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Algebras (which provide a semantics of terms)

Interpretations (which provide a semantics of programs)

Soundness of SLD-resolution

Completeness of SLD-resolution

Least Herbrand models

Computing least Herbrand models
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What is an Interpretation?

direct(frankfurt,san_francisco).
direct(frankfurt,chicago).
direct(san_francisco,honolulu).
direct(honolulu,maui).

connection(X, Y) :- direct(X, Y).
connection(X, Y) :- direct(X, Z), connection(Z, Y).

D = {FRA, DRS, ORD, SFO, ...}

frankfurtJ = FRA, chicagoJ = ORD, san-franciscoJ = SFO, ...

directI = {(FRA, SFO), (FRA, ORD), ...}

connectionI = {(FRA, SFO), (FRA, ORD), (FRA, HNL), ...}
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What is an Interpretation?

add(X,0,X).
add(X,s(Y),s(Z)) :- add(X,Y,Z).

D = ℕ
0J = 0

sJ : ℕ → ℕ such that sJ(n) = n + 1

addI = {(0, 0, 0), (1, 0, 1), (0, 1, 1), (1, 1, 2), ...}
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Another Example

add(X,0,X).
add(X,s(Y),s(Z)) :- add(X,Y,Z).

D = {0, s(0), s(s(0)), ...}

0J = 0

sJ : D → D such that sJ(t) = s(t)

addI = {(0, 0, 0), (s(0), 0, s(0)), (0, s(0), s(0)), (s(0), s(0), s(s(0))), ...}

(This will be called a “Herbrand model”.)
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Algebras

V set of variables, F ranked alphabet of function symbols: An algebra J for F 
(or pre-interpretation for F) consists of:

1. domain :Û non-empty set D

2. assignment of a mapping

 fJ : D
n → D

 to every f  F(n) with n  0

State  over D   :Û   mapping  : V → D

Extension of  to TUF,V   :Û    : TUF,V → D such that for every f  F(n)

 (f(t1, ..., tn)) = fJ((t1), ..., (tn))
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Interpretations

F ranked alphabet of function symbols, ∏ ranked alphabet of predicate symbols:

An interpretation I for F and ∏ consists of:

1. algebra J for F (with domain D)

2. assignment of a relation

 

 to every p  ∏(n) with n  0

pI⊆D ...D
n
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Herbrand Universes and Bases

Recall TUF,V :Û term universe over function symbols F, variables V

 TB
∏,F,V :Û term base (i.e., all atoms) over predicate symbols ∏ and F, V

Herbrand universe HUF :Û TUF,;

Herbrand base HB∏,F :Û TB∏,F,;
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Interpretations (Example)

Let Padd “add-program”.

I1, I2, I3, I4, I5, and I6 are interpretations for {s, 0} and {add}:

I1: DI1
 = ℕ, 0I1

 = 0, sI1
(n) = n + 1 for each n  ℕ, addI1

 = {(m, n, m + n) | m, n  ℕ}

I2: DI2
 = ℕ, 0I2

 = 0, sI2
(n) = n + 1 for each n  ℕ, addI2

 = {(m, n, m * n) | m, n  ℕ}

I3: DI3
 = HU{s, 0}, 0I3

 = 0, sI3
(t) = s(t) for each t  HU{s, 0}, 

 addI3
 = {(sm(0), sn(0), sm+n(0)) | m, n  ℕ}

I4: DI4
 = HU{s, 0}, 0I4

 = 0, sI4
(t) = s(t) for each t  HU{s, 0}, addI4

 = ;

I5: DI5
 = HU{s, 0}, 0I5

 = 0, sI5
(t) = s(t) for each t  HU{s, 0}, addI5

 = (HU{s, 0})
3

I6: DI6
 = {0, 1}, 0I6

 = 0, sI6
(n) = n for each n  {0, 1}, addI6

 = {(m, n, m) | m, n  {0, 1}}
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Logical Truth (I)

E expression :Û E atom, query, clause, or resultant

E expression, I interpretation,  state:

E true in I under , written: I ╞ E

:Û

by case analysis on E:

