Equational Logic

Steffen Hölldobler

International Center for Computational Logic Technische Universität Dresden Germany

- Equational Systems
- Paramodulation
- Term Rewriting Systems
- Unification Theory
- Application: Multisets

Equational Systems

- Consider a first order language with the following precedence hierarchy

$$
\{\forall, \exists\}>\neg>\wedge>\vee>\{\leftarrow, \rightarrow\}>\leftrightarrow
$$

- Let \approx be a binary predicate symbol written infix
- An equation is an atom of the form $\boldsymbol{s} \approx \boldsymbol{t}$
- An equational system \mathcal{E} is a finite set of universally closed equations
- Notation Universal quantifiers are usually omitted

$$
\begin{array}{ll}
\mathcal{E}_{1} \quad & (X \cdot Y) \cdot Z \approx X \cdot(Y \cdot Z) \\
& 1 \cdot X \approx X \\
& X \cdot 1 \approx X \\
& X-X \approx 1 \\
& X \cdot X^{-1} \approx 1
\end{array}
$$

(associativity)
(left unit) (right unit) (left inverse)
(right inverse)

Axioms of Equality

- The equality relation enjoys some typical properties expressed by the following universally closed axioms of equality $\mathcal{E} \approx$

$$
\begin{aligned}
& X \approx X \\
& X \approx Y \rightarrow Y \approx X \\
& X \approx Y \wedge Y \approx Z \rightarrow X \approx Z \\
& \bigwedge_{i=1}^{n} X_{i} \approx Y_{i} \rightarrow f\left(X_{1}, \ldots, X_{n}\right) \approx f\left(Y_{1}, \ldots, Y_{n}\right) \\
& \bigwedge_{i=1}^{n} X_{i} \approx Y_{i} \wedge r\left(X_{1}, \ldots, X_{n}\right) \rightarrow r\left(Y_{1}, \ldots, Y_{n}\right)
\end{aligned}
$$

(reflexivity)
(symmetry)
(transitivity)

- Note
\triangleright Substitutivity axioms are defined for each function symbol f and each relation symbol r in the underlying alphabet
\triangleright Universal quantifiers have been omitted

Equality and Logical Consequence

- We are interested in computing logical consequences of $\mathcal{E} \cup \mathcal{E} \approx$
$\triangleright \mathcal{E}_{1} \cup \mathcal{E} \approx \vDash(\exists X) X \cdot a \approx 1$?
$\triangleright \mathcal{E}_{1} \cup \mathcal{E} \approx \cup\{X \cdot X \approx 1\} \vDash(\forall X, Y) X \cdot Y \approx Y \cdot X$?
- One possibility is to apply resolution
\triangleright There are 10^{21} resolution steps needed to solve the examples
$\triangleright \mathcal{E} \cup \mathcal{E} \approx$ causes an extremely large search space
- Idea Remove troublesome formulas from $\mathcal{E} \cup \mathcal{E} \approx$ and build them into the deductive machinery
\triangleright Use additional rule of inference like paramodulation
\triangleright Build the equational theory into the unification computation

Least Congruence Relation

- $\mathcal{E} \cup \mathcal{E} \approx$ is a set of definite clauses
- There exists a least model for $\mathcal{E} \cup \mathcal{E} \approx$
- Example
\triangleright Let the only function symbols be the constants a, b and the binary g
\triangleright Let $\mathcal{E}_{2}=\{a \approx b\}$
\triangleright The least model of $\mathcal{E}_{2} \cup \mathcal{E} \approx$ is
$\{t \approx t \mid t$ is a ground term $\}$
$\cup\{a \approx b, b \approx a\}$
$\cup\{g(a, a) \approx g(b, a), g(a, a) \approx g(a, b), g(a, a) \approx g(b, b), \ldots\}$
- Define $s \approx \mathcal{E} t$ iff $\mathcal{E} \cup \mathcal{E} \approx \vDash \forall \boldsymbol{s} \approx \boldsymbol{t}$
$\triangleright g(a, a) \approx_{\varepsilon_{2}} g(a, b)$
$\triangleright g(X, a) \approx \varepsilon_{2} g(X, b)$
$\triangleright \approx_{\mathcal{E}}$ is the least congruence relation on terms generated by \mathcal{E}

