
1Foundations of Logic Programming Declarative Interpretation

Chapter 4

Declarative Interpretation

2Foundations of Logic Programming Declarative Interpretation

Outline

Algebras (which provide a semantics of terms)

Interpretations (which provide a semantics of programs)

Soundness of SLD-resolution

Completeness of SLD-resolution

Least Herbrand models

Computing least Herbrand models

3Foundations of Logic Programming Declarative Interpretation

What is an Interpretation?

direct(frankfurt,san_francisco).
direct(frankfurt,chicago).
direct(san_francisco,honolulu).
direct(honolulu,maui).

connection(X, Y) :- direct(X, Y).
connection(X, Y) :- direct(X, Z), connection(Z, Y).

D = {FRA, DRS, ORD, SFO, ...}

frankfurtJ = FRA, chicagoJ = ORD, san-franciscoJ = SFO, ...

directI = {(FRA, SFO), (FRA, ORD), ...}

connectionI = {(FRA, SFO), (FRA, ORD), (FRA, HNL), ...}

4Foundations of Logic Programming Declarative Interpretation

What is an Interpretation?

add(X,0,X).
add(X,s(Y),s(Z)) :- add(X,Y,Z).

D = ℕ
0J = 0

sJ : ℕ → ℕ such that sJ(n) = n + 1

addI = {(0, 0, 0), (1, 0, 1), (0, 1, 1), (1, 1, 2), ...}

5Foundations of Logic Programming Declarative Interpretation

Another Example

add(X,0,X).
add(X,s(Y),s(Z)) :- add(X,Y,Z).

D = {0, s(0), s(s(0)), ...}

0J = 0

sJ : D → D such that sJ(t) = s(t)

addI = {(0, 0, 0), (s(0), 0, s(0)), (0, s(0), s(0)), (s(0), s(0), s(s(0))), ...}

(This will be called a “Herbrand model”.)

6Foundations of Logic Programming Declarative Interpretation

Algebras

V set of variables, F ranked alphabet of function symbols: An algebra J for F
(or pre-interpretation for F) consists of:

1. domain :Û non-empty set D

2. assignment of a mapping

 fJ : D
n → D

 to every f  F(n) with n  0

State  over D :Û mapping  : V → D

Extension of  to TUF,V :Û  : TUF,V → D such that for every f  F(n)

 (f(t1, ..., tn)) = fJ((t1), ..., (tn))

7Foundations of Logic Programming Declarative Interpretation

Interpretations

F ranked alphabet of function symbols, ∏ ranked alphabet of predicate symbols:

An interpretation I for F and ∏ consists of:

1. algebra J for F (with domain D)

2. assignment of a relation

 to every p  ∏(n) with n  0

pI⊆D ...D
n

8Foundations of Logic Programming Declarative Interpretation

Herbrand Universes and Bases

Recall TUF,V :Û term universe over function symbols F, variables V

 TB
∏,F,V :Û term base (i.e., all atoms) over predicate symbols ∏ and F, V

Herbrand universe HUF :Û TUF,;

Herbrand base HB∏,F :Û TB∏,F,;

9Foundations of Logic Programming Declarative Interpretation

Interpretations (Example)

Let Padd “add-program”.

I1, I2, I3, I4, I5, and I6 are interpretations for {s, 0} and {add}:

I1: DI1
 = ℕ, 0I1

 = 0, sI1
(n) = n + 1 for each n  ℕ, addI1

 = {(m, n, m + n) | m, n  ℕ}

I2: DI2
 = ℕ, 0I2

 = 0, sI2
(n) = n + 1 for each n  ℕ, addI2

 = {(m, n, m * n) | m, n  ℕ}

I3: DI3
 = HU{s, 0}, 0I3

 = 0, sI3
(t) = s(t) for each t  HU{s, 0},

 addI3
 = {(sm(0), sn(0), sm+n(0)) | m, n  ℕ}

I4: DI4
 = HU{s, 0}, 0I4

 = 0, sI4
(t) = s(t) for each t  HU{s, 0}, addI4

 = ;

I5: DI5
 = HU{s, 0}, 0I5

 = 0, sI5
(t) = s(t) for each t  HU{s, 0}, addI5

 = (HU{s, 0})
3

I6: DI6
 = {0, 1}, 0I6

 = 0, sI6
(n) = n for each n  {0, 1}, addI6

 = {(m, n, m) | m, n  {0, 1}}

10Foundations of Logic Programming Declarative Interpretation

Logical Truth (I)