I ╞ p(t1, ..., tn) :Û ((t1), ..., (tn))  pI

I ╞ A1, ..., An :Û I ╞ Ai for every i = 1, ..., n

I ╞ A ← B :Û if I ╞ B then I ╞ A

I ╞ A ← B :Û if I ╞ B then I ╞ A
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Logical Truth (II)

E expression, I interpretation:

Let x1, ..., xk be the variables occuring in E.

x1, ..., xk E universal closure of E (abbreviated E)

x1, ..., xk E existential closure of E (abbreviated E)

I ╞ E :Û I ╞ E for every state 

I ╞ E :Û I ╞ E for some state 

E true in I (or: I model of E), written: I ╞ E :Û I ╞ E



12Foundations of Logic Programming Declarative Interpretation

Logical Truth (III)

S, T sets of expressions, I interpretation:

I model of S, written: I ╞ S :Û I ╞ E for every E  S

T semantic (or: logical) consequence of S, written S ╞ T
 :Û every model of S is a model of T

P program, Q0 query,  substitution:

 | Var(Q0) correct answer substitution of Q0 :Û P ╞ Q0

Q0 correct instance of Q0 :Û P ╞ Q0
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Models (Example)

Let Padd “add-program” and let I1, I2, I3, I4, I5, and I6 be the interpretations from slide 8.

I1 ╞ Padd (since I1 ╞ c for every clause c  Padd and state  : V → ℕ:

 (i) ((x), (0), (x))  addI1
 and

 (ii) if ((x), (y), (z))  addI1
 then ((x), (y)+1, (z)+1)  addI1

)

I2     Padd (e.g. let (x) = 1, then I2     add(x, 0, x) 

 since ((x), (0), (x)) = (1, 0, 1) ∉ addI2
)

I3 ╞ Padd (like for I1; we call I3 a (least) Herbrand model)

I4     Padd (e.g. let (x) = s(0),  then I4     add(x, 0, x) 

 since ((x), (0), (x)) = (s(0), 0, s(0)) ∉ addI4
)

I5 ╞ Padd (like for I1; we call I5 a Herbrand model)

I6 ╞ Padd (like for I1)

/╞

/╞/╞

/╞
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Semantic Consequences (Example)

Let Padd “add-program”.

Padd ╞ add(x, 0, x) 
(for every interpretation I : if I ╞ Padd then I ╞ add(x, 0, x), since add(x, 0, x)  Padd)

Padd ╞ add(x, s(0), s(x))
(for every interpretation I : if I ╞ Padd then I ╞ add(x, 0, x) 
and I ╞ add(x, s(0), s(x)) ← add(x, 0, x) (instance of clause), thus I ╞ add(x, s(0), s(x)) )

Padd     add(0, x, x) 
(consider interpretation I6 from slide 8 with I6 ╞ Padd;
 I6    add(0, x, x), since e.g. I6     add(0, x, x) for (x) = 1, 

 since ((0), (x), (x)) = (0, 1, 1) ∉ addI6
)

/╞

/╞/╞
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Towards Soundness of SLD-Resolution (I)

Lemma 4.3 (i)

Let                 be an SLD-derivation step and Q ← Q' the resultant associated with it. 

Then  c ╞ Q ← Q'

Proof.

Let Q = A, B, C with selected atom B. Let H ← B be the input clause and Q' = (A, B, C).

Then

  c ╞ H ← B (variant of c)

implies c ╞ H ← B (instance)

implies c ╞ B ← B ( unifier)

implies c ╞ (A, B, C) ← (A, B, C) (“context” unchanged)

Q�


c

Q '
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Towards Soundness of SLD-Resolution (II)

Lemma 4.3 (ii)

Let  be an SLD-derivation of P  {Q0}. For i  0 let Ri be the resultant of level i of .

Then P ╞ Ri

Proof.