Paramodulation

- $L\lceil s\rceil$ literal which contains an occurrence of the term s
$L\lceil s / t\rceil$ literal obtained from L by replacing an occurrence of \boldsymbol{s} by \boldsymbol{t}
- Paramodulation

$$
\frac{\left[L_{1}\lceil s\rceil, L_{2}, \ldots, L_{n}\right] \quad\left[I \approx r, L_{n+1}, \ldots, L_{m}\right]}{\left[L_{1}\lceil s / r\rceil, L_{2}, \ldots, L_{m}\right] \theta} \theta=\operatorname{mgu}(s, I)
$$

- Notation Instead of $\neg \boldsymbol{s} \approx \boldsymbol{t}$ we write $s \not \approx t$
- Remember

$$
\begin{array}{lll}
\mathcal{E} \cup \mathcal{E} \approx \vDash \forall s \approx t & \text { iff } & \wedge \mathcal{E} \cup \mathcal{E} \approx \rightarrow \forall s \approx t \text { is valid } \\
& \text { iff } & \neg(\bigwedge \mathcal{E} \cup \mathcal{E} \approx \rightarrow \forall s \approx t) \text { is unsatisfiab } \\
& \text { iff } & \mathcal{E} \cup \mathcal{E} \approx \cup \neg \forall s \approx t\} \text { is unsatisfiabl } \\
& \text { iff } & \mathcal{E} \cup \mathcal{E} \approx \cup\{\exists s \neq t\} \text { is unsatisfiable }
\end{array}
$$

- Theorem $1 \mathcal{E} \cup \mathcal{E} \approx \cup\{\exists \boldsymbol{s} \not \approx t\}$ is unsatisfiable iff there is a refutation of $\mathcal{E} \cup\{X \approx X\} \cup\{\exists \boldsymbol{s} \not \approx t\}$ wrt paramodulation, resolution and factoring

An Example

$$
\mathcal{E}_{1} \cup\{X \approx X, X \cdot X \approx 1\} \vDash(\forall X, Y) X \cdot Y \approx Y \cdot X
$$

1	$\boldsymbol{a} \cdot \boldsymbol{b} \nsim \sim \cdot \mathrm{a}$	initial query			hypothesis
2	1. $X_{1} \approx X_{1}$	left unit		$\boldsymbol{a} \cdot \boldsymbol{b} \not \approx \sim\left(\left(X_{3} \cdot X_{3}\right) \cdot \boldsymbol{b}\right) \cdot\left(\boldsymbol{a} \cdot\left(X_{4} \cdot X_{4}\right)\right)$	
3	$\chi_{2} \approx X_{2}$	reflexivity		.	associativity
4	$X_{1} \approx 1 \cdot x_{1}$	pm(2,3)		$\left.\boldsymbol{a} \cdot \boldsymbol{b} \not \approx \boldsymbol{(} X_{3} \cdot\left(\left(X_{3} \cdot b\right) \cdot\left(a \cdot X_{4}\right)\right)\right) \cdot X_{4}$	
5	$a \cdot b \not \approx \sim(1 \cdot b) \cdot a$	pm(1,4)			hypothesis
6	$X_{3} \cdot X_{3} \approx 1$	hypothesis		$a \cdot b \not \approx(a \cdot 1) \cdot b$	
7	$X_{4} \approx X_{4}$	reflexivity			right unit
8	$1 \approx X_{3} \cdot X_{3}$	$\mathrm{pm}(6,7)$	n	$a \cdot b \not \approx a \cdot b$	
9	$\boldsymbol{a} \cdot \boldsymbol{b} \not \approx\left(\left(X_{3} \cdot X_{3}\right) \cdot b\right) \cdot a$	$\mathrm{pm}(5,8)$	n^{\prime}	$X_{5} \approx X_{5}$	reflexivity
		right unit	$n^{\prime \prime}$	[]	res ($\boldsymbol{n}, \boldsymbol{n}^{\prime}$)
	$\boldsymbol{a} \cdot \boldsymbol{b} \not \approx \sim\left(\left(X_{3} \cdot X_{3}\right) \cdot b\right) \cdot(a$				

