Lecture 5: Operational Semantics
Concurrency Theory Summer 2024

Dr. Stephan Mennicke

May 7%, 2024
TU Dresden, Knowledge-Based Systems Group

Overview

Part 0: Completing the Introduction
o learning about bisimilarity and bisimulations

Part 1: Semantics of (Sequential) Programming Languages
« WHILE - an old friend
« denotational semantics (a baseline and an exercise of the inductive method)
- natural semantics and (structural) operational semantics (today)

Part 2: Towards Parallel Programming Languages
o the Calculus of Communicating Processes (CCS)

algebraic properties of CCS

the untold story of Hennessy and Milner

bisimilarity and its success story

deep-dive into induction and coinduction

Dr. Stephan Mennicke Concurrency Theory 2/31

Overview

Part 3: Expressive Power
« Calculus of Communicating Systems (CCS)
« Petri nets

Dr. Stephan Mennicke Concurrency Theory 3/31

Review: Direct Style Semantics

The Kleene Fixed Point Theorem

Theorem 1: Let f : D — D be a continuous function on the ccpo (D, <) with least el-
ement L. Then

FIX f = [{f" L |n >0}

defines an element of D, and this element is the least fixed point of f.

Proof: Since f is continuous, it is monotone and | [{fd|d € Y} = f(| |Y) for all non-
empty chains Y.

First observe that {f® L |n > 0} is non-empty by fY L=_1. It holds that f* 1=1 <
ft 1= f 1 since L is the least element of D. By an inductive argument, we get that
f™ L < f™* 1 for all m > 0 since f is monotone. By reflexivity and transitivity of <
we get f™ L < f™ L whenever m < n. Therefore, { f* L |n > 0} is a non-empty chain
Dr. Stephan Mennicke Concurrency Theory 5/ 31

The Kleene Fixed Point Theorem

and, thus, | [{f™ L |n > 0} exists (i.e., defines an element of D). We next show that it is
a fixed point of f:

FLRS™ Lin = 0}) = [K{fF(F™) L In >0}

=/ Lin=1;

=" Lin =1} U{Ll})

—L{/" Ln>0)

[t remains to be shown that FIX f is the least fixed point of f. For an arbitrary fixed point
d of f, we have that f d = d and, clearly, | < d. By monotonicity of f and an induction
on n, we get f* L < fd = d for all n > 0. Hence, d is an upper bound for the chain
{f™ L |n >0} andsince FIX f is the least upper bound of that chain, we directly obtain
FIX f<d. O

Dr. Stephan Mennicke Concurrency Theory 6/ 31

The Direct Style Semantics in One Slide

[z :=a] s:= s[x — Ala] s]

[skip] :=id

¢+ S4slS1 7 Sall = S4s[S1] ° Syl 51

e S [if b then S; else S,] := cond(B[b], Sy [S1], S¢s[S2])
[while b do S| s = FIX F

where F' = cond(B[b] ,g° S4[S] ,id)

Dr. Stephan Mennicke Concurrency Theory 7/ 31

The Direct Style Semantics Exists

Theorem 2: S, [-] is a total function.

Proof: We need to show that for all While programs S, §,.[S] yields a partial function
g : State < State. Therefore note that, since all states Var — Z are total functions, also
B[b] and A[a] are total for any Boolean expression b and arithmetic expression a. The
proof follows a structural induction on S.
Base Cases For S =z = a and S =skip, §4[S] is certainly total.
Step Since 84 [5;] and §,4[S,] are total functions (by induction hypothesis), S [S5]
o §,4[S1] yields a total function as well, meaning §,.[S; ; S5] is total.
Function cond is total as well because of the induction hypothesis and the fact that
B[] is a total function.

Dr. Stephan Mennicke Concurrency Theory 8/ 31

The Direct Style Semantics Exists

For the last case, assume F' is continuous (a proof we deliver in Lemma 3). Then FIX F
yields a unique partial function by Theorem 1 and, therefore, §, [while b do S’] yields
a partial function.

Thus, §,.[-] is total and, therefore, exists.]

Dr. Stephan Mennicke Concurrency Theory 9/ 31

Continuity of While-Functionals

Lemma 3: Functional F, as used in the definition of &, [while b do S], is continuous.

Proof: We first show that functionals F with
F; g = cond(p,g,id)

where g : State — State and p : State — B, are continuous. Lut us start by showing that
F, is monotone. Let g; C g, and s an arbitrary state. We need to show that (F} g;)s =
s” implies (by assumption) (F5, g,)s = s". If ps = tt, then s’ = (F} g;)s = g; s implies
s =gy5 = (F} ga)s.

