
Lecture 5: Operational Semantics
Concurrency Theory Summer 2024

Dr. Stephan Mennicke

May 7th, 2024
TU Dresden, Knowledge-Based Systems Group

Overview

Part 0: Completing the Introduction
• learning about bisimilarity and bisimulations

Part 1: Semantics of (Sequential) Programming Languages
• WHILE – an old friend
• denotational semantics (a baseline and an exercise of the inductive method)
• natural semantics and (structural) operational semantics (today)

Part 2: Towards Parallel Programming Languages
• the Calculus of Communicating Processes (CCS)
• algebraic properties of CCS
• the untold story of Hennessy and Milner
• bisimilarity and its success story
• deep-dive into induction and coinduction

Dr. Stephan Mennicke Concurrency Theory 2 / 31

Overview

Part 3: Expressive Power
• Calculus of Communicating Systems (CCS)
• Petri nets

Dr. Stephan Mennicke Concurrency Theory 3 / 31

Review: Direct Style Semantics

The Kleene Fixed Point Theorem

Theorem 1 : Let 𝑓 : 𝐷 → 𝐷 be a continuous function on the ccpo ⟨𝐷,≼⟩ with least el-
ement ⊥. Then

𝖥𝖨𝖷 𝑓 = ⨆{𝑓𝑛 ⊥ |𝑛 ≥ 0}

defines an element of 𝐷, and this element is the least fixed point of 𝑓 .

Proof : Since 𝑓 is continuous, it is monotone and ⨆{𝑓 𝑑 | 𝑑 ∈ 𝑌 } = 𝑓(⨆𝑌) for all non-
empty chains 𝑌 .

First observe that {𝑓𝑛 ⊥ |𝑛 ≥ 0} is non-empty by 𝑓0 ⊥=⊥. It holds that 𝑓0 ⊥=⊥ ≼
𝑓1 ⊥= 𝑓 ⊥ since ⊥ is the least element of 𝐷. By an inductive argument, we get that
𝑓𝑚 ⊥ ≼ 𝑓𝑚+1 ⊥ for all 𝑚 ≥ 0 since 𝑓 is monotone. By reflexivity and transitivity of ≼
we get 𝑓𝑚 ⊥ ≼ 𝑓𝑛 ⊥ whenever 𝑚 ≤ 𝑛. Therefore, {𝑓𝑛 ⊥ |𝑛 ≥ 0} is a non-empty chain

Dr. Stephan Mennicke Concurrency Theory 5 / 31

The Kleene Fixed Point Theorem

and, thus, ⨆{𝑓𝑛 ⊥ |𝑛 ≥ 0} exists (i.e., defines an element of 𝐷). We next show that it is
a fixed point of 𝑓 :

𝑓(⨆{𝑓𝑛 ⊥ |𝑛 ≥ 0}) = ⨆{𝑓(𝑓𝑛) ⊥ | 𝑛 ≥ 0}
= ⨆{𝑓𝑛 ⊥ |𝑛 ≥ 1}
= ⨆({𝑓𝑛 ⊥ |𝑛 ≥ 1} ∪ {⊥})
= ⨆{𝑓𝑛 ⊥ |𝑛 ≥ 0}

It remains to be shown that 𝖥𝖨𝖷 𝑓 is the least fixed point of 𝑓 . For an arbitrary fixed point
𝑑 of 𝑓 , we have that 𝑓 𝑑 = 𝑑 and, clearly, ⊥ ≼ 𝑑. By monotonicity of 𝑓 and an induction
on 𝑛, we get 𝑓𝑛 ⊥ ≼ 𝑓𝑛 𝑑 = 𝑑 for all 𝑛 ≥ 0. Hence, 𝑑 is an upper bound for the chain
{𝑓𝑛 ⊥ |𝑛 ≥ 0} and since 𝖥𝖨𝖷 𝑓 is the least upper bound of that chain, we directly obtain
𝖥𝖨𝖷 𝑓 ≼ 𝑑. ∎