E expression :Û E atom, query, clause, or resultant

E expression, I interpretation,  state:

E true in I under , written: I ╞ E

:Û

by case analysis on E:

I ╞ p(t1, ..., tn) :Û ((t1), ..., (tn))  pI

I ╞ A1, ..., An :Û I ╞ Ai for every i = 1, ..., n

I ╞ A ← B :Û if I ╞ B then I ╞ A

I ╞ A ← B :Û if I ╞ B then I ╞ A

11Foundations of Logic Programming Declarative Interpretation

Logical Truth (II)

E expression, I interpretation:

Let x1, ..., xk be the variables occuring in E.

x1, ..., xk E universal closure of E (abbreviated E)

x1, ..., xk E existential closure of E (abbreviated E)

I ╞ E :Û I ╞ E for every state 

I ╞ E :Û I ╞ E for some state 

E true in I (or: I model of E), written: I ╞ E :Û I ╞ E

12Foundations of Logic Programming Declarative Interpretation

Logical Truth (III)

S, T sets of expressions, I interpretation:

I model of S, written: I ╞ S :Û I ╞ E for every E  S

T semantic (or: logical) consequence of S, written S ╞ T
 :Û every model of S is a model of T

P program, Q0 query,  substitution:

 | Var(Q0) correct answer substitution of Q0 :Û P ╞ Q0

Q0 correct instance of Q0 :Û P ╞ Q0

13Foundations of Logic Programming Declarative Interpretation

Models (Example)

Let Padd “add-program” and let I1, I2, I3, I4, I5, and I6 be the interpretations from slide 8.

I1 ╞ Padd (since I1 ╞ c for every clause c  Padd and state  : V → ℕ:

 (i) ((x), (0), (x))  addI1
 and

 (ii) if ((x), (y), (z))  addI1
 then ((x), (y)+1, (z)+1)  addI1

)

I2 Padd (e.g. let (x) = 1, then I2  add(x, 0, x)

 since ((x), (0), (x)) = (1, 0, 1) ∉ addI2
)

I3 ╞ Padd (like for I1; we call I3 a (least) Herbrand model)

I4 Padd (e.g. let (x) = s(0), then I4  add(x, 0, x)

 since ((x), (0), (x)) = (s(0), 0, s(0)) ∉ addI4
)

I5 ╞ Padd (like for I1; we call I5 a Herbrand model)

I6 ╞ Padd (like for I1)

/╞

/╞/╞

/╞

14Foundations of Logic Programming Declarative Interpretation

Semantic Consequences (Example)

Let Padd “add-program”.

Padd ╞ add(x, 0, x)
(for every interpretation I : if I ╞ Padd then I ╞ add(x, 0, x), since add(x, 0, x)  Padd)

Padd ╞ add(x, s(0), s(x))
(for every interpretation I : if I ╞ Padd then I ╞ add(x, 0, x)
and I ╞ add(x, s(0), s(x)) ← add(x, 0, x) (instance of clause), thus I ╞ add(x, s(0), s(x)))

Padd add(0, x, x)
(consider interpretation I6 from slide 8 with I6 ╞ Padd;
 I6 add(0, x, x), since e.g. I6  add(0, x, x) for (x) = 1,

 since ((0), (x), (x)) = (0, 1, 1) ∉ addI6
)

/╞

/╞/╞

15Foundations of Logic Programming Declarative Interpretation

Towards Soundness of SLD-Resolution (I)

Lemma 4.3 (i)

Let be an SLD-derivation step and Q ← Q' the resultant associated with it.

Then c ╞ Q ← Q'

Proof.

Let Q = A, B, C with selected atom B. Let H ← B be the input clause and Q' = (A, B, C).

Then

 c ╞ H ← B (variant of c)

implies c ╞ H ← B (instance)

implies c ╞ B ← B ( unifier)

implies c ╞ (A, B, C) ← (A, B, C) (“context” unchanged)

Q�


c

Q '

16Foundations of Logic Programming Declarative Interpretation

Towards Soundness of SLD-Resolution (II)

Lemma 4.3 (ii)

Let  be an SLD-derivation of P  {Q0}. For i  0 let Ri be the resultant of level i of .

Then P ╞ Ri

Proof.

