

KNOWLEDGE GRAPHS

Lecture 7: Expressive Power and Complexity of SPARQL

Markus Krötzsch Knowledge-Based Systems

TU Dresden, 26th Nov 2019

Review

Semantics of each feature is defined by specific algebra operators

- $Join(M_1, M_2)$: join compatible mappings from M_1 and M_2
- Filter_G(φ, M): remove from multiset M all mappings for which φ does not evaluate to EBV "true"
- Union (M_1, M_2) : compute the union of mappings from multisets M_1 and M_2
- Minus(*M*₁, *M*₂): remove from multiset *M*₁ all mappings compatible with a non-empty mapping in *M*₂
- LeftJoin_{*G*}(M_1, M_2, φ): extend mappings from M_1 by compatible mappings from M_2 when filter condition is satisfied; keep remaining mappings from M_1 unchanged
- Extend(M, v, φ): extend all mappings from M by assigning v the value of φ .
- OrderBy(*L*, condition): sort list by a condition
- Slice(*L*, start, length): apply limit and offset modifiers

Further operators exist, e.g., Distinct(*L*).

Translating SPARQL to nested algebra expressions is mostly straightforward (we saw an algorithm for a subset of features).

Markus Krötzsch, 26th Nov 2019

Knowledge Graphs

slide 2 of 27

Preview

students@fffdd.de

https://fffdd.de/
aktionen/pcs

Markus Krötzsch, 26th Nov 2019							e 3 of 27			sch, 26th Nov 2019					slide 4	
1860	1880	1900	1920	1940	1960	1980	2000	18	360	1880	1900	1920	1940	1960	1980	2000

Complexity of SPARQL

Finding BGP solutions

How can we compute solutions to BGPs?

Possible approach:

- 1. Find solutions to triple patterns
- 2. Compute joins of partial solutions

By Theorem 6.6, $BGP_G(P)$ is the join of the solution multisets of all individual triple patterns in *P*.

(Blank nodes might need to be replaced by variables that are projected away later.)

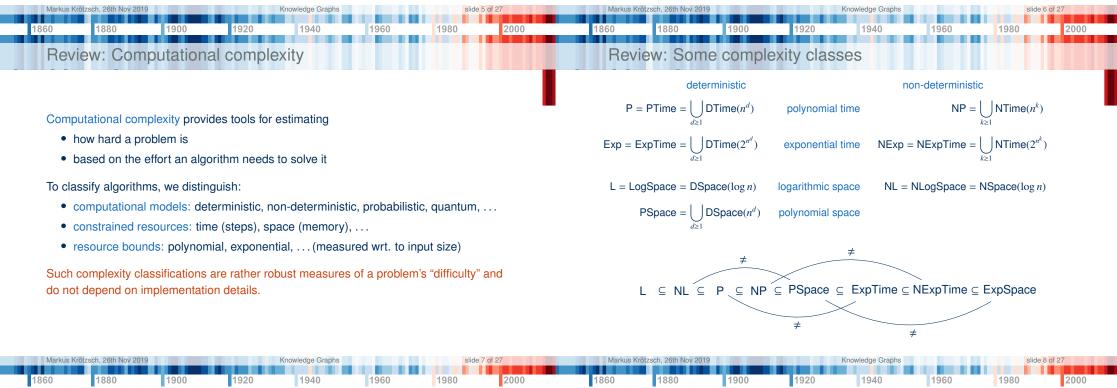
How hard is this? (on a graph with *n* edges)

1. Can be solved by iterating over all edges: O(n) (linear)

2. We defined

Join(Ω_1, Ω_2) = { $\mu_1 \oplus \mu_2 \mid \mu_1 \in \Omega_1, \mu_2 \in \Omega_2$, and μ_1 and μ_2 are compatible}. Therefore Join(Ω_1, Ω_2) is of size $O(|\Omega_1| \times |\Omega_2|) \in O(n^2)$ (quadratic) But joining results of *k* triple patterns is in $O(n^k)$ (exponential)!

ightarrow worst-case exponential-time query answering algorithm



Review: The class NP

NP is an extremely common class for challenging problems in practice. It can be defined in two ways:

Nondeterministic polynomial time

- Problems in NP can be solved by a non-deterministic algorithm
- In time bounded by a polynomial

Polynomial verification

Markus Krötzsch, 26th Nov 2019

- All problems in NP have polynomial "solutions": short certificates that prove all all "yes" answers
- The correctness of such certificates can be verified in polynomial time

1920

NP problems are search problems – searching for a right solution among the exponentially many potential solutions – but even the best known algorithms may take exponential time.