The Example in Shorthand Notation

$$
\mathcal{E}_{1} \cup\{X \approx X, X \cdot X \approx 1\} \vDash(\forall X, Y) X \cdot Y \approx Y \cdot X
$$

1	$a \cdot b \not \approx b \cdot a$	initial query		.	hypothesis
2	1. $X_{1} \approx X_{1}$	left unit		$a \cdot b \not \approx\left(\left(X_{3} \cdot X_{3}\right) \cdot b\right) \cdot\left(a \cdot\left(X_{4} \cdot X_{4}\right)\right)$	
3	$\chi_{2} \approx x_{2}$	reflexivity		- ${ }^{\text {a }}$	associativity
4	$X_{1} \approx 1 \cdot x_{1}$	pm(2,3)		$a \cdot b \not \approx\left(X_{3} \cdot\left(\left(X_{3} \cdot b\right) \cdot\left(a \cdot X_{4}\right)\right)\right) \cdot X_{4}$	
5	$a \cdot b \not \approx(1 \cdot b) \cdot a$	pm(1,4)		- ${ }^{\text {a }}$	hypothesis
6	$x_{3} \cdot X_{3} \approx 1$	hypothesis		$a \cdot b \not \approx(a \cdot 1) \cdot b$	
7	$X_{4} \approx X_{4}$	reflexivity		.	right unit
8	$1 \approx X_{3} \cdot X_{3}$	$\mathrm{pm}(6,7)$	n	$a \cdot b \not \approx a \cdot b$	
9	$a \cdot b \not \approx\left(\left(X_{3} \cdot X_{3}\right) \cdot b\right) \cdot a$	$\mathrm{pm}(5,8)$	n^{\prime}	$X_{5} \approx X_{5}$	reflexivity
	. ${ }^{\text {a }}$	right unit	$n^{\prime \prime}$	[]	res ($\boldsymbol{n}, \boldsymbol{n}^{\prime}$)
	$a \cdot b \not \approx\left(\left(X_{3} \cdot X_{3}\right) \cdot b\right) \cdot(a \cdot 1)$				

The Example in Shorthand Notation Again

$$
\begin{aligned}
b \cdot a & \approx(1 \cdot \boldsymbol{b}) \cdot \boldsymbol{a} & & \text { left unit } \\
& \approx\left(\left(X_{3} \cdot X_{3}\right) \cdot \boldsymbol{b}\right) \cdot a & & \text { hypothesis } \\
& \approx\left(\left(X_{3} \cdot X_{3}\right) \cdot \boldsymbol{b}\right) \cdot(a \cdot 1) & & \text { right unit } \\
& \approx\left(\left(X_{3} \cdot X_{3}\right) \cdot b\right) \cdot\left(a \cdot\left(X_{4} \cdot X_{4}\right)\right) & & \text { hypothesis } \\
& \approx\left(X_{3} \cdot\left(\left(X_{3} \cdot b\right) \cdot\left(a \cdot X_{4}\right)\right)\right) \cdot X_{4} & & \text { associativity } \\
& \approx(a \cdot 1) \cdot \boldsymbol{b} & & \text { hypothesis } \\
& \approx \boldsymbol{a} \cdot \boldsymbol{b} & & \text { right unit }
\end{aligned}
$$

