
DEDUCTION SYSTEMS

Answer Set Programming: Basics

Markus Krötzsch

Chair for Knowledge-Based Systems

Slides by Sebastian Rudolph, and based on a lecture by Martin Gebser and Torsten Schaub (CC-By 3.0)

TU Dresden, 18 June 2018

https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch


ASP Basics: Overview

1 ASP in a Nutshell

2 ASP Syntax

3 Semantics

4 Examples

5 Completion

6 Loops and Loop Formulas

TU Dresden, 18 June 2018 Deduction Systems slide 2 of 97



Outline

1 ASP in a Nutshell

2 ASP Syntax

3 Semantics

4 Examples

5 Completion

6 Loops and Loop Formulas

TU Dresden, 18 June 2018 Deduction Systems slide 3 of 97



Answer Set Programming
in a Nutshell

• ASP is an approach to declarative problem solving, combining
– a rich yet simple modeling language
– with high-performance solving capacities

• ASP has its roots in
– (deductive) databases
– logic programming (with negation)
– (logic-based) knowledge representation and (nonmonotonic) reasoning
– constraint solving (in particular, SATisfiability testing)

• ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

• ASP is supported by several fast solvers, such as clasp, DLV, and smodels

TU Dresden, 18 June 2018 Deduction Systems slide 4 of 97



Answer Set Programming
in a Nutshell

• ASP is an approach to declarative problem solving, combining
– a rich yet simple modeling language
– with high-performance solving capacities

• ASP has its roots in
– (deductive) databases
– logic programming (with negation)
– (logic-based) knowledge representation and (nonmonotonic) reasoning
– constraint solving (in particular, SATisfiability testing)

• ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

• ASP is supported by several fast solvers, such as clasp, DLV, and smodels

TU Dresden, 18 June 2018 Deduction Systems slide 5 of 97



Answer Set Programming
in a Nutshell

• ASP is an approach to declarative problem solving, combining
– a rich yet simple modeling language
– with high-performance solving capacities

• ASP has its roots in
– (deductive) databases
– logic programming (with negation)
– (logic-based) knowledge representation and (nonmonotonic) reasoning
– constraint solving (in particular, SATisfiability testing)

• ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

• ASP is supported by several fast solvers, such as clasp, DLV, and smodels

TU Dresden, 18 June 2018 Deduction Systems slide 6 of 97



Answer Set Programming
in a Nutshell

• ASP is an approach to declarative problem solving, combining
– a rich yet simple modeling language
– with high-performance solving capacities

• ASP has its roots in
– (deductive) databases
– logic programming (with negation)
– (logic-based) knowledge representation and (nonmonotonic) reasoning
– constraint solving (in particular, SATisfiability testing)

• ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

• ASP is supported by several fast solvers, such as clasp, DLV, and smodels

TU Dresden, 18 June 2018 Deduction Systems slide 7 of 97



Answer Set Programming
in a Nutshell

• ASP is an approach to declarative problem solving, combining
– a rich yet simple modeling language
– with high-performance solving capacities

• ASP has its roots in
– (deductive) databases
– logic programming (with negation)
– (logic-based) knowledge representation and (nonmonotonic) reasoning
– constraint solving (in particular, SATisfiability testing)

• ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

• ASP is supported by several fast solvers, such as clasp, DLV, and smodels

TU Dresden, 18 June 2018 Deduction Systems slide 8 of 97



Outline

1 ASP in a Nutshell

2 ASP Syntax

3 Semantics

4 Examples

5 Completion

6 Loops and Loop Formulas

TU Dresden, 18 June 2018 Deduction Systems slide 9 of 97



Normal logic programs

• A logic program, P, over a set A of atoms is a finite set of rules
• A (normal) rule, r, is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