Finding BGP solutions

Observation: It is easy to check if a given mapping of bnodes and variables produces a solution:

- Simply verify that the mapped triples are contained in the given graph
- Can be done in quadratic time (# triples in pattern × # edges in graph)

In other words: the problem (as a decision problem) is in NP.

It turns out this is the best we can do:

Theorem 7.1: Determining if a BGP has solution mappings over a graph is NP-complete (with respect to the size of the pattern).

Proof:

1860

• Inclusion: guess mapping for bnodes and variables; check if guess was correct.

1940

• Hardness: by reduction from a known NP-hard problem

Review: Polynomial many-one reductions

To compare the hardness of problems, we ask which problems can be reduced to others.

1940

1960

1980

Definition 7.2: A language $L_1 \subseteq \Sigma^*$ is polynomially many-one reducible to $L_2 \subseteq \Sigma^*$, denoted $L_1 \leq_p L_2$, if there is a polynomial-time computable function f such that for all $w \in \Sigma^*$

 $w \in L_1$ if and only if $f(w) \in L_2$.

Intuition: If $L_1 \leq_p L_2$, then:

- We can solve a problem of L_1 , by reducing it to a problem of L_2
- Therefore L1 is "at most as difficult" as L2 (modulo polynomial effort)

Definition 7.3: A problem **C** is NP-complete if $C \in NP$ and, for every problem $C \in NP$, we find $L \leq_p C$.

From 3-colourability to BGP matching

The problem of graph 3-colourability (3CoL) is defined as follows: Given: An undirected graph *G* Question: Can the vertices of *G* be assigned colours red, green and blue so that no two adjacent vertices have the same colour?

1920

It is known that this problem is NP-complete (and in particular NP-hard).

We can find a polynomial many-one reduction from **3CoL** to BGP matching:

- A given graph *G* is mapped to a BGP *P_G* by introducing, for each undirected edge e-f in *G*, two triples ?e <edge> ?f and ?f <edge> ?e.
- We consider the RDF graph C given by

<red> <edge> <green>, <blue> . <green> <edge> <red>, <blue> . <blue> <edge> <green>, <red> .

Then P_G has a solution mapping over C if and only if G is 3-colourable.

1980



NP-hardness another way

A typical NP-complete problem is satisfiability of propositional logic formulae:

The problem of propositional logic satisfiability $(\ensuremath{\text{SAT}})$ is defined as follows:

Given: An propositional logic formula φ

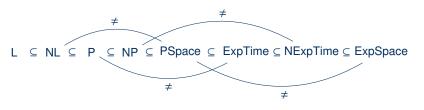
Question: Is it possible to assign truth values to propositional variables in φ such that the formula evaluates to true?

Exercise: Give a direct reduction from **SAT** to SPARQL query answering, without using BGPs.

This shows (in another way) that SPARQL query answering is NP-hard. However, it is actually harder than that.

Beyond NP

In complexity theory, space is usually more powerful than time (intuition: space can be reused; time, alas, cannot)

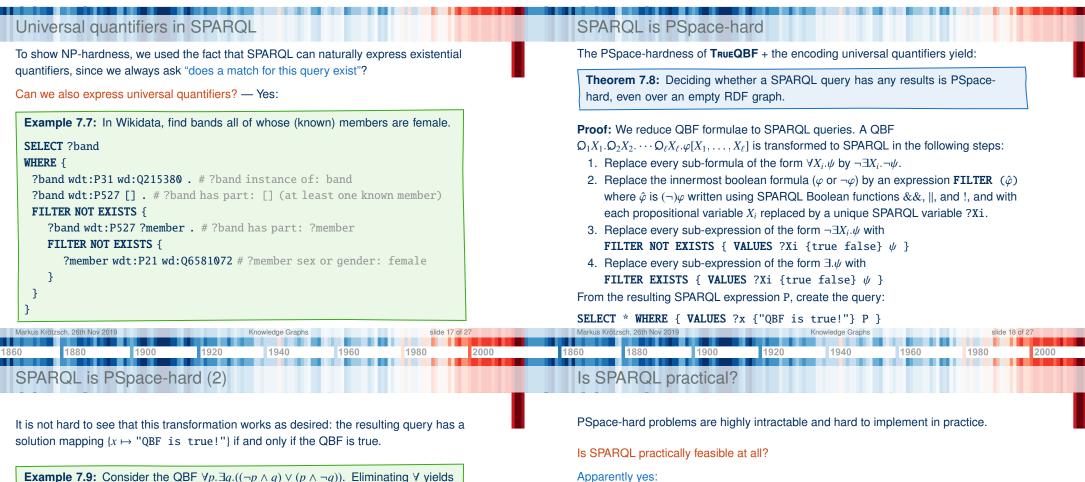


Space restrictions can also be used for non-deterministic algorithms, but by Savitch's Theorem, this often does not give additional expressive power: PSpace = NPSpace

Completeness again is defined by polynomial reductions:

Definition 7.4: A problem **C** is PSpace-complete if $C \in PSpace$ and, for every problem $C \in PSpace$, we find $L \leq_p C$.