Let                                                 Induction on i  0:

i = 0: R0 = Q0 ← Q0 = “true”, thus P ╞ R0

i = 1: R1 = Q01 ← Q1; by Lemma 4.3 (i): P ╞ R1

i ~  i + 1: Ri+1 = Q01 ... i+1 ← Qi+1 is a semantic consequence of resultant Qii+1 ← Qi+1  
associated with (i + 1)-st derivation step and Rii+1 = Q01 ... i+1 ← Qii+1, thus  
by Lemma 4.3 (i) and induction hypothesis: P ╞ Ri+1

=Q0�
1

Q1 ...Qn�
n1

Qn1...

>



17Foundations of Logic Programming Declarative Interpretation

Soundness of SLD-Resolution

Theorem 4.4

If there exists a successful SLD-derivation of P  {Q0} with CAS , then P ╞ Q0.

Proof.

Let                              be  successful SLD-derivation.

Lemma 4.3 (ii) applied to the resultant of level n of  implies P ╞ Q01 ... n and 

Q01 ... n = Q0(1 ... n|Var(Q0)) = Q0.

=Q0�
1

...�
n

□
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Comparison to Intuitive Meaning of Queries

Corollary 4.5

If there exists a successful SLD-derivation of P  {Q0}, then P ╞ Q0.

Proof.

Theorem 4.4 implies P ╞ Q0 for some CAS .

Then, P ╞ Q0

 implies for every interpretation I: if I ╞  P, then I ╞ Q0

 implies for every interpretation I: if I ╞  P, then I ╞ (Q0)

 implies for every interpretation I: if I ╞  P, then I ╞ Q0

 implies P ╞ Q0
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Towards Completeness of SLD-Resolution

To show completeness of SLD-resolution we need to syntactically characterize 
the set of semantically derivable queries.

The concepts of term models and implication trees serve this purpose.
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Term Models

V set of variables, F function symbols, ∏ predicate symbols:

The term algebra J for F is defined as follows:

1. domain D = TUF,V

2. mapping fJ : (TUF,V)n → TUF,V assigned to every f  F(n) with
fJ(t1, ..., tn) Û f(t1, ..., tn)

A term interpretation I for F and ∏ consists of:

1. term algebra for F

2. I ⊆ TB∏,F,V (set of atoms that are true; equivalent: assignment of a relation pI ⊆ (TUF,V)n  

to every p  ∏(n))

I term model of a set S of expressions :Û I term interpretation and model of S 
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Herbrand Models

The Herbrand algebra J for F is defined as follows:

1. domain D = HUF

2. mapping fJ : (HUF)n → HUF assigned to every f  F(n) with
fJ(t1, ..., tn) Û f(t1, ..., tn)

A Herbrand interpretation I for F and ∏ consists of:

1. Herbrand algebra for F

2. I ⊆ HB∏,F (set of ground atoms that are true)

I Herbrand model of a set S of expressions :Û I Herbrand interpretation and model of S 

I least Herbrand model of a set S of expressions

:Û I Herbrand model of S and I ⊆ I' for all Herbrand models I' of S
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Implication Trees

implication tree w.r.t. program P

:Û

finite tree whose nodes are atoms

if A is a node with the direct descendants B1, ..., Bn then A ← B1, ..., Bn  inst(P)

if A is a leaf, then A ←  inst(P)

E expression, S set of expressions:

inst(E) :Û set of all instances of E

inst(S) :Û set of all instances of Elements E  S

ground(E) :Û set of all ground instances of E

ground(S) :Û set of all ground instances of Elements E  S
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Implication Trees (Example)

Let Padd “add-program”, n  ℕ, V set of variables, t  TU{s,0},V, and 

  T = add(t, sn(0), sn(t))
 |

  add(t, sn-1(0), sn-1(t))

 :

 :

  add(t, s(0), s(t))

 |

 add(t, 0, t)

If t  HU{s,0}, then T  is ground implication tree w.r.t. Padd .
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Implication Trees Constitute Term Model

Lemma 4.7

Consider term interpretation I, atom A, program P

I ╞ A iff inst(A) ⊆ I

I ╞ P iff for every A ← B1, ..., Bn  inst(P): if {B1, ..., Bn} ⊆ I then A  I

Lemma 4.12

The term interpretation

C(P) :Û {A | A is the root of some implication tree w.r.t. P} is a model of P.
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Ground Implication Trees Constitute Herbrand Model

Lemma 4.26

Consider Herbrand interpretation I, atom A, program P

I ╞ A iff ground(A) ⊆ I

I ╞ P iff for every A ← B1, ..., Bn  ground(P), {B1, ..., Bn} ⊆ I implies A  I

Lemma 4.28

The Herbrand interpretation

M(P) :Û {A | A is the root of some ground implication tree w.r.t. P} is a model of P.
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Example

Let Padd “add-program”, and V set of variables.