• Notation

head(r) = a0

body(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
body(r)+ = {a1, . . . , am}
body(r)− = {am+1, . . . , an}

atom(P) =
⋃

r∈P

(
{head(r)} ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

• A program P is positive if body(r)− = ∅ for all r ∈ P

TU Dresden, 18 June 2018 Deduction Systems slide 10 of 97



Normal logic programs

• A logic program, P, over a set A of atoms is a finite set of rules
• A (normal) rule, r, is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n
• Notation

head(r) = a0

body(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
body(r)+ = {a1, . . . , am}
body(r)− = {am+1, . . . , an}

atom(P) =
⋃

r∈P

(
{head(r)} ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

• A program P is positive if body(r)− = ∅ for all r ∈ P

TU Dresden, 18 June 2018 Deduction Systems slide 11 of 97



Normal logic programs

• A logic program, P, over a set A of atoms is a finite set of rules
• A (normal) rule, r, is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n
• Notation

head(r) = a0

body(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
body(r)+ = {a1, . . . , am}
body(r)− = {am+1, . . . , an}

atom(P) =
⋃

r∈P

(
{head(r)} ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

• A program P is positive if body(r)− = ∅ for all r ∈ P

TU Dresden, 18 June 2018 Deduction Systems slide 12 of 97



Outline

1 ASP in a Nutshell

2 ASP Syntax

3 Semantics

4 Examples

5 Completion

6 Loops and Loop Formulas

TU Dresden, 18 June 2018 Deduction Systems slide 13 of 97



Formal Definition
Stable models of positive programs

• A set of atoms X is closed under a positive program P iff
for any r ∈ P, head(r) ∈ X whenever body(r)+ ⊆ X

– Then X (seen as an interpretation) corresponds to a model of P (seen as a propositional
logic formula)

• The smallest set of atoms which is closed under a positive program P is denoted by Cn(P)
– Cn(P) corresponds to the ⊆-smallest model of P

• The set Cn(P) of atoms is the stable model of a positive program P

TU Dresden, 18 June 2018 Deduction Systems slide 14 of 97



Formal Definition
Stable models of positive programs

• A set of atoms X is closed under a positive program P iff
for any r ∈ P, head(r) ∈ X whenever body(r)+ ⊆ X

– Then X (seen as an interpretation) corresponds to a model of P (seen as a propositional
logic formula)

• The smallest set of atoms which is closed under a positive program P is denoted by Cn(P)
– Cn(P) corresponds to the ⊆-smallest model of P

• The set Cn(P) of atoms is the stable model of a positive program P

TU Dresden, 18 June 2018 Deduction Systems slide 15 of 97



Formal Definition
Stable models of positive programs

• A set of atoms X is closed under a positive program P iff
for any r ∈ P, head(r) ∈ X whenever body(r)+ ⊆ X

– Then X (seen as an interpretation) corresponds to a model of P (seen as a propositional
logic formula)

• The smallest set of atoms which is closed under a positive program P is denoted by Cn(P)
– Cn(P) corresponds to the ⊆-smallest model of P

• The set Cn(P) of atoms is the stable model of a positive program P

TU Dresden, 18 June 2018 Deduction Systems slide 16 of 97



Formal Definition
Stable models of positive programs

• A set of atoms X is closed under a positive program P iff
for any r ∈ P, head(r) ∈ X whenever body(r)+ ⊆ X

– Then X (seen as an interpretation) corresponds to a model of P (seen as a propositional
logic formula)

• The smallest set of atoms which is closed under a positive program P is denoted by Cn(P)
– Cn(P) corresponds to the ⊆-smallest model of P

• The set Cn(P) of atoms is the stable model of a positive program P

TU Dresden, 18 June 2018 Deduction Systems slide 17 of 97



Formal Definition
Stable models of normal programs

• The (Gelfond-Lifschitz) reduct PX of a program P relative to a set X of atoms is defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

• A set X of atoms is a stable model of a program P, if Cn(PX) = X

• Note: Cn(PX) is the ⊆–smallest (classical) model of PX

• Note: Every atom in X is justified by an “applying rule from P”

TU Dresden, 18 June 2018 Deduction Systems slide 18 of 97



Formal Definition
Stable models of normal programs

• The (Gelfond-Lifschitz) reduct PX of a program P relative to a set X of atoms is defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

• A set X of atoms is a stable model of a program P, if Cn(PX) = X

• Note: Cn(PX) is the ⊆–smallest (classical) model of PX

• Note: Every atom in X is justified by an “applying rule from P”

TU Dresden, 18 June 2018 Deduction Systems slide 19 of 97



Formal Definition
Stable models of normal programs

• The (Gelfond-Lifschitz) reduct PX of a program P relative to a set X of atoms is defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