Dr. Stephan Mennicke Concurrency Theory 6 / 31

The Direct Style Semantics in One Slide

• 𝒮𝖽𝗌⟦𝑥 := 𝑎⟧ 𝑠 ≔ 𝑠[𝑥 ↦ 𝒜⟦𝑎⟧ 𝑠]
• 𝒮𝖽𝗌⟦skip⟧ ≔ id
• 𝒮𝖽𝗌⟦𝑆1 ; 𝑆2⟧ ≔ 𝒮𝖽𝗌⟦𝑆1⟧ ∘ 𝒮𝖽𝗌⟦𝑆1⟧
• 𝒮𝖽𝗌⟦if 𝑏 then 𝑆1 else 𝑆2⟧ ≔ 𝖼𝗈𝗇𝖽(ℬ⟦𝑏⟧ , 𝒮𝖽𝗌⟦𝑆1⟧ , 𝒮𝖽𝗌⟦𝑆2⟧)
• 𝒮𝖽𝗌⟦while 𝑏 do 𝑆⟧ 𝑠 = 𝖥𝖨𝖷 𝐹

where 𝐹 = 𝖼𝗈𝗇𝖽(ℬ⟦𝑏⟧ ,𝑔∘ 𝒮𝖽𝗌⟦𝑆⟧ , id)

Dr. Stephan Mennicke Concurrency Theory 7 / 31

The Direct Style Semantics Exists

Theorem 2 : 𝒮𝖽𝗌⟦⋅⟧ is a total function.

Proof : We need to show that for all While programs 𝑆, 𝒮𝖽𝗌⟦𝑆⟧ yields a partial function
𝑔 : State ↪ State. Therefore note that, since all states Var → ℤ are total functions, also
ℬ⟦𝑏⟧ and 𝒜⟦𝑎⟧ are total for any Boolean expression 𝑏 and arithmetic expression 𝑎. The
proof follows a structural induction on 𝑆.
Base Cases For 𝑆 = 𝑥 ≡ 𝑎 and 𝑆 =skip, 𝒮𝖽𝗌⟦𝑆⟧ is certainly total.
Step Since 𝒮𝖽𝗌⟦𝑆1⟧ and 𝒮𝖽𝗌⟦𝑆2⟧ are total functions (by induction hypothesis), 𝒮𝖽𝗌⟦𝑆2⟧

∘ 𝒮𝖽𝗌⟦𝑆1⟧ yields a total function as well, meaning 𝒮𝖽𝗌⟦𝑆1;𝑆2⟧ is total.
Function cond is total as well because of the induction hypothesis and the fact that
ℬ⟦𝑏⟧ is a total function.

Dr. Stephan Mennicke Concurrency Theory 8 / 31

The Direct Style Semantics Exists

For the last case, assume 𝐹 is continuous (a proof we deliver in Lemma 3). Then 𝖥𝖨𝖷 𝐹
yields a unique partial function by Theorem 1 and, therefore, 𝒮𝖽𝗌⟦while 𝑏 do 𝑆′⟧ yields
a partial function.

Thus, 𝒮𝖽𝗌⟦⋅⟧ is total and, therefore, exists. ∎

Dr. Stephan Mennicke Concurrency Theory 9 / 31

Continuity of While-Functionals

Lemma 3 : Functional 𝐹 , as used in the definition of 𝒮𝖽𝗌⟦while 𝑏 do 𝑆⟧, is continuous.

Proof : We first show that functionals 𝐹1 with

𝐹1 𝑔 = 𝖼𝗈𝗇𝖽(𝑝,𝑔, id)

where 𝑔 : State ↪ State and 𝑝 : State → 𝔹, are continuous. Lut us start by showing that
𝐹1 is monotone. Let 𝑔1 ⊑ 𝑔2 and 𝑠 an arbitrary state. We need to show that (𝐹1 𝑔1)𝑠 =
𝑠′ implies (by assumption) (𝐹2 𝑔2)𝑠 = 𝑠′. If 𝑝 𝑠 = 𝚝𝚝, then 𝑠′ = (𝐹1 𝑔1)𝑠 = 𝑔1 𝑠 implies
𝑠′ = 𝑔2 𝑠 = (𝐹1 𝑔2)𝑠.