- Now, the search space is 10^{11} instead of 10^{21} steps
\triangleright Symmetry can be simulated, which leads to cycles
\triangleright All terms s occurring in L_{1} are candidates
$\triangleright L_{1}\lceil s\rceil$ may be a variable and can be unified with any term
- There are still many redundant and useless steps
- Idea Use equations only from left to right \rightsquigarrow term rewriting systems

Term Rewriting Systems

- An expression of the form $s \rightarrow t$ is called rewrite rule
- A term rewriting system is a finite set of rewrite rules
- In the sequel, \mathcal{R} shall denote a term rewriting system
- $s\lceil u\rceil$ denotes a term s which contains an occurrence of u $s\lceil u / v\rceil$ denotes the term obtained from s by replacing an occ. of u by v
- The rewrite relation $\rightarrow_{\mathcal{R}}$ on terms is defined as follows: $s\lceil u\rceil_{\mathcal{R}} t$ iff there exist $I \rightarrow r \in \mathcal{R}$ and θ such that $u=I \theta$ and $t=s\lceil u / r \theta\rceil$
\rightarrow Example $\mathcal{R}_{3}=\{\operatorname{append}([], X) \quad \rightarrow \quad X$, $\operatorname{append}([X \mid Y], Z) \quad \rightarrow \quad[X \mid \operatorname{append}(Y, Z)]\}$
append $([1,2],[3,4]) \quad \rightarrow \mathcal{R}_{3} \quad[1 \mid a p p e n d([2],[3,4])]$

$$
\begin{array}{ll}
\rightarrow_{\mathcal{R}_{3}} & {[1,2 \mid \text { append }([],[3,4])]} \\
\rightarrow \mathcal{R}_{3} & {[1,2,3,4]}
\end{array}
$$

Matching

- Matching problem

Given terms u and I, does there exist a substitution θ such that $u=I \theta$? If such a substitution exists, then it is called a matcher

- If a matching problem is solvable, then there exists a most general matcher
- If can be computed by a variant of the unification algorithm, where variables occurring in u are treated as (different new) constant symbols
- Whereas unification is in the complexity class \mathcal{P}, matching is in $\mathcal{N C}$

Closures

- $\xrightarrow{*}_{\mathcal{R}}$ denotes the reflexive and transitive closure of $\rightarrow_{\mathcal{R}}$
$\triangleright \operatorname{append}([1,2],[3,4]) \xrightarrow{*} \mathcal{R}_{3}[1,2,3,4]$
- $s \leftrightarrow_{\mathcal{R}} t$ iff $\boldsymbol{s} \leftarrow_{\mathcal{R}} \boldsymbol{t}$ or $\boldsymbol{s} \rightarrow_{\mathcal{R}} \boldsymbol{t}$
\triangleright Let $\mathcal{R}_{4}=\{a \rightarrow b, c \rightarrow b\}$, then $a \rightarrow_{\mathcal{R}_{4}} b \leftarrow \mathcal{R}_{4} c$ and, consequently, $a \not \leftrightarrow_{\mathcal{R}_{4}} b \leftrightarrow_{\mathcal{R}_{4}} c$
- $\stackrel{*}{\leftrightarrow}_{\mathcal{R}}$ denotes the reflexive and transitive closure of $\leftrightarrow_{\mathcal{R}}$
$\triangleright \boldsymbol{a} \stackrel{*}{\leftrightarrow} \mathcal{R}_{4} \boldsymbol{c}$
- We sometimes simply write \rightarrow or \leftrightarrow instead of $\rightarrow_{\mathcal{R}}$ or $\leftrightarrow_{\mathcal{R}}$, respectively