• A set X of atoms is a stable model of a program P, if Cn(PX) = X

• Note: Cn(PX) is the ⊆–smallest (classical) model of PX

• Note: Every atom in X is justified by an “applying rule from P”

TU Dresden, 18 June 2018 Deduction Systems slide 20 of 97



A closer look at PX

• In other words, given a set X of atoms from P,

PX is obtained from P by deleting
(1) each rule having ∼a in its body with a ∈ X

and then
(2) all negative atoms of the form ∼a

in the bodies of the remaining rules

• Note: Only negative body literals are evaluated wrt X

TU Dresden, 18 June 2018 Deduction Systems slide 21 of 97



A closer look at PX

• In other words, given a set X of atoms from P,

PX is obtained from P by deleting
(1) each rule having ∼a in its body with a ∈ X

and then
(2) all negative atoms of the form ∼a

in the bodies of the remaining rules

• Note: Only negative body literals are evaluated wrt X

TU Dresden, 18 June 2018 Deduction Systems slide 22 of 97



Outline

1 ASP in a Nutshell

2 ASP Syntax

3 Semantics

4 Examples

5 Completion

6 Loops and Loop Formulas

TU Dresden, 18 June 2018 Deduction Systems slide 23 of 97



A first example

P = {p← p, q← ∼p}

X

PX

Cn(PX)
{ }

p ← p
q ←

{q} 8

{p }

p ← p ∅ 8

{ q}

p ← p
q ←

{q} 4

{p, q}

p ← p ∅ 8

TU Dresden, 18 June 2018 Deduction Systems slide 24 of 97



A first example

P = {p← p, q← ∼p}

X

PX

Cn(PX)
{ }

p ← p
q ←

{q} 8

{p }

p ← p ∅ 8

{ q}

p ← p
q ←

{q} 4

{p, q}

p ← p ∅ 8

TU Dresden, 18 June 2018 Deduction Systems slide 25 of 97



A first example

P = {p← p, q← ∼p}

X PX Cn(PX)
{ } p ← p

q ←
{q}

8

{p } p ← p ∅

8

{ q} p ← p
q ←

{q}

4

{p, q} p ← p ∅

8

TU Dresden, 18 June 2018 Deduction Systems slide 26 of 97



A first example

P = {p← p, q← ∼p}

X PX Cn(PX)
{ } p ← p

q ←
{q} 8

{p } p ← p ∅

8

{ q} p ← p
q ←

{q}

4

{p, q} p ← p ∅

8

TU Dresden, 18 June 2018 Deduction Systems slide 27 of 97



A first example

P = {p← p, q← ∼p}

X PX Cn(PX)
{ } p ← p

q ←
{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q}

4

{p, q} p ← p ∅

8

TU Dresden, 18 June 2018 Deduction Systems slide 28 of 97



A first example

P = {p← p, q← ∼p}

X PX Cn(PX)
{ } p ← p

q ←
{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅

8

TU Dresden, 18 June 2018 Deduction Systems slide 29 of 97



A first example

P = {p← p, q← ∼p}

X PX Cn(PX)
{ } p ← p

q ←
{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

TU Dresden, 18 June 2018 Deduction Systems slide 30 of 97



A second example

P = {p← ∼q, q← ∼p}

X PX Cn(PX)
{ } p ←

q ←
{p, q}

8

{p } p ← {p}

4

{ q}
q ←

{q}

4

{p, q} ∅

TU Dresden, 18 June 2018 Deduction Systems slide 31 of 97



A second example

P = {p← ∼q, q← ∼p}

X PX Cn(PX)
{ } p ←

q ←
{p, q}

8

{p } p ← {p}

4

{ q}
q ←

{q}

4

{p, q} ∅

TU Dresden, 18 June 2018 Deduction Systems slide 32 of 97



A second example

P = {p← ∼q, q← ∼p}

X PX Cn(PX)
{ } p ←

q ←
{p, q} 8

{p } p ← {p}

4

{ q}
q ←

{q}

4

{p, q} ∅

TU Dresden, 18 June 2018 Deduction Systems slide 33 of 97



A second example

P = {p← ∼q, q← ∼p}

X PX Cn(PX)
{ } p ←

q ←
{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q}

4

