intell. 175(14-15): 1985–2009, 2011.

B. Verheij.

Two approaches to dialectical argumentation: admissible sets and argumentation stages. In Proc. NAIC'96, pages 357–368, 1996.