The term interpretation

C(Padd) = {add(t, sn(0), sn(t)) | n  ℕ, t  TU{s,0},V}

 = {add(sm(v), sn(0), sn+m(v)) | m, n  ℕ, v  V  {0}}

and the Herbrand interpretation

M(Padd) = {add(t, sn(0), sn(t)) | n  ℕ, t  HU{s,0}}

 = {add(sm(0), sn(0), sn+m(0)) | m, n  ℕ}

are models of Padd.
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Correct Answer Substitutions versus 
Computed Answer Substitutions (Example)

Let Padd “add-program”, and Q = add(u, s(0), s(u)) query.

 = {u=s2(v)} correct answer substitution of Q, since Padd ╞ Q = add(s2(v), s(0), s3(v))

(in analogy to slide 13 with x = s2(v)).

SLD-derivation of Padd  {Q}:

add(u, s(0), s(u))        add(u, 0, u)       □ with 1 = {x=u, y=0, z=u} and 2 = {x=u},

thus  = (12)|{u} = ² is a computed answer substitution of Q.

Thus, Q more general than Q.

In fact, no SLD-derivation of Padd  {Q} can deliver correct answer substitution .

�
1

�
2
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Completeness of SLD-Resolution for Implication Trees

Query Q is n-deep.

:Û

every atom in Q is the root of an implication tree, 

and n is the total number of nodes in these trees

Lemma 4.15

Suppose Q is n-deep for some n  0. Then for every selection rule R there exists a 
successful SLD-derivation of P  {Q} with CAS  such that Q is more general than Q.
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Completeness of SLD-Resolution (I)

Theorem 4.13

Suppose that  is a correct answer substitution of Q. Then for every selection rule R 
there exists a successful SLD-derivation of P  {Q} with CAS  such that Q is more 

general than Q.

Proof. Let Q = A1, ..., Am.Then:  correct answer substitution of A1, ..., Am

implies P ╞ A1, ..., Am

implies for every interpretation I: if I ╞ P, then I ╞ A1, ..., Am

implies C(P) ╞ A1, ..., Am (since C(P) ╞ P by Lemma 4.12)
implies inst(Ai) ⊆ C(P) for every i = 1, ..., m (by Lemma 4.7)
implies Ai  C(P) for every i = 1, ..., m
implies A1, ..., Am is n-deep for some n  0 (by def. of C(P))
implies claim (by Lemma 4.15)
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Completeness of SLD-Resolution (II)

Corollary 4.16

Suppose P ╞ Q.

Then there exists a successful SLD-derivation of P  {Q}.  

Proof. P ╞ Q

implies P ╞ Q for some substitution 

implies  correct answer substitution of Q

implies claim (by Theorem 4.13)
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Least Herbrand Model

Theorem 4.29 M(P) is the least Herbrand model of P.

Proof. Let I be a Herbrand model of P and let A  M(P).

We prove A  I by induction on the number i of nodes in the ground implication 
tree w.r.t. P with root A. Then M(P) ⊆ I.

i = 1: A leaf implies A ←  ground(P)

 implies I ╞ A (since I ╞ P)

 implies A  I

i ~> i+1: A has direct descendants B1, ..., Bn (roots of subtrees)

implies A ← B1, ..., Bn  ground(P) and B1, ..., Bn  I (induction hypothesis)

implies A ← B1, ..., Bn  ground(P) and I ╞ B1, ..., Bn

implies I ╞ A (since I ╞ P)

implies A  I
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Ground Equivalence

Theorem 4.30 For every ground atom A: P ╞ A iff M(P) ╞ A.