Let Y be a non-empty chain of State < State. By monotonicity of F;, we get
| {F1d|deY} T F(L]Y)

Dr. Stephan Mennicke Concurrency Theory 10/ 31

Continuity of While-Functionals

Let s be a state such that F(| |Y)s=s". If ps=ff, then Fi(| [Y)s=ids =
and, surely, (F;g)s=1ids=s" for all g€ Y. If ps=tt, then (| |[Y)s=s" (since
(F(|Y))s = (| |[Y)s) we need to show that there is a g € Y such that g s = s’. Note,
g s is the same for all g € Y defined for s. Suppose, g s = undef for all g € Y. Then
certainly (| |Y)[s — undef] is an upper bound of Y. But (| |Y') being already the least
upper bound of Y entails a contradiction. Thus, there isa g € Y with g s = s’ and, thus,

[{(F1g)lgeY}s=¢"
Next, we show that functionals F), with
Fy9=9°9o

where g, : State < State, are continuous. Again, we start with monotonicity: Let g; C
g> and we need to show that F, g; C F; g,. But this is immediate from the fact that
F, g, = g, 09y, s0if gy s = s1, then g; s; = s’ implies g, s; = 5.

Dr. Stephan Mennicke Concurrency Theory 11/31

Continuity of While-Functionals

Let Y be a non-empty chain over State <> State. We get| [{F, g|g € Y} C F,(| |[Y) by
monotonicity of F},. For state s, we get (F5(| |[Y))s = ([|[Y) o g9)s = ([[Y)(ggs) = 5
we obtain there mustbe a g € Y such that g(g, s) = s".Hence, Fy,(| |[Y)C | {F5 9|9 €

Y}

Then F,, o F} is continuous as well, making §,[-] well-defined for while-loops. O

Dr. Stephan Mennicke Concurrency Theory 12/ 31

Operational Semantics

Was bisher geschah:

as=n|x|ada|axa|aBSa
b == true | false |a=a |a<a | -b|bAD
S us==x:=a | skip | §; 8 | ifbthenSelseS | whilebdo S
where n € Num and = € Var.

. functions describe the effect compositionally: &[] relates inputs with outputs
o does this semantics tell us why/how a program computes what it computes?

Dr. Stephan Mennicke Concurrency Theory 14/ 31

The Operational Approach

« describe the semantics in terms of fransitions that perform the actual state change
- we consider two different styles:
natural semantics =+ relates program-state pairs with states;
every natural step comes with a proof;
sometimes referred to as big step semantics
structural operational semantics = relates program-state pairs with program-state
pairs or just states;
also known as small step semantics
« both styles are formalized by a finite set of rules

empty premise [rule] PIEMISE if ... condition

[axiom]

conclusion conclusion

o key principle: rule induction

Dr. Stephan Mennicke Concurrency Theory 15/ 31

Rule Induction by Examples

1. Lists over alphabet X

[nil] [cons] seL a€eX

nile £ (a)es € L

£ is the smallest set satisfying rule [nil] and [cons].
2. Finite Trace Process Pr. Let T' = (@, X, —) be an LTS.

e 12 , ,
VueX: P+ rtrans] £ = £ P/l

dead
[dead] Pl Pl

The set of finite trace processes is the smallest set | satisfying rules [dead] and [trans].

Smells Like Fixed Points

Dr. Stephan Mennicke Concurrency Theory 16 / 31

Rule Induction by Examples

ifx € Var and a € Aexp
r:=a € WHILE skip € WHILE

S; € WHILE S, € WHILE bec Bexp S5, € WHILE S, ¢ WHILE
S]_;Sz - WHILE if b then Sl else SQ c WHILE

be Bexp S € WHILE
while b do S € WHILE

The language of all WHILE statements is the smallest set satisfying the rules above.

Dr. Stephan Mennicke Concurrency Theory 17/ 31

Natural Semantic Rules

. assignments and skip statements form the induction base
. asin §,.[-], assignments alter the state while skip leaves it identical

I
(2% (x:=a, s)=+s[z — Ala] s] [Skip, (skip, s)=>s

. we want to prove that the sequential composition S ; S,, initiated in state s, yields s’

- then we need to show that there is a state s”, such that statement S; in s yields s” and
statement S, in s” finally yields s’

(51,8)=s" (S,8")=s

(5135, 8)=s’

[sedp]

Dr. Stephan Mennicke Concurrency Theory 18 /31

Natural Semantic Rules

o for conditionals, the proof depends on the evaluation of the branching condition

(51,5)=s’

[ify]
(if b then S| else S,, s)=>s’

if B[b] s = tt

(53, 5)=s’
(if b then S else S,, s)=>s’
. also for while-loops, we distinguish alongside the cases of the loop condition

[ifff] if B[b] s = ££f

« here, the proof unravels the computation by one iteration

Dr. Stephan Mennicke Concurrency Theory 19/ 31

Natural Semantic Rules

(S, s)=+s" (whilebdo S,s)=s”

[while®®]
(while b do S, s)=s"

if B[b] s = tt

[whilel!] if B[b] s = £f
(while b do S, s)=>s

Dr. Stephan Mennicke Concurrency Theory 20/ 31

An Example: y = z!

Consider the statement
y:=1; while~(z =1)do(y:=y*xx; x:=x 1)

in state s with s x = 3. We use the semantic rules to show that the statement in state s yields
slz — 1][y — 6].