Term Rewriting Systems and Equational Systems

- Let \mathcal{R} be a term rewriting system
- $\mathcal{E}_{\mathcal{R}}:=\{I \approx r \mid I \rightarrow r \in \mathcal{R}\} \cup \mathcal{E}_{\approx}$
\triangleright For $\mathcal{R}_{4}=\{a \rightarrow b, c \rightarrow b\}$ we obtain $\mathcal{E}_{\mathcal{R}_{4}}=\{a \approx b, c \approx b\} \cup \mathcal{E} \approx$
- Theorem 2
(i) $\boldsymbol{s}{ }^{*} \mathcal{R}_{\mathcal{R}} \boldsymbol{t}$ implies $\boldsymbol{s} \approx_{\mathcal{E}_{\mathcal{R}}} \boldsymbol{t}$
(ii) $\boldsymbol{s} \approx_{\mathcal{E}_{\mathcal{R}}} \boldsymbol{t}$ iff $\boldsymbol{s} \stackrel{*}{\leftrightarrow} \mathcal{R}_{\mathcal{R}} t$
- Proof \rightsquigarrow Exercise
$\triangleright g(X, a) \rightarrow_{\mathcal{R}_{4}} g(X, b)$ and $g(X, a) \approx_{\varepsilon_{\mathcal{R}_{4}}} g(X, b)$
$\triangleright g(X, a) \approx \varepsilon_{\mathcal{R}_{4}} g(X, c)$ and $g(X, a) \rightarrow \mathcal{R}_{4} g(X, b) \leftarrow \mathcal{R}_{4} g(X, c)$

Reducibility and Normal Forms

- \boldsymbol{s} is reducible wrt \mathcal{R} iff there exists \boldsymbol{t} such that $\boldsymbol{s} \rightarrow_{\mathcal{R}} \boldsymbol{t}$
\triangleright otherwise it is irreducible
$\Delta \boldsymbol{t}$ is a normal form of \boldsymbol{s} wrt \mathcal{R} iff $\boldsymbol{s}{ }^{*} \mathcal{R} \boldsymbol{t}$ and \boldsymbol{t} is irreducible
$\triangleright[1,2,3,4]$ is the normal form of append ([1, 2], [3.4]) wrt \mathcal{R}_{3}
- Normal forms are not necessarily unique. Consider

$$
\begin{aligned}
& \mathcal{R}_{5}=\{\operatorname{neg}(\operatorname{neg}(X)) \quad \rightarrow \quad X, \\
& \operatorname{neg}(\operatorname{or}(X, Y)) \quad \rightarrow \quad \text { and }(\operatorname{neg}(X), \operatorname{neg}(Y)) \text {, } \\
& \operatorname{neg}(\operatorname{and}(X, Y)) \rightarrow \operatorname{or}(\operatorname{neg}(X), \operatorname{neg}(Y)) \text {, } \\
& \operatorname{and}(X, \operatorname{or}(Y, Z)) \rightarrow \operatorname{or}(\operatorname{and}(X, Y), \operatorname{and}(X, Z)) \text {, } \\
& \operatorname{and}(\operatorname{or}(X, Y), Z) \rightarrow \operatorname{or}(\operatorname{and}(Y, Z), \text { and }(Z, X))\}
\end{aligned}
$$

and $(\operatorname{or}(X, Y)$, or $(U, V))$ has the normal forms $\operatorname{or}(\operatorname{or}(\operatorname{and}(Y, U)$, and $(U, X))$, or(and (Y, V), and $(V, X)))$ and $\operatorname{or}(\operatorname{or}(\operatorname{and}(Y, U)$, and $(Y, V))$, or(and (V, X), and $(X, U)))$ wrt \mathcal{R}_{5}