{p, q} ∅

TU Dresden, 18 June 2018 Deduction Systems slide 34 of 97



A second example

P = {p← ∼q, q← ∼p}

X PX Cn(PX)
{ } p ←

q ←
{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

TU Dresden, 18 June 2018 Deduction Systems slide 35 of 97



A second example

P = {p← ∼q, q← ∼p}

X PX Cn(PX)
{ } p ←

q ←
{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅ 8

TU Dresden, 18 June 2018 Deduction Systems slide 36 of 97



A third example

P = {p← ∼p}

X PX Cn(PX)
{ } p← {p}

8

{p} ∅

TU Dresden, 18 June 2018 Deduction Systems slide 37 of 97



A third example

P = {p← ∼p}

X PX Cn(PX)
{ } p← {p}

8

{p} ∅

TU Dresden, 18 June 2018 Deduction Systems slide 38 of 97



A third example

P = {p← ∼p}

X PX Cn(PX)
{ } p← {p} 8

{p} ∅

TU Dresden, 18 June 2018 Deduction Systems slide 39 of 97



A third example

P = {p← ∼p}

X PX Cn(PX)
{ } p← {p} 8

{p} ∅ 8

TU Dresden, 18 June 2018 Deduction Systems slide 40 of 97



Some properties

• A logic program may have zero, one, or multiple stable models!

• If X is a stable model of a logic program P,
then X is a model of P (seen as a propositional logic formula with negation instead of ∼)

• If X and Y are stable models of a normal program P,
then X 6⊂ Y

TU Dresden, 18 June 2018 Deduction Systems slide 41 of 97



Some properties

• A logic program may have zero, one, or multiple stable models!
• If X is a stable model of a logic program P,

then X is a model of P (seen as a propositional logic formula with negation instead of ∼)
• If X and Y are stable models of a normal program P,

then X 6⊂ Y

TU Dresden, 18 June 2018 Deduction Systems slide 42 of 97



Outline

1 ASP in a Nutshell

2 ASP Syntax

3 Semantics

4 Examples

5 Completion

6 Loops and Loop Formulas

TU Dresden, 18 June 2018 Deduction Systems slide 43 of 97



Motivation

• Question: Is there a propositional formula F(P) such that the models of F(P) correspond to the
stable models of P?

• Observation: Although each atom is defined through a set of rules, each such rule provides only a
sufficient condition for its head atom

• Idea: The idea of program completion is to turn such implications into a definition by adding the
corresponding necessary counterpart

TU Dresden, 18 June 2018 Deduction Systems slide 44 of 97



Motivation

• Question: Is there a propositional formula F(P) such that the models of F(P) correspond to the
stable models of P?

• Observation: Although each atom is defined through a set of rules, each such rule provides only a
sufficient condition for its head atom

• Idea: The idea of program completion is to turn such implications into a definition by adding the
corresponding necessary counterpart

TU Dresden, 18 June 2018 Deduction Systems slide 45 of 97



Motivation

• Question: Is there a propositional formula F(P) such that the models of F(P) correspond to the
stable models of P?

• Observation: Although each atom is defined through a set of rules, each such rule provides only a
sufficient condition for its head atom

• Idea: The idea of program completion is to turn such implications into a definition by adding the
corresponding necessary counterpart