Therefore, note that on any state s, ((y 1=y *xz; x :=x S 1), s)=slz = sz — ||y = sy - sx]

[ass,] [ass,]
[sequ] (y:=y % x, s)=>s[y — Ay x x] s (x:=x O 1, s)=s[x — AJx & 1] s

(yi=yxzx; x:=x81,8)=sly> sy-sx|[xt— sx—1]

We subsequently abbreviate (y :=y*x x; ¢ := x © 1) by S* and we abbreviate the proof tree
above by [S*].

Dr. Stephan Mennicke Concurrency Theory 21/ 31

An Example: y = «!

[ass,. [whileZ!]
[seq..] (y:=1, s)=>s|y — A[1] s]
. (y :=1; while =(x = 1) do S*, s)=s[x — 1]y > 6]

(while =(z = 1) do S*, sly > 1])=>s[x — 1]y > 6]

Dr. Stephan Mennicke Concurrency Theory 22 /31

An Example: y = «!

[S*] [whilet?]

il (S s P Dsle 2 2y 8= ™ (uhile 2z =1) do 5, 5=’

(while =(x = 1) do S*, s|ly > 1])=s|z = 1]y > 6] = s”

Dr. Stephan Mennicke Concurrency Theory 23 /31

An Example: y = «!

[S*] [whileff]

[while®®] (5%, slz = 2]y = 3])=s[z = 1]jy = 6] = 5’ . (while =(x = 1) do S*, s’)=s”

(while =(x = 1) do S*, s|ly > 1])=s|z = 1]y > 6] = s”

Dr. Stephan Mennicke Concurrency Theory 24 /31

The Natural Semantics in One Slide

[ass,.] [skip,] (S1,s)=>s” (8,,8")mrs’
(w:=a, s)=slz > Ala] 5] (skip, s)=s — (51387, 8)=s
[fes]— Py i B[b] s = tt
(if b then S, else S,, s)=+s
[ifE£] (o 8= if B[b] s = ££

(if b then S else S,, s)=>s’
S,s)=s" (while bdo S,s")=>s"
(while b do S, s)=+s"
[whilelf] if B[b] s = £f

7 (while bdo S, s)=s”

[whilett] if BB s = tt

Dr. Stephan Mennicke Concurrency Theory 25/ 31

A Case tor Rule Induction

Theorem 4: The natural semantics is deterministic.
Proof: Exercise i

Theorem 5: The semantic function of the natural semantics S [-] : Stm — (State <
State) given by

S [S]s = {3’ if (S, s)=+s’

undef otherwise

exists (and is well-defined).

Dr. Stephan Mennicke Concurrency Theory 26/ 31

An Equivalence Result

Theorem 6: The natural semantics and the direct style semantics coincide, that is
Sds[[s]] — ‘Sns[[S]]

for all statements S of the While-language.

Proof: Exercise O

Dr. Stephan Mennicke Concurrency Theory 27 /31

The Natural Semantics = Big Step Semantics

« as for Sy [], the transition rules provide us with proofs relating inputs with outputs of
program execution
 a more fine-grained approach is taken by the structural operational semantics
« as the name states, this semantics defines the operational behavior (i.e., the transitions) in
terms of the program structure
- small step transitions have the following shape: (S, s) = ~
» 7 can be of the form (S’, s")
» ~ can be of the form s’ (in case of termination)

Dr. Stephan Mennicke Concurrency Theory 28 /31

Rules of the Structural Operational Semantics (SOS)

[asSsos] [skipsos]
(x:=a, s) = s|x > Ala] s] (skip, s) = s
S;,8) = (57,8 S;,8) = ¢
504505 S <Sl 3 = ési fs*> s') 504505 (S ;1;; <f9 s')

(51355, 1192 11°2; 2
[ifE%] if B[b]|s=tt

°05 (if b then S, else S,, s) = (S, s) g
[if&5s] if B[b] s = £f

(if b then S, else S,, s) = (S,, s)

[Whﬂesos]
(while bdo S,s) = (of b then S else skip, s)

Dr. Stephan Mennicke Concurrency Theory 29 /31

The Semantic Function of SOS

Theorem 7: The structural operational semantics is deterministic.

s’ if (S,s) = ¢’

undef otherwise

.11 = {

Theorem 8: For all statements S, S . [S] = S...[S].

Direct Consequence: All three semantics are equivalent.

Dr. Stephan Mennicke Concurrency Theory 30/ 31

Summary & Outlook

We learned about three different yet equivalent styles of (sequential) programming language
semantics:

denotational semantics computation = function application

natural semantics computation = step-by-step proofs (derivation tree)

structural operational semantics computation = step-by-step computation (??)

Next:
o the Calculus of Communicating Systems (CCS)

which semantic style to choose for CCS?

an old friend around the corner: bisimilarity is a congruence
the untold story of Matthew Hennessy and Robin Milner
justifying bisimilarity

Dr. Stephan Mennicke Concurrency Theory 31/31