Confluent Term Rewriting Systems

$\downarrow \boldsymbol{s} \uparrow_{\mathcal{R}} \boldsymbol{t}$ iff there exists \boldsymbol{u} such that $\boldsymbol{s} \stackrel{*}{\leftarrow} \mathcal{R} \boldsymbol{u} \xrightarrow{*} \mathcal{R} t$
\triangleright Consider $\mathcal{R}_{6}=\{b \rightarrow a, b \rightarrow c\}$. Then $a \not \chi_{\mathcal{R}_{6}} c$, but $a \uparrow_{\mathcal{R}_{6}} c$
$\checkmark \mathcal{R}$ is confluent iff for all terms \boldsymbol{s} and \boldsymbol{t} we find $\boldsymbol{s} \uparrow_{\mathcal{R}} \boldsymbol{t}$ implies $\boldsymbol{s} \downarrow_{\mathcal{R}} t$
$\triangleright \mathcal{R}_{7}=\mathcal{R}_{6} \cup\{a \rightarrow c\}$ is confluent
$\checkmark \mathcal{R}$ is Church-Rosser iff for all terms \boldsymbol{s} and \boldsymbol{t} we find $\boldsymbol{s} \stackrel{*}{\leftrightarrow} \mathcal{R}_{\mathcal{R}} \boldsymbol{t}$ iff $\boldsymbol{s} \downarrow_{\mathcal{R}} \boldsymbol{t}$

- Theorem $3 \mathcal{R}$ is Church-Rosser iff \mathcal{R} is confluent
- Remember $\boldsymbol{s} \stackrel{*}{\leftrightarrow} \mathcal{R} t$ iff $\boldsymbol{s} \approx_{\mathcal{E}_{\mathcal{R}}} t$
\triangleright If a term rewriting system is confluent, then rewriting has only to be applied in one direction, viz. from left to right !

Canonical Term Rewriting Systems

- \mathcal{R} is terminating iff it has no infinite rewriting sequences
\triangleright The question whether \mathcal{R} is terminating is undecidable
$-\mathcal{R}$ is canonical iff \mathcal{R} is confluent and terminating
\triangleright If \mathcal{R} is canonical, then $s \approx_{\mathcal{E}_{\mathcal{R}}} t$ iff $s \downarrow_{\mathcal{R}} t$
\triangleright If \mathcal{R} is canonical, then $\mathcal{E}_{\mathcal{R}}$ is decidable
- Given \mathcal{E}. If $\approx \mathcal{\varepsilon}=\approx_{\mathcal{E}_{\mathcal{R}}}$ for some canonical term rewriting system \mathcal{R}, then the application of paramodulation can be restricted:
$\triangleright L_{1}\lceil\pi\rceil$ may not be a variable
\triangleright Symmetry can no longer be simulated
\triangleright Equations, i.e., rewrite rules, are only applied from left to right
\triangleright Further restrictions concerning $\pi \in \mathcal{P}_{L_{1}}$ are possible
\triangleright This restricted form of paramodulation is called narrowing

Termination

- Is a given term rewriting system \mathcal{R} terminating?
- Let \succeq be a partial order on the set of terms,
i.e., \succeq is reflexive, transitive, and antisymmetric
$\triangleright \boldsymbol{s} \succ \boldsymbol{t}$ iff $\boldsymbol{s} \succeq \boldsymbol{t}$ and $\boldsymbol{s} \neq \boldsymbol{t}$
$\triangleright s \succ t$ is well-founded iff there is no infinite sequence $s_{1} \succ s_{2} \succ \ldots$
- Idea Search for a well-founded ordering \succ such that $s \rightarrow_{\mathcal{R}} t$ implies $s \succ t$
- A termination ordering \succ is a well-founded, transitive, and antisymmetric relation on the set of terms satisfying the following properties:
\triangleright full invariance property if $\boldsymbol{s} \succ \boldsymbol{t}$ then $\boldsymbol{s} \boldsymbol{\theta} \succ \boldsymbol{t} \boldsymbol{\theta}$ for all $\boldsymbol{\theta}$
\triangleright replacement property if $\boldsymbol{s} \succ \boldsymbol{t}$ then $\boldsymbol{u}\lceil\boldsymbol{s}\rceil \succ \boldsymbol{u}\lceil\boldsymbol{s} / \boldsymbol{t}\rceil$
- Theorem 4

Let \mathcal{R} be a term rewriting system and \succ a termination ordering. If for all rules $I \rightarrow r \in \mathcal{R}$ we find that $I \succ r$ then \mathcal{R} is terminating