Let 𝑌 be a non-empty chain of State ↪ State. By monotonicity of 𝐹1, we get

⨆{𝐹1 𝑑 | 𝑑 ∈ 𝑌 } ⊑ 𝐹1(⨆𝑌)

Dr. Stephan Mennicke Concurrency Theory 10 / 31

Continuity of While-Functionals

Let 𝑠 be a state such that 𝐹1(⨆𝑌)𝑠 = 𝑠′. If 𝑝 𝑠 = 𝚏𝚏, then 𝐹1(⨆𝑌)𝑠 = id 𝑠 = 𝑠′
and, surely, (𝐹1 𝑔)𝑠 = id 𝑠 = 𝑠′ for all 𝑔 ∈ 𝑌 . If 𝑝 𝑠 = 𝚝𝚝, then (⨆𝑌)𝑠 = 𝑠′ (since
(𝐹(⨆𝑌))𝑠 = (⨆𝑌)𝑠) we need to show that there is a 𝑔 ∈ 𝑌 such that 𝑔 𝑠 = 𝑠′. Note,
𝑔 𝑠 is the same for all 𝑔 ∈ 𝑌 defined for 𝑠. Suppose, 𝑔 𝑠 = 𝚞𝚗𝚍𝚎𝚏 for all 𝑔 ∈ 𝑌 . Then
certainly (⨆𝑌)[𝑠 ↦ 𝚞𝚗𝚍𝚎𝚏] is an upper bound of 𝑌 . But (⨆𝑌) being already the least
upper bound of 𝑌 entails a contradiction. Thus, there is a 𝑔 ∈ 𝑌 with 𝑔 𝑠 = 𝑠′ and, thus,
⨆{(𝐹1 𝑔) | 𝑔 ∈ 𝑌 }𝑠 = 𝑠′.

Next, we show that functionals 𝐹2 with

𝐹2 𝑔 = 𝑔 ∘ 𝑔0

where 𝑔0 : State ↪ State, are continuous. Again, we start with monotonicity: Let 𝑔1 ⊑
𝑔2 and we need to show that 𝐹2 𝑔1 ⊑ 𝐹2 𝑔2. But this is immediate from the fact that
𝐹2 𝑔𝑖 = 𝑔𝑖 ∘ 𝑔0, so if 𝑔0 𝑠 = 𝑠1, then 𝑔1 𝑠1 = 𝑠′ implies 𝑔2 𝑠1 = 𝑠′.

Dr. Stephan Mennicke Concurrency Theory 11 / 31

Continuity of While-Functionals

Let 𝑌 be a non-empty chain over State ↪ State. We get ⨆{𝐹2 𝑔 | 𝑔 ∈ 𝑌 } ⊑ 𝐹2(⨆𝑌) by
monotonicity of 𝐹2. For state 𝑠, we get (𝐹2(⨆𝑌))𝑠 = ((⨆𝑌) ∘ 𝑔0)𝑠 = (⨆𝑌)(𝑔0 𝑠) = 𝑠′
we obtain there must be a 𝑔 ∈ 𝑌 such that 𝑔(𝑔0 𝑠) = 𝑠′. Hence, 𝐹2(⨆𝑌) ⊑ ⨆{𝐹2 𝑔 | 𝑔 ∈
𝑌 }.

Then 𝐹2 ∘ 𝐹1 is continuous as well, making 𝒮𝖽𝗌⟦⋅⟧ well-defined for while-loops. ∎

Dr. Stephan Mennicke Concurrency Theory 12 / 31

Operational Semantics

Was bisher geschah:

𝑎 ⩴ 𝑛 | 𝑥 | 𝑎 ⊕ 𝑎 | 𝑎 ⋆ 𝑎 | 𝑎 ⊖ 𝑎

𝑏 ⩴ true | false | 𝑎 ≡ 𝑎 | 𝑎 ≦ 𝑎 | ¬𝑏 | 𝑏 ∧ 𝑏

𝑆 ⩴ 𝑥 := 𝑎 | skip | 𝑆 ; 𝑆 | if 𝑏 then 𝑆 else 𝑆 | while 𝑏 do 𝑆

where 𝑛 ∈ Num and 𝑥 ∈ Var.