TU Dresden, 18 June 2018 Deduction Systems slide 46 of 97



Program completion

Let P be a normal logic program

• The (Clark) completion CF(P) of P is defined as follows

CF(P) =
{

a↔
∨

r∈P,head(r)=aBF(body(r)) | a ∈ atom(P)
}

where
BF(body(r)) =

∧
a∈body(r)+a ∧

∧
a∈body(r)−¬a

TU Dresden, 18 June 2018 Deduction Systems slide 47 of 97



An example

P =



a←
b← ∼a
c← a,∼d
d ← ∼c,∼e
e← b,∼f
e← e



CF(P) =



a↔ >
b↔ ¬a
c↔ a ∧ ¬d
d ↔ ¬c ∧ ¬e
e↔ (b ∧ ¬f ) ∨ e
f ↔ ⊥



TU Dresden, 18 June 2018 Deduction Systems slide 48 of 97



An example

P =



a←
b← ∼a
c← a,∼d
d ← ∼c,∼e
e← b,∼f
e← e


CF(P) =



a↔ >
b↔ ¬a
c↔ a ∧ ¬d
d ↔ ¬c ∧ ¬e
e↔ (b ∧ ¬f ) ∨ e
f ↔ ⊥



TU Dresden, 18 June 2018 Deduction Systems slide 49 of 97



A closer look

• CF(P) is logically equivalent to
←−
CF(P) ∪ −→CF(P), where

←−
CF(P) =

{
a←

∨
B∈bodyP(a)BF(B) | a ∈ atom(P)

}
−→
CF(P) =

{
a→

∨
B∈bodyP(a)BF(B) | a ∈ atom(P)

}
bodyP(a) = {body(r) | r ∈ P and head(r) = a}

• ←−CF(P) characterizes the classical models of P

• −→CF(P) completes P by adding necessary conditions for all atoms

TU Dresden, 18 June 2018 Deduction Systems slide 50 of 97



A closer look

• CF(P) is logically equivalent to
←−
CF(P) ∪ −→CF(P), where

←−
CF(P) =

{
a←

∨
B∈bodyP(a)BF(B) | a ∈ atom(P)

}
−→
CF(P) =

{
a→

∨
B∈bodyP(a)BF(B) | a ∈ atom(P)

}
bodyP(a) = {body(r) | r ∈ P and head(r) = a}

• ←−CF(P) characterizes the classical models of P

• −→CF(P) completes P by adding necessary conditions for all atoms

TU Dresden, 18 June 2018 Deduction Systems slide 51 of 97



A closer look

P =



a←
b← ∼a
c← a,∼d
d ← ∼c,∼e
e← b,∼f
e← e



TU Dresden, 18 June 2018 Deduction Systems slide 52 of 97



A closer look

P =



a←
b← ∼a
c← a,∼d
d ← ∼c,∼e
e← b,∼f
e← e


←−
CF(P) =



a← >
b← ¬a
c← a ∧ ¬d
d ← ¬c ∧ ¬e
e← (b ∧ ¬f ) ∨ e
f ← ⊥



TU Dresden, 18 June 2018 Deduction Systems slide 53 of 97



A closer look

←−
CF(P) =



a← >
b← ¬a
c← a ∧ ¬d
d ← ¬c ∧ ¬e
e← (b ∧ ¬f ) ∨ e
f ← ⊥



TU Dresden, 18 June 2018 Deduction Systems slide 54 of 97



A closer look

←−
CF(P) =



a← >
b← ¬a
c← a ∧ ¬d
d ← ¬c ∧ ¬e
e← (b ∧ ¬f ) ∨ e
f ← ⊥





a→ >
b→ ¬a
c→ a ∧ ¬d
d → ¬c ∧ ¬e
e→ (b ∧ ¬f ) ∨ e
f → ⊥


=
−→
CF(P)

TU Dresden, 18 June 2018 Deduction Systems slide 55 of 97



A closer look

←−
CF(P) =



a← >
b← ¬a
c← a ∧ ¬d
d ← ¬c ∧ ¬e
e← (b ∧ ¬f ) ∨ e
f ← ⊥





a→ >
b→ ¬a
c→ a ∧ ¬d
d → ¬c ∧ ¬e
e→ (b ∧ ¬f ) ∨ e
f → ⊥


=
−→
CF(P)

CF(P) =



a↔ >
b↔ ¬a
c↔ a ∧ ¬d
d ↔ ¬c ∧ ¬e
e↔ (b ∧ ¬f ) ∨ e
f ↔ ⊥



TU Dresden, 18 June 2018 Deduction Systems slide 56 of 97



A closer look

←−
CF(P) =



a← >
b← ¬a
c← a ∧ ¬d
d ← ¬c ∧ ¬e
e← (b ∧ ¬f ) ∨ e
f ← ⊥





a→ >
b→ ¬a
c→ a ∧ ¬d
d → ¬c ∧ ¬e
e→ (b ∧ ¬f ) ∨ e
f → ⊥


=
−→
CF(P)