Let Induction on i  0:

i = 0: R0 = Q0 ← Q0 = “true”, thus P ╞ R0

i = 1: R1 = Q01 ← Q1; by Lemma 4.3 (i): P ╞ R1

i ~ i + 1: Ri+1 = Q01 ... i+1 ← Qi+1 is a semantic consequence of resultant Qii+1 ← Qi+1
associated with (i + 1)-st derivation step and Rii+1 = Q01 ... i+1 ← Qii+1, thus
by Lemma 4.3 (i) and induction hypothesis: P ╞ Ri+1

=Q0�
1

Q1 ...Qn�
n1

Qn1...

>

17Foundations of Logic Programming Declarative Interpretation

Soundness of SLD-Resolution

Theorem 4.4

If there exists a successful SLD-derivation of P  {Q0} with CAS , then P ╞ Q0.

Proof.

Let be successful SLD-derivation.

Lemma 4.3 (ii) applied to the resultant of level n of  implies P ╞ Q01 ... n and

Q01 ... n = Q0(1 ... n|Var(Q0)) = Q0.

=Q0�
1

...�
n

□

18Foundations of Logic Programming Declarative Interpretation

Comparison to Intuitive Meaning of Queries

Corollary 4.5

If there exists a successful SLD-derivation of P  {Q0}, then P ╞ Q0.

Proof.

Theorem 4.4 implies P ╞ Q0 for some CAS .

Then, P ╞ Q0

 implies for every interpretation I: if I ╞ P, then I ╞ Q0

 implies for every interpretation I: if I ╞ P, then I ╞ (Q0)

 implies for every interpretation I: if I ╞ P, then I ╞ Q0

 implies P ╞ Q0

19Foundations of Logic Programming Declarative Interpretation

Towards Completeness of SLD-Resolution

To show completeness of SLD-resolution we need to syntactically characterize
the set of semantically derivable queries.

The concepts of term models and implication trees serve this purpose.

20Foundations of Logic Programming Declarative Interpretation

Term Models

V set of variables, F function symbols, ∏ predicate symbols:

The term algebra J for F is defined as follows:

1. domain D = TUF,V

2. mapping fJ : (TUF,V)n → TUF,V assigned to every f  F(n) with
fJ(t1, ..., tn) Û f(t1, ..., tn)

A term interpretation I for F and ∏ consists of:

1. term algebra for F

2. I ⊆ TB∏,F,V (set of atoms that are true; equivalent: assignment of a relation pI ⊆ (TUF,V)n

to every p  ∏(n))

I term model of a set S of expressions :Û I term interpretation and model of S

21Foundations of Logic Programming Declarative Interpretation

Herbrand Models

The Herbrand algebra J for F is defined as follows:

1. domain D = HUF

2. mapping fJ : (HUF)n → HUF assigned to every f  F(n) with
fJ(t1, ..., tn) Û f(t1, ..., tn)

A Herbrand interpretation I for F and ∏ consists of:

1. Herbrand algebra for F

2. I ⊆ HB∏,F (set of ground atoms that are true)

I Herbrand model of a set S of expressions :Û I Herbrand interpretation and model of S

I least Herbrand model of a set S of expressions

:Û I Herbrand model of S and I ⊆ I' for all Herbrand models I' of S

22Foundations of Logic Programming Declarative Interpretation

Implication Trees

implication tree w.r.t. program P

:Û

finite tree whose nodes are atoms

if A is a node with the direct descendants B1, ..., Bn then A ← B1, ..., Bn  inst(P)

if A is a leaf, then A ←  inst(P)

E expression, S set of expressions:

inst(E) :Û set of all instances of E

inst(S) :Û set of all instances of Elements E  S

ground(E) :Û set of all ground instances of E

ground(S) :Û set of all ground instances of Elements E  S

23Foundations of Logic Programming Declarative Interpretation

Implication Trees (Example)

Let Padd “add-program”, n  ℕ, V set of variables, t  TU{s,0},V, and

 T = add(t, sn(0), sn(t))
 |

 add(t, sn-1(0), sn-1(t))

 :

 :

 add(t, s(0), s(t))

 |

 add(t, 0, t)

If t  HU{s,0}, then T is ground implication tree w.r.t. Padd .

24Foundations of Logic Programming Declarative Interpretation

Implication Trees Constitute Term Model

Lemma 4.7

Consider term interpretation I, atom A, program P

I ╞ A iff inst(A) ⊆ I

I ╞ P iff for every A ← B1, ..., Bn  inst(P): if {B1, ..., Bn} ⊆ I then A  I

Lemma 4.12

The term interpretation

C(P) :Û {A | A is the root of some implication tree w.r.t. P} is a model of P.