• functions describe the effect compositionally: 𝒮𝖽𝗌⟦⋅⟧ relates inputs with outputs
• does this semantics tell us why/how a program computes what it computes?

Dr. Stephan Mennicke Concurrency Theory 14 / 31

The Operational Approach

• describe the semantics in terms of transitions that perform the actual state change
• we consider two different styles:

natural semantics ➡ relates program-state pairs with states;
every natural step comes with a proof;
sometimes referred to as big step semantics

structural operational semantics ⇒ relates program-state pairs with program-state
pairs or just states;
also known as small step semantics

• both styles are formalized by a finite set of rules

empty premise[axiom]
conclusion

premise[rule] if … condition
conclusion

• key principle: rule induction

Dr. Stephan Mennicke Concurrency Theory 15 / 31

Rule Induction by Examples

1. Lists over alphabet Σ

[nil]
nil ∈ ℒ

𝑠 ∈ ℒ 𝑎 ∈ Σ[cons]
⟨𝑎⟩ • 𝑠 ∈ ℒ

ℒ is the smallest set satisfying rule [nil] and [cons].
2. Finite Trace Process Pr. Let 𝑇 = (𝑄,Σ,→) be an LTS.

∀𝜇 ∈ Σ : 𝑃 ↛
𝜇

[dead]
𝑃⇂

𝑃 →
𝜇
𝑃 ′ 𝑃 ′⇂[trans]
𝑃⇂

The set of finite trace processes is the smallest set ⇂ satisfying rules [dead] and [trans].

Smells Like Fixed Points

Dr. Stephan Mennicke Concurrency Theory 16 / 31

Rule Induction by Examples

if 𝑥 ∈ 𝐕𝐚𝐫 and 𝑎 ∈ 𝐀𝐞𝐱𝐩
𝑥:=𝑎 ∈ 𝐖𝐇𝐈𝐋𝐄 skip ∈𝐖𝐇𝐈𝐋𝐄

𝑆1 ∈𝐖𝐇𝐈𝐋𝐄 𝑆2 ∈𝐖𝐇𝐈𝐋𝐄
𝑆1;𝑆2 ∈𝐖𝐇𝐈𝐋𝐄

𝑏 ∈ 𝐁𝐞𝐱𝐩 𝑆1 ∈𝐖𝐇𝐈𝐋𝐄 𝑆2 ∈𝐖𝐇𝐈𝐋𝐄
if 𝑏 then 𝑆1 else 𝑆2 ∈𝐖𝐇𝐈𝐋𝐄

𝑏 ∈ 𝐁𝐞𝐱𝐩 𝑆 ∈ 𝐖𝐇𝐈𝐋𝐄
while 𝑏 do 𝑆 ∈ 𝐖𝐇𝐈𝐋𝐄

The language of all 𝐖𝐇𝐈𝐋𝐄 statements is the smallest set satisfying the rules above.

Dr. Stephan Mennicke Concurrency Theory 17 / 31

Natural Semantic Rules

• assignments and skip statements form the induction base
• as in 𝒮𝖽𝗌⟦⋅⟧, assignments alter the state while skip leaves it identical

[assns] ⟨𝑥:=𝑎, 𝑠⟩➡𝑠[𝑥 ↦ 𝒜⟦𝑎⟧ 𝑠]
[skipns] ⟨skip, 𝑠⟩➡𝑠

• we want to prove that the sequential composition 𝑆1;𝑆2, initiated in state 𝑠, yields 𝑠′
• then we need to show that there is a state 𝑠″, such that statement 𝑆1 in 𝑠 yields 𝑠″ and

statement 𝑆2 in 𝑠″ finally yields 𝑠′

⟨𝑆1, 𝑠⟩➡𝑠″ ⟨𝑆2, 𝑠″⟩➡𝑠′[seqns] ⟨𝑆1;𝑆2, 𝑠⟩➡𝑠′

Dr. Stephan Mennicke Concurrency Theory 18 / 31

Natural Semantic Rules

• for conditionals, the proof depends on the evaluation of the branching condition