Markus Krötzsch, 26th Nov 2019 Knowledge Graphs slide 13 of 27	Markus Krötzsch, 26th Nov 2019 Knowledge Graphs slide 14 of 27
<u>1860 1880 1900 1920 1940 1960 1980 2000</u>	<u>1860</u> 1880 1900 1920 1940 1960 1980 2000
Quantified Boolean Formulae	Hardness of QBF Evaluation
A QBF is a formula of the following form:	TrueQBF is the following problem: Given: A quantified boolean formula φ Question: Does φ evaluate to true?
$Q_1 X_1 . Q_2 X_2 . \cdots Q_\ell X_\ell . \varphi[X_1, \ldots, X_\ell]$	
where $Q_i \in \{\exists, \forall\}$ are quantifiers, X_i are propositional logic variables, and φ is a	This is a rather difficult question:
propositional logic formula with variables X_1, \ldots, X_ℓ and constants \top (true) and \perp (false)	Example 7.5: A propositional formula φ with propositions p_1, \ldots, p_n is satisfiable if
Semantics:	$\exists p_1 \dots \exists p_n \varphi$ is a true QBF, i.e., SAT reduces to TrueQBF (so it is NP-hard).
 Propositional formulae without variables (only constants ⊤ and ⊥) are evaluated as usual 	The QBF φ is a tautology if $\forall p_1 \dots \forall p_n \varphi$ is a true QBF, i.e., tautology checking reduces to TrueQBF (so it is coNP-hard).
• $\exists X. \varphi[X]$ is true if either $\varphi[X/\top]$ or $\varphi[X/\bot]$ are true	In fact, it is known that TrueQBF is harder than both NP and coNP:
• $\forall X. \varphi[X]$ is true if both $\varphi[X/\top]$ and $\varphi[X/\bot]$ are true	
(where $\varphi[X/\top]$ is " φ with X replaced by \top , and similar for \bot)	Theorem 7.6: TRUEQBF is PSpace-complete.
	(without proof; see course "Complexity Theory")
Markus Krötzsch, 26th Nov 2019 Knowledge Graphs slide 15 of 27	Markus Krötzsch, 26th Nov 2019 Knowledge Graphs slide 16 of 27
1860 1880 1900 1920 1940 1960 1980 2000	1860 1880 1900 1920 1940 1960 1980 2000



 $\neg \exists p. \neg \exists q. ((\neg p \land q) \lor (p \land \neg q))$. We then obtain the following SPARQL query: SELECT * WHERE { **VALUES** ?x {"QBF is true!"}

```
FILTER NOT EXISTS { VALUES ?p {true false}
  FILTER NOT EXISTS { VALUES ?q {true false}
     FILTER ( (! ?p && ?q) || (?p && ! ?q) )
  }
}
```

Apparently yes:

- We have seen implementations
- Other widely used query languages, such as SQL, have similar complexities

Is complexity theory useless?

No, but we should measure more carefully:

- Our proofs (for NP and PSpace) turn hard problems into hard gueries
- We hardly need RDF data at all

In practice, databases grow very big, while gueries are rather limited! (Wikidata has billions of triples; typical Wikidata query have less than 100 triple patterns [Malyshev et al., ISWC 2018])

			Knowledge Graphs						Markus Krötzsch, 26th Nov 2019						slide 20 of 27	
1860	1880	1900	1920	1940	1960	1980	2000		1860	1880	1900	1920	1940	1960	1980	2000

More fine-grained complexity measures

Combined Complexity

Input: Query Q and RDF graph GOutput: Does Q have answers over G?

- ightarrow estimates complexity in terms of overall input size
- → "2KB query/2TB database" = "2TB query/2KB database"
- \rightsquigarrow study worst-case complexity of algorithms for fixed queries:

Data Complexity

Input: RDF graph G

Output: Does Q have answers over G? (for fixed query Q)

ightarrow we can also fix the database and vary the query:

Query Complexity

Input: SPARQL query Q

terms of data complexity.