CF(P) =



a↔ >
b↔ ¬a
c↔ a ∧ ¬d
d ↔ ¬c ∧ ¬e
e↔ (b ∧ ¬f ) ∨ e
f ↔ ⊥


≡ ←−

CF(P) ∪ −→CF(P)

TU Dresden, 18 June 2018 Deduction Systems slide 57 of 97



Supported models

• Every stable model of P is a model of CF(P),

but not vice versa

• Models of CF(P) are called the supported models of P

• In other words, every stable model of P is a supported model of P

• By definition, every supported model of P is also a model of P

TU Dresden, 18 June 2018 Deduction Systems slide 58 of 97



Supported models

• Every stable model of P is a model of CF(P), but not vice versa

• Models of CF(P) are called the supported models of P

• In other words, every stable model of P is a supported model of P

• By definition, every supported model of P is also a model of P

TU Dresden, 18 June 2018 Deduction Systems slide 59 of 97



Supported models

• Every stable model of P is a model of CF(P), but not vice versa

• Models of CF(P) are called the supported models of P

• In other words, every stable model of P is a supported model of P

• By definition, every supported model of P is also a model of P

TU Dresden, 18 June 2018 Deduction Systems slide 60 of 97



Supported models

• Every stable model of P is a model of CF(P), but not vice versa

• Models of CF(P) are called the supported models of P

• In other words, every stable model of P is a supported model of P

• By definition, every supported model of P is also a model of P

TU Dresden, 18 June 2018 Deduction Systems slide 61 of 97



An example

P =

{
a← c← a,∼d e← b,∼f
b← ∼a d ← ∼c,∼e e← e

}

• P has 21 models, including {a, c}, {a, d}, but also {a, b, c, d, e, f}
• P has 3 supported models, namely {a, c}, {a, d}, and {a, c, e}
• P has 2 stable models, namely {a, c} and {a, d}

TU Dresden, 18 June 2018 Deduction Systems slide 62 of 97



An example

P =

{
a← c← a,∼d e← b,∼f
b← ∼a d ← ∼c,∼e e← e

}

• P has 21 models, including {a, c}, {a, d}, but also {a, b, c, d, e, f}

• P has 3 supported models, namely {a, c}, {a, d}, and {a, c, e}
• P has 2 stable models, namely {a, c} and {a, d}

TU Dresden, 18 June 2018 Deduction Systems slide 63 of 97



An example

P =

{
a← c← a,∼d e← b,∼f
b← ∼a d ← ∼c,∼e e← e

}

• P has 21 models, including {a, c}, {a, d}, but also {a, b, c, d, e, f}
• P has 3 supported models, namely {a, c}, {a, d}, and {a, c, e}

• P has 2 stable models, namely {a, c} and {a, d}

TU Dresden, 18 June 2018 Deduction Systems slide 64 of 97



An example

P =

{
a← c← a,∼d e← b,∼f
b← ∼a d ← ∼c,∼e e← e

}

• P has 21 models, including {a, c}, {a, d}, but also {a, b, c, d, e, f}
• P has 3 supported models, namely {a, c}, {a, d}, and {a, c, e}
• P has 2 stable models, namely {a, c} and {a, d}

TU Dresden, 18 June 2018 Deduction Systems slide 65 of 97



Outline

1 ASP in a Nutshell

2 ASP Syntax

3 Semantics

4 Examples

5 Completion

6 Loops and Loop Formulas

TU Dresden, 18 June 2018 Deduction Systems slide 66 of 97



Motivation

• Question: Is there a propositional formula F(P) such that the models of F(P) correspond to the
stable models of P ?

• Observation: Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms holding in the supported
models of the program

• Idea: Add formulas prohibiting circular support of sets of atoms
• Note: Circular support between atoms a and b is possible,

if a has a path to b and b has a path to a
in the program’s positive atom dependency graph

TU Dresden, 18 June 2018 Deduction Systems slide 67 of 97



Motivation

• Question: Is there a propositional formula F(P) such that the models of F(P) correspond to the
stable models of P ?