⟨𝑆1, 𝑠⟩➡𝑠′[if𝚝𝚝ns] if ℬ⟦𝑏⟧ 𝑠 = 𝚝𝚝
⟨if 𝑏 then 𝑆1 else 𝑆2, 𝑠⟩➡𝑠′

⟨𝑆2, 𝑠⟩➡𝑠′[if𝚏𝚏ns] if ℬ⟦𝑏⟧ 𝑠 = 𝚏𝚏
⟨if 𝑏 then 𝑆1 else 𝑆2, 𝑠⟩➡𝑠′

• also for while-loops, we distinguish alongside the cases of the loop condition
• here, the proof unravels the computation by one iteration

Dr. Stephan Mennicke Concurrency Theory 19 / 31

Natural Semantic Rules

⟨𝑆, 𝑠⟩➡𝑠′ ⟨while 𝑏 do 𝑆, 𝑠′⟩➡𝑠″[while𝚝𝚝ns] if ℬ⟦𝑏⟧ 𝑠 = 𝚝𝚝
⟨while 𝑏 do 𝑆, 𝑠⟩➡𝑠″

[while𝚏𝚏ns] if ℬ⟦𝑏⟧ 𝑠 = 𝚏𝚏
⟨while 𝑏 do 𝑆, 𝑠⟩➡𝑠

Dr. Stephan Mennicke Concurrency Theory 20 / 31

An Example: 𝑦 = 𝑥!

Consider the statement

𝑦 := 𝟷; while ¬(𝑥 ≡ 1) do (𝑦 := 𝑦 ⋆ 𝑥; 𝑥 := 𝑥 ⊖ 𝟷)

in state 𝑠 with 𝑠 𝑥 = 3. We use the semantic rules to show that the statement in state 𝑠 yields
𝑠[𝑥 ↦ 1][𝑦 ↦ 6].

Therefore, note that on any state 𝑠, ⟨(𝑦 := 𝑦 ⋆ 𝑥; 𝑥 := 𝑥 ⊖ 𝟷) , 𝑠⟩➡𝑠[𝑥 ↦ 𝑠𝑥 − 1][𝑦 ↦ 𝑠 𝑦 ⋅ 𝑠 𝑥]

[assns] ⟨𝑦:=𝑦 ⋆ 𝑥, 𝑠⟩➡𝑠[𝑦 ↦ 𝒜⟦𝑦 ⋆ 𝑥⟧ 𝑠]
[assns] ⟨𝑥:=𝑥 ⊖ 𝟷, 𝑠⟩➡𝑠[𝑥 ↦ 𝒜⟦𝑥 ⊖ 𝟷⟧ 𝑠][seqₙₛ]

⟨𝑦 := 𝑦 ⋆ 𝑥; 𝑥 := 𝑥 ⊖ 𝟷, 𝑠⟩➡𝑠[𝑦 ↦ 𝑠 𝑦 ⋅ 𝑠 𝑥][𝑥 ↦ 𝑠𝑥 − 1]

We subsequently abbreviate (𝑦 := 𝑦 ⋆ 𝑥; 𝑥 := 𝑥 ⊖ 𝟷) by 𝑆⋆ and we abbreviate the proof tree
above by [𝑆⋆].

Dr. Stephan Mennicke Concurrency Theory 21 / 31

An Example: 𝑦 = 𝑥!

[assns] ⟨𝑦:=𝟷, 𝑠⟩➡𝑠[𝑦 ↦ 𝒜⟦𝟷⟧ 𝑠]
[while𝚝𝚝ns] ⟨while ¬(𝑥 ≡ 1) do 𝑆⋆, 𝑠[𝑦 ↦ 1]⟩➡𝑠[𝑥 ↦ 1][𝑦 ↦ 6][seqns] ⟨𝑦 := 𝟷; while ¬(𝑥 ≡ 1) do 𝑆⋆, 𝑠⟩➡𝑠[𝑥 ↦ 1][𝑦 ↦ 6]

Dr. Stephan Mennicke Concurrency Theory 22 / 31

An Example: 𝑦 = 𝑥!