Output: Does Q have answers over G? (for fixed RDF graph G)

Below P

Our previous proofs show high query complexity (hence also high combined complexity). For data complexity, we get much lower complexities, starting below polynomial time.

Definition 7.10: The class NL of languages decidable in logarithmic space on a non-deterministic Turing machine is defined as NL = NSpace(log(n)).

Note: When restricting Turing machines to use less than linear space, we need to provide them with a separate read-only input tape that is not counted (since the input of length *n* cannot fit into log(*n*) space itself).

Intuition: The memory of a logspace-bounded Turing machine (deterministic or not) is just enough for the following:

- Store a fixed number of binary counters (with at most polynomial value)
- Store a fixed number of pointers to positions in the input
- Compare the values of counters and target symbols of pointers

It is known that $NL \subseteq P \subseteq NP$ (and all inclusions are believed to be strict, though this remains unproven)

M	Markus Krötzsch, 26th Nov 2019			Knowledge Graphs			27	Markus K	Markus Krötzsch, 26th Nov 2019			Knowledge Graphs			22 of 27
1860) 1880	1900	1920	1940	1960	1980	2000	1860	1880	1900	1920	1940	1960	1980	2000
٦	Data comple	exity of SF	PARQL					Upp	er bound	ds					
	The problem of fined as follows Given: A direc Question: Is the	: ed graph G a	nd two vertice	es s and t	as s-t-reacha	ability) is de-		least	as hard as th		s. We have no	e lower bounds ot shown that S			
Т	 his can be solve Starting from Terminate we the graph (from the graph) 	n <i>s</i> , non-deterr	-			s than vertices i	in	• (Give an algo			bounds (with resp	ect to query size and/c	or data size)	
	This runs in logai Directed graph re									•		eatures that an and harder to v	•	uld need to	
	Theorem 7.11:	Deciding if a	SPARQL que	ery has any so	lutions is NL	hard in		\sim sk	etch algorith	ms for basic o	cases only				

Proof: Directed graph reachability is easily reduced: encode graph in RDF, and use a single property path pattern with * to check reachability.

¹We have not even shown that SPARQL query answers are computable at all. SQL query answers, e.g., are not, if all SQL features are allowed.

	ch, 26th Nov 2019		Kr	nowledge Graphs		slide 2								slide 2	4 of 27
1860	1880	1900	1920	1940	1960	1980	2000	1860	1880	1900	1920	1940	1960	1980	2000

Answering queries in PSpace

Note: A single query can have exponentially many solutions, so the result does not fit into polynomial space. But a polynomial space algorithm could still discover all solutions (and stream them to an output).

Algorithm sketch:

- Iterate over all possible variable and bnode bindings, storing them one by one (possible in polynomial space)
- Verify query conditions for the given binding (possible in polynomial space for most features, e.g., triple patterns, property path patterns, filters, union, minus, ...)

Where this sketch is lacking:

- · We should check complexity of all filter conditions and functions
- We did not clarify how to handle subqueries and aggregates
- Result values can become exponentially large (e.g., by repeated string doubling using **BIND**), so a smarter representation of values has to be used

Answering queries in NL for data

We can use the same approach for worst-case optimal query answering with respect to the size of the RDF graph (data complexity):

Algorithm sketch:

- Iterate over all possible variable and bnode bindings, storing one at a time
- Verify query conditions for the given binding

ightarrow If the query is fixed, the bindings can be stored using a fixed number of pointers.

→ For most operations, it is again clear that they are possible to verify in NL This includes many numeric aggregates and arithmetic operations.

Again, we omit many details here that would need careful discussion.

Note: In terms of the size of the data, values can not be exponentially but merely polynomially large, since the query is constant now; but one still needs to explain how to represent this.

	ch, 26th Nov 2019			Knowledge Graphs			e 25 of 27		tzsch, 26th Nov 201			Knowledge Graphs			26 of 27
1860	1880	1900	1920	1940	1960	1980	2000	1860	1880	1900	1920	1940	1960	1980	2000
								-	-	-					-
Summ	nary														

SPARQL is PSpace-complete for query and combined complexity¹

SPARQL is NL-complete for data complexity, hence practically tractable and well parallelisable¹

SPARQL expressivity is still limited, partly by design.

What's next?

- Property graph: another popular graph data model
- The Cypher query language
- Quality assurance in knowledge graphs

¹The matching upper bound has not been proven with the full set of features.

	Markus Krötzsc	h, 26th Nov 2019		Knov	wledge Graphs		slide 27 of 27				
18	60	1880	1900	1920	1940	1960	1980	2000			