Termination Orderings: Two Examples

- Let $|s|$ denote the length of the term s
$s \succ t$ iff for all grounding substitutions θ we find that $|\boldsymbol{s} \boldsymbol{\theta}|>|\boldsymbol{t} \boldsymbol{\theta}|$
$\triangleright f(X, Y) \succ g(X)$
$\triangleright f(X, Y)$ and $g(X, X)$ can not be ordered
- Polynomial ordering assign to each function symbol a polynomial with coefficients taken from \mathbb{N}^{+}
\triangleright Let $f(X, Y)^{I}=2 X+Y$
$g(X, Y)^{\prime}=X+Y$
\triangleright Define $s \succ t$ iff $\boldsymbol{s}^{\prime}>\boldsymbol{t}^{\prime}$
\triangleright Then, $f(X, Y) \succ g(X, X)$
- There are many other termination orderings !
- \succ^{\prime} is more powerful than \succ iff $\boldsymbol{s} \succ \boldsymbol{t}$ implies $\boldsymbol{s} \succ^{\prime} \boldsymbol{t}$ but not vice versa

Confluence

- Is a given terminating term rewriting system confluent?
- \mathcal{R} is locally confluent
iff for all terms $\boldsymbol{r}, \boldsymbol{s}$, \boldsymbol{t} we find: If $\boldsymbol{t} \leftarrow_{\mathcal{R}} \boldsymbol{r} \rightarrow_{\mathcal{R}} \boldsymbol{s}$ then $\boldsymbol{s} \downarrow_{\mathcal{R}} \boldsymbol{t}$
- Theorem 5 Let \mathcal{R} be a terminating term rewriting system. \mathcal{R} is confluent iff it is locally confluent

Local Confluence

- Is a given terminating term rewriting system locally confluent?
- A subterm u of t is called a redex
iff there exists θ and $I \rightarrow r \in \mathcal{R}$ such that $u=I \theta$
- Let $I_{1} \rightarrow r_{1} \in \mathcal{R}$ and $I_{2} \rightarrow r_{2} \in \mathcal{R}$ be applicable to $t \rightsquigarrow$ two redeces
\triangleright Case analysis
(a) They are disjoint
(b) one redex is a subterm of the other one and corresponds to a variable position in the left-hand-side of the other rule
(c) one redex is a subterm of the other one but does not correspond to a variable position in the left-hand-side of the other rule (the redeces overlap)

Example

Let $t=(g(a) \cdot f(b)) \cdot c$
(a) $\mathcal{R}_{\mathbf{8}}=\{\boldsymbol{a} \rightarrow \boldsymbol{c}, \boldsymbol{b} \rightarrow \boldsymbol{c}\}$
$\rightarrow a$ and b are disjoint redeces in t
$\rightarrow \mathcal{R}_{8}$ is locally confluent
(b) $\mathcal{R}_{9}=\{a \rightarrow \boldsymbol{c}, \boldsymbol{g}(\boldsymbol{X}) \rightarrow \boldsymbol{f}(\boldsymbol{X})\}$
$\Perp a$ and $g(a)$ are redeces in t
\rightarrow a corresponds to the variable position in $g(X)$
$\rightarrow \mathcal{R}_{9}$ is locally confluent
(c) $\mathcal{R}_{10}=\{(\boldsymbol{X} \cdot \boldsymbol{Y}) \cdot \boldsymbol{Z} \rightarrow \boldsymbol{X}, \boldsymbol{g}(\boldsymbol{a}) \cdot \boldsymbol{f}(\boldsymbol{b}) \rightarrow \boldsymbol{c}\}$
$\rightarrow(g(a) \cdot f(b)) \cdot c$ and $g(a) \cdot f(b)$ are overlapping redeces in t
\rightarrow This is the problematic case!