[𝑆⋆]
⟨𝑆⋆, 𝑠[𝑦 ↦ 1]⟩➡𝑠[𝑥 ↦ 2][𝑦 ↦ 3] = 𝑠′

[while𝚝𝚝ns] ⟨while ¬(𝑥 ≡ 1) do 𝑆⋆, 𝑠′⟩➡𝑠″[while𝚝𝚝ns] ⟨while ¬(𝑥 ≡ 1) do 𝑆⋆, 𝑠[𝑦 ↦ 1]⟩➡𝑠[𝑥 ↦ 1][𝑦 ↦ 6] = 𝑠″

Dr. Stephan Mennicke Concurrency Theory 23 / 31

An Example: 𝑦 = 𝑥!

[𝑆⋆]
⟨𝑆⋆, 𝑠[𝑥 ↦ 2][𝑦 ↦ 3]⟩➡𝑠[𝑥 ↦ 1][𝑦 ↦ 6] = 𝑠′

[while𝚏𝚏ns] ⟨while ¬(𝑥 ≡ 1) do 𝑆⋆, 𝑠′⟩➡𝑠″[while𝚝𝚝ns] ⟨while ¬(𝑥 ≡ 1) do 𝑆⋆, 𝑠[𝑦 ↦ 1]⟩➡𝑠[𝑥 ↦ 1][𝑦 ↦ 6] = 𝑠″

Dr. Stephan Mennicke Concurrency Theory 24 / 31

The Natural Semantics in One Slide

[assns] ⟨𝑥:=𝑎, 𝑠⟩➡𝑠[𝑥 ↦ 𝒜⟦𝑎⟧ 𝑠]
[skipns] ⟨skip, 𝑠⟩➡𝑠

⟨𝑆1, 𝑠⟩➡𝑠″ ⟨𝑆2, 𝑠″⟩➡𝑠′[seqns] ⟨𝑆1;𝑆2, 𝑠⟩➡𝑠′

⟨𝑆1, 𝑠⟩➡𝑠′[if𝚝𝚝ns] if ℬ⟦𝑏⟧ 𝑠 = 𝚝𝚝
⟨if 𝑏 then 𝑆1 else 𝑆2, 𝑠⟩➡𝑠′

⟨𝑆2, 𝑠⟩➡𝑠′[if𝚏𝚏ns] if ℬ⟦𝑏⟧ 𝑠 = 𝚏𝚏
⟨if 𝑏 then 𝑆1 else 𝑆2, 𝑠⟩➡𝑠′

⟨𝑆, 𝑠⟩➡𝑠′ ⟨while 𝑏 do 𝑆, 𝑠′⟩➡𝑠″[while𝚝𝚝ns] if ℬ⟦𝑏⟧ 𝑠 = 𝚝𝚝
⟨while 𝑏 do 𝑆, 𝑠⟩➡𝑠″

[while𝚏𝚏ns] if ℬ⟦𝑏⟧ 𝑠 = 𝚏𝚏
⟨while 𝑏 do 𝑆, 𝑠⟩➡𝑠″

Dr. Stephan Mennicke Concurrency Theory 25 / 31

A Case for Rule Induction

Theorem 4 : The natural semantics is deterministic.

Proof : Exercise ∎

Theorem 5 : The semantic function of the natural semantics 𝒮𝗇𝗌⟦⋅⟧ : 𝐒𝐭𝐦 → (𝐒𝐭𝐚𝐭𝐞 ↪
𝐒𝐭𝐚𝐭𝐞) given by

𝒮𝗇𝗌⟦𝑆⟧ 𝑠 = {
𝑠′ if ⟨𝑆, 𝑠⟩➡𝑠′

𝚞𝚗𝚍𝚎𝚏 otherwise

exists (and is well-defined).