25Foundations of Logic Programming Declarative Interpretation

Ground Implication Trees Constitute Herbrand Model

Lemma 4.26

Consider Herbrand interpretation I, atom A, program P

I ╞ A iff ground(A) ⊆ I

I ╞ P iff for every A ← B1, ..., Bn  ground(P), {B1, ..., Bn} ⊆ I implies A  I

Lemma 4.28

The Herbrand interpretation

M(P) :Û {A | A is the root of some ground implication tree w.r.t. P} is a model of P.

26Foundations of Logic Programming Declarative Interpretation

Example

Let Padd “add-program”, and V set of variables.

The term interpretation

C(Padd) = {add(t, sn(0), sn(t)) | n  ℕ, t  TU{s,0},V}

 = {add(sm(v), sn(0), sn+m(v)) | m, n  ℕ, v  V  {0}}

and the Herbrand interpretation

M(Padd) = {add(t, sn(0), sn(t)) | n  ℕ, t  HU{s,0}}

 = {add(sm(0), sn(0), sn+m(0)) | m, n  ℕ}

are models of Padd.

27Foundations of Logic Programming Declarative Interpretation

Correct Answer Substitutions versus
Computed Answer Substitutions (Example)

Let Padd “add-program”, and Q = add(u, s(0), s(u)) query.

 = {u=s2(v)} correct answer substitution of Q, since Padd ╞ Q = add(s2(v), s(0), s3(v))

(in analogy to slide 13 with x = s2(v)).

SLD-derivation of Padd  {Q}:

add(u, s(0), s(u)) add(u, 0, u) □ with 1 = {x=u, y=0, z=u} and 2 = {x=u},

thus  = (12)|{u} = ² is a computed answer substitution of Q.

Thus, Q more general than Q.

In fact, no SLD-derivation of Padd  {Q} can deliver correct answer substitution .

�
1

�
2

28Foundations of Logic Programming Declarative Interpretation

Completeness of SLD-Resolution for Implication Trees

Query Q is n-deep.

:Û

every atom in Q is the root of an implication tree,

and n is the total number of nodes in these trees

Lemma 4.15

Suppose Q is n-deep for some n  0. Then for every selection rule R there exists a
successful SLD-derivation of P  {Q} with CAS  such that Q is more general than Q.

29Foundations of Logic Programming Declarative Interpretation

Completeness of SLD-Resolution (I)

Theorem 4.13

Suppose that  is a correct answer substitution of Q. Then for every selection rule R
there exists a successful SLD-derivation of P  {Q} with CAS  such that Q is more

general than Q.

Proof. Let Q = A1, ..., Am.Then:  correct answer substitution of A1, ..., Am

implies P ╞ A1, ..., Am

implies for every interpretation I: if I ╞ P, then I ╞ A1, ..., Am

implies C(P) ╞ A1, ..., Am (since C(P) ╞ P by Lemma 4.12)
implies inst(Ai) ⊆ C(P) for every i = 1, ..., m (by Lemma 4.7)
implies Ai  C(P) for every i = 1, ..., m
implies A1, ..., Am is n-deep for some n  0 (by def. of C(P))
implies claim (by Lemma 4.15)

30Foundations of Logic Programming Declarative Interpretation

Completeness of SLD-Resolution (II)

Corollary 4.16

Suppose P ╞ Q.

Then there exists a successful SLD-derivation of P  {Q}.

Proof. P ╞ Q

implies P ╞ Q for some substitution 

implies  correct answer substitution of Q

implies claim (by Theorem 4.13)

31Foundations of Logic Programming Declarative Interpretation

Least Herbrand Model

Theorem 4.29 M(P) is the least Herbrand model of P.

Proof. Let I be a Herbrand model of P and let A  M(P).

We prove A  I by induction on the number i of nodes in the ground implication
tree w.r.t. P with root A. Then M(P) ⊆ I.

i = 1: A leaf implies A ←  ground(P)

 implies I ╞ A (since I ╞ P)

 implies A  I

i ~> i+1: A has direct descendants B1, ..., Bn (roots of subtrees)

implies A ← B1, ..., Bn  ground(P) and B1, ..., Bn  I (induction hypothesis)

implies A ← B1, ..., Bn  ground(P) and I ╞ B1, ..., Bn

implies I ╞ A (since I ╞ P)

implies A  I

32Foundations of Logic Programming Declarative Interpretation

Ground Equivalence

Theorem 4.30 For every ground atom A: P ╞ A iff M(P) ╞ A.