Proof. “only if”: P ╞ A and M(P) ╞ P implies M(P) ╞ A (semantic consequence).

“if”: Show for every interpretation I: I ╞ P implies I ╞ A. 

Let IH = {A | A ground atom and I ╞ A} Herbrand interpretation.

 I ╞ P

implies I ╞ B ← B1, ..., Bn for all B ← B1, ..., Bn  ground(P)

implies if I ╞ B1, ..., I ╞ Bn then I ╞ B for all ...

implies if B1  IH, ..., Bn  IH then B  IH for all ... (Def. IH)

implies IH ╞ P (by Lemma 4.26; thus IH Herbrand model)

implies A  IH (since A  M(P) and M(P) least Herbrand model)

implies I ╞ A (by Def. IH)
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Complete Partial Orderings

Let (A, v) be a partial ordering (cf. Slide 18 for Chapter 2).

a least element of X ⊆ A
:Û a  X, a v x for all x  X

a least upper bound of X ⊆ A (Notation: a = tX)
:Û a  A, x v a for all x  X and a is the least element of A with this property

(A, v) complete partial ordering (CPO) :Û

A contains a least element (denoted by ;)

for every increasing sequence a0 v a1 v a2 ... of elements of A,
the set X = {a0, a1, a2, ...} has a least upper bound
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Some Properties of Operators

Let (A, v) be a CPO.
operator T: A → A monotonic
:Û I v J implies T(I) v T(J)

operator T: A → A finitary
:Û for every infinite sequence I0 v I1 v ... ,

operator T: A → A continuous :Û T monotonic and finitary

I pre-fixpoint of T :Û T(I) v I

I fixpoint of T :Û T(I) = I

tn=0
∞ T I nexists and T tn=0

∞ In v tn=0
∞ T In
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Iterating Operators

Let (A, v) be a CPO, T: A → A, and I  A.
T 0 (I) :Û I

T (n + 1) (I) :Û T(Tn (I))

T w (I) :Û           n (I)

T a :Û T a   (;) (for a = 0, 1, 2, ..., w)
By the definition of a CPO:
If the sequence T 0 (I), T 1 (I), T 2 (I), ... is increasing, then T w (I) exists.

Theorem 4.22

If T is a continuous operator on a CPO, then T w exists and is the least pre-
fixpoint of T and the least fixpoint of T.  

tn=0
∞ T
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Consequence Operator

Consider the CPO ({I | I Herbrand interpretation}, ⊆).

Let P be a program and I a Herbrand interpretation. Then

TP(I) :Û {A | A ← B1, ..., Bn  ground(P), {B1, ..., Bn} ⊆ I}

Lemma 4.33

(i) TP is finitary.

(ii) TP is monotonic.
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TP-Characterization

Lemma 4.32

A Herbrand interpretation I is a model of P iff

 TP(I) ⊆ I

Proof.

 I ╞ P

iff for every A ← B1, ..., Bn  ground(P):

 {B1, ..., Bn} ⊆ I implies A  I (by Lemma 4.26)

iff for every ground atom A: A  TP(I) implies A  I

iff TP(I) ⊆ I
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Characterization Theorem

Theorem 4.34

     M(P) (i)

  = least Herbrand model of P (ii)

  = least pre-fixpoint of TP (iii)

  = least fixpoint of TP (iv)

  = TP
w (v)

  = {A | A ground atom, P ╞ A} (vi)
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Success Sets

success set of a program P :Û

{A | A ground atom,  successful SLD-derivation of P  {A} }

Theorem 4.37

For a ground atom A, the following are equivalent:

 
(i) M(P) ╞ A

 (ii) P ╞ A

 (iii) Every SLD-tree for P  {A} is successful

 (iv) A is in the success set of P
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Objectives

Algebras (which provide a semantics of terms)

Interpretations (which provide a semantics of programs)

Soundness of SLD-resolution

Completeness of SLD-resolution

Least Herbrand models

Computing least Herbrand models
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