• Observation: Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms holding in the supported
models of the program

• Idea: Add formulas prohibiting circular support of sets of atoms
• Note: Circular support between atoms a and b is possible,

if a has a path to b and b has a path to a
in the program’s positive atom dependency graph

TU Dresden, 18 June 2018 Deduction Systems slide 68 of 97



Motivation

• Question: Is there a propositional formula F(P) such that the models of F(P) correspond to the
stable models of P ?

• Observation: Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms holding in the supported
models of the program

• Idea: Add formulas prohibiting circular support of sets of atoms

• Note: Circular support between atoms a and b is possible,
if a has a path to b and b has a path to a
in the program’s positive atom dependency graph

TU Dresden, 18 June 2018 Deduction Systems slide 69 of 97



Motivation

• Question: Is there a propositional formula F(P) such that the models of F(P) correspond to the
stable models of P ?

• Observation: Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms holding in the supported
models of the program

• Idea: Add formulas prohibiting circular support of sets of atoms
• Note: Circular support between atoms a and b is possible,

if a has a path to b and b has a path to a
in the program’s positive atom dependency graph

TU Dresden, 18 June 2018 Deduction Systems slide 70 of 97



Loops

Let P be a normal logic program, and
let G(P) = (atom(P), E) be the positive atom dependency graph of P

• A set ∅ ⊂ L ⊆ atom(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G(P)

That is, each pair of atoms in L is connected by a path of non-zero length in (L, E ∩ (L× L))

• We denote the set of all loops of P by loop(P)

• Note: A program P is tight iff loop(P) = ∅

TU Dresden, 18 June 2018 Deduction Systems slide 71 of 97



Loops

Let P be a normal logic program, and
let G(P) = (atom(P), E) be the positive atom dependency graph of P

• A set ∅ ⊂ L ⊆ atom(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G(P)

That is, each pair of atoms in L is connected by a path of non-zero length in (L, E ∩ (L× L))

• We denote the set of all loops of P by loop(P)

• Note: A program P is tight iff loop(P) = ∅

TU Dresden, 18 June 2018 Deduction Systems slide 72 of 97



Loops

Let P be a normal logic program, and
let G(P) = (atom(P), E) be the positive atom dependency graph of P

• A set ∅ ⊂ L ⊆ atom(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G(P)

That is, each pair of atoms in L is connected by a path of non-zero length in (L, E ∩ (L× L))

• We denote the set of all loops of P by loop(P)

• Note: A program P is tight iff loop(P) = ∅

TU Dresden, 18 June 2018 Deduction Systems slide 73 of 97



Loops

Let P be a normal logic program, and
let G(P) = (atom(P), E) be the positive atom dependency graph of P

• A set ∅ ⊂ L ⊆ atom(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G(P)

That is, each pair of atoms in L is connected by a path of non-zero length in (L, E ∩ (L× L))

• We denote the set of all loops of P by loop(P)

• Note: A program P is tight iff loop(P) = ∅

TU Dresden, 18 June 2018 Deduction Systems slide 74 of 97



Loops

Let P be a normal logic program, and
let G(P) = (atom(P), E) be the positive atom dependency graph of P

• A set ∅ ⊂ L ⊆ atom(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G(P)

That is, each pair of atoms in L is connected by a path of non-zero length in (L, E ∩ (L× L))

• We denote the set of all loops of P by loop(P)

• Note: A program P is tight iff loop(P) = ∅

TU Dresden, 18 June 2018 Deduction Systems slide 75 of 97



Example

• P =

{
a← c← a,∼d e← b,∼f
b← ∼a d ← ∼c,∼e e← e

}

a c d

b e f

• loop(P) = {{e}}

TU Dresden, 18 June 2018 Deduction Systems slide 76 of 97



Example

• P =

{
a← c← a,∼d e← b,∼f
b← ∼a d ← ∼c,∼e e← e

}

a c d

b e f

• loop(P) = {{e}}

TU Dresden, 18 June 2018 Deduction Systems slide 77 of 97



Another example

• P =

{
a← ∼b c← a, b d ← a e← ∼a,∼b
b← ∼a c← d d ← b, c

}

d a c e

b

• loop(P) = {{c, d}}

TU Dresden, 18 June 2018 Deduction Systems slide 78 of 97



Another example

• P =

{
a← ∼b c← a, b d ← a e← ∼a,∼b
b← ∼