Proof. “only if”: P ╞ A and M(P) ╞ P implies M(P) ╞ A (semantic consequence).

“if”: Show for every interpretation I: I ╞ P implies I ╞ A.

Let IH = {A | A ground atom and I ╞ A} Herbrand interpretation.

 I ╞ P

implies I ╞ B ← B1, ..., Bn for all B ← B1, ..., Bn  ground(P)

implies if I ╞ B1, ..., I ╞ Bn then I ╞ B for all ...

implies if B1  IH, ..., Bn  IH then B  IH for all ... (Def. IH)

implies IH ╞ P (by Lemma 4.26; thus IH Herbrand model)

implies A  IH (since A  M(P) and M(P) least Herbrand model)

implies I ╞ A (by Def. IH)

33Foundations of Logic Programming Declarative Interpretation

Complete Partial Orderings

Let (A, v) be a partial ordering (cf. Slide 18 for Chapter 2).

a least element of X ⊆ A
:Û a  X, a v x for all x  X

a least upper bound of X ⊆ A (Notation: a = tX)
:Û a  A, x v a for all x  X and a is the least element of A with this property

(A, v) complete partial ordering (CPO) :Û

A contains a least element (denoted by ;)

for every increasing sequence a0 v a1 v a2 ... of elements of A,
the set X = {a0, a1, a2, ...} has a least upper bound

34Foundations of Logic Programming Declarative Interpretation

Some Properties of Operators

Let (A, v) be a CPO.
operator T: A → A monotonic
:Û I v J implies T(I) v T(J)

operator T: A → A finitary
:Û for every infinite sequence I0 v I1 v ... ,

operator T: A → A continuous :Û T monotonic and finitary

I pre-fixpoint of T :Û T(I) v I

I fixpoint of T :Û T(I) = I

tn=0
∞ T I nexists and T tn=0

∞ In v tn=0
∞ T In

35Foundations of Logic Programming Declarative Interpretation

Iterating Operators

Let (A, v) be a CPO, T: A → A, and I  A.
T 0 (I) :Û I

T (n + 1) (I) :Û T(Tn (I))

T w (I) :Û n (I)

T a :Û T a (;) (for a = 0, 1, 2, ..., w)
By the definition of a CPO:
If the sequence T 0 (I), T 1 (I), T 2 (I), ... is increasing, then T w (I) exists.

Theorem 4.22

If T is a continuous operator on a CPO, then T w exists and is the least pre-
fixpoint of T and the least fixpoint of T.

tn=0
∞ T

36Foundations of Logic Programming Declarative Interpretation

Consequence Operator

Consider the CPO ({I | I Herbrand interpretation}, ⊆).

Let P be a program and I a Herbrand interpretation. Then

TP(I) :Û {A | A ← B1, ..., Bn  ground(P), {B1, ..., Bn} ⊆ I}

Lemma 4.33

(i) TP is finitary.

(ii) TP is monotonic.

37Foundations of Logic Programming Declarative Interpretation

TP-Characterization

Lemma 4.32

A Herbrand interpretation I is a model of P iff

 TP(I) ⊆ I

Proof.

 I ╞ P

iff for every A ← B1, ..., Bn  ground(P):

 {B1, ..., Bn} ⊆ I implies A  I (by Lemma 4.26)

iff for every ground atom A: A  TP(I) implies A  I

iff TP(I) ⊆ I

38Foundations of Logic Programming Declarative Interpretation

Characterization Theorem

Theorem 4.34

 M(P) (i)

 = least Herbrand model of P (ii)

 = least pre-fixpoint of TP (iii)

 = least fixpoint of TP (iv)

 = TP
w (v)

 = {A | A ground atom, P ╞ A} (vi)

39Foundations of Logic Programming Declarative Interpretation

Success Sets

success set of a program P :Û

{A | A ground atom,  successful SLD-derivation of P  {A} }

Theorem 4.37

For a ground atom A, the following are equivalent:

(i) M(P) ╞ A

 (ii) P ╞ A

 (iii) Every SLD-tree for P  {A} is successful

 (iv) A is in the success set of P

40Foundations of Logic Programming Declarative Interpretation

Objectives

Algebras (which provide a semantics of terms)

Interpretations (which provide a semantics of programs)

Soundness of SLD-resolution

Completeness of SLD-resolution

Least Herbrand models

Computing least Herbrand models

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40