Dr. Stephan Mennicke Concurrency Theory 26 / 31

An Equivalence Result

Theorem 6 : The natural semantics and the direct style semantics coincide, that is

𝒮𝖽𝗌⟦𝑆⟧ = 𝒮𝗇𝗌⟦𝑆⟧

for all statements 𝑆 of the While-language.

Proof : Exercise ∎

Dr. Stephan Mennicke Concurrency Theory 27 / 31

The Natural Semantics = Big Step Semantics

• as for 𝒮𝖽𝗌⟦⋅⟧, the transition rules provide us with proofs relating inputs with outputs of
program execution

• a more fine-grained approach is taken by the structural operational semantics
• as the name states, this semantics defines the operational behavior (i.e., the transitions) in

terms of the program structure
• small step transitions have the following shape: ⟨𝑆, 𝑠⟩ ⇒ 𝛾

‣ 𝛾 can be of the form ⟨𝑆′, 𝑠′⟩
‣ 𝛾 can be of the form 𝑠′ (in case of termination)

Dr. Stephan Mennicke Concurrency Theory 28 / 31

Rules of the Structural Operational Semantics (SOS)

[assSOS]
⟨𝑥:=𝑎, 𝑠⟩ ⇒ 𝑠[𝑥 ↦ 𝒜⟦𝑎⟧ 𝑠]

[skipSOS]
⟨skip, 𝑠⟩ ⇒ 𝑠

⟨𝑆1, 𝑠⟩ ⇒ ⟨𝑆′1, 𝑠′⟩[seq1𝖲𝖮𝖲] ⟨𝑆1;𝑆2, 𝑠⟩ ⇒ ⟨𝑆′1;𝑆2, 𝑠′⟩
⟨𝑆1, 𝑠⟩ ⇒ 𝑠′[seq2𝖲𝖮𝖲] ⟨𝑆1;𝑆2, 𝑠⟩ ⇒ ⟨𝑆2, 𝑠′⟩

[if𝚝𝚝𝖲𝖮𝖲] if ℬ⟦𝑏⟧ 𝑠 = 𝚝𝚝
⟨if 𝑏 then 𝑆1 else 𝑆2, 𝑠⟩ ⇒ ⟨𝑆1, 𝑠⟩

[if𝚏𝚏𝖲𝖮𝖲] if ℬ⟦𝑏⟧ 𝑠 = 𝚏𝚏
⟨if 𝑏 then 𝑆1 else 𝑆2, 𝑠⟩ ⇒ ⟨𝑆2, 𝑠⟩

[whileSOS]
⟨while 𝑏 do 𝑆, 𝑠⟩ ⇒ ⟨of 𝑏 then 𝑆 else skip, 𝑠⟩

Dr. Stephan Mennicke Concurrency Theory 29 / 31

The Semantic Function of SOS

Theorem 7 : The structural operational semantics is deterministic.

𝒮𝗌𝗈𝗌⟦𝑆⟧ 𝑠 = {
𝑠′ if ⟨𝑆, 𝑠⟩ ⇒ 𝑠′

𝚞𝚗𝚍𝚎𝚏 otherwise

Theorem 8 : For all statements 𝑆, 𝒮𝗇𝗌⟦𝑆⟧ = 𝒮𝗌𝗈𝗌⟦𝑆⟧.

Direct Consequence: All three semantics are equivalent.

Dr. Stephan Mennicke Concurrency Theory 30 / 31

Summary & Outlook

We learned about three different yet equivalent styles of (sequential) programming language
semantics:
denotational semantics computation = function application
natural semantics computation = step-by-step proofs (derivation tree)
structural operational semantics computation = step-by-step computation (⁇)

Next:
• the Calculus of Communicating Systems (CCS)
• which semantic style to choose for CCS?
• an old friend around the corner: bisimilarity is a congruence
• the untold story of Matthew Hennessy and Robin Milner
• justifying bisimilarity

Dr. Stephan Mennicke Concurrency Theory 31 / 31