Critical Pairs

- Let
$\triangleright I_{1} \rightarrow r_{1}, I_{2} \rightarrow r_{2}$ be two new variants of rules in \mathcal{R}
$\triangleright u$ be a non-variable subterm of l_{1} and
$\triangleright u$ and I_{2} be unifiable with mgu θ
- Then, the pair $\left\langle\left(l_{1}\left\lceil u / r_{2}\right\rceil\right) \theta, r_{1} \theta\right\rangle$ is said to be critical
- It is obtained by superimposing $\boldsymbol{I}_{\mathbf{1}}$ with $\boldsymbol{I}_{\mathbf{2}}$
\triangleright Superimposing $(X \cdot Y) \cdot Z \rightarrow X$ with $g(a) \cdot f(b) \rightarrow c$ yields the critical pair $\langle c \cdot Z, g(a)\rangle$
- Theorem 6 A term rewriting system \mathcal{R} is locally confluent iff for all critical pairs $\langle\boldsymbol{s}, \boldsymbol{t}\rangle$ of \mathcal{R} we find $s \downarrow_{\mathcal{R}} t$

Completion

- Can a terminating and non-confluent \mathcal{R} be turned into a confluent one?
- Two term rewriting systems \mathcal{R} and \mathcal{R}^{\prime} are equivalent iff $\approx \varepsilon_{\mathcal{R}}=\approx_{\mathcal{E}^{\prime}}$
- Idea if $\langle\boldsymbol{s}, \boldsymbol{t}\rangle$ is a critical pair then add either $\boldsymbol{s} \rightarrow \boldsymbol{t}$ or $\boldsymbol{t} \rightarrow \boldsymbol{s}$ to \mathcal{R}
\triangleright This is called completion
\triangleright The equational theory remains unchanged

Completion Procedure

- Given a terminating \mathcal{R} together with a termination ordering \succ

1 If for all critical pairs $\langle\boldsymbol{s}, \boldsymbol{t}\rangle$ of \mathcal{R} we find that $s \downarrow_{\mathcal{R}} t$ then return "success"; \mathcal{R} is canonical

2 If \mathcal{R} has a critical pair whose elements do not rewrite to a common term, then transform the elements of the critical pair to some normal form.
Let $\langle s, t\rangle$ be the normalized critical pair:
\rightarrow If $\boldsymbol{s} \succ \boldsymbol{t}$ then add the rule $\boldsymbol{s} \rightarrow \boldsymbol{t}$ to \mathcal{R} and goto 1
\rightarrow If $t \succ \boldsymbol{s}$ then add the rule $t \rightarrow s$ to \mathcal{R} and goto 1
\rightarrow If neither $\boldsymbol{s} \succ \boldsymbol{t}$ nor $\boldsymbol{t} \succ \boldsymbol{s}$ then return "fail"

- The completion procedure may either succeed or fail or loop
- During completion the ordering \succ may be extended to a more powerful one
- The completion procedure may be extended to unfailing completion

Completion: An Example

- Consider

$$
\mathcal{R}_{11}=\{c \rightarrow b, f \rightarrow b, f \rightarrow a, e \rightarrow a, e \rightarrow d\}
$$

- Let $f \succ e \succ d \succ c \succ b \succ a$
- The critical pairs are $\langle b, a\rangle$ and $\langle d, a\rangle$
- They can be oriented into the new rules $b \rightarrow a$ and $d \rightarrow a$
- We obtain

$$
\mathcal{R}_{11}^{\prime}=\{c \rightarrow b, f \rightarrow b, f \rightarrow a, e \rightarrow a, e \rightarrow d, b \rightarrow a, d \rightarrow a\}
$$

- $\mathcal{R}_{11}^{\prime}$ is canonical
- $s \approx \varepsilon_{\mathcal{R}} t$ iff $s \approx \varepsilon_{\mathcal{R}^{\prime}} t$
- All proofs for $s \approx_{\mathcal{E}_{\mathcal{R}_{11}^{\prime}}} t$ are in so-called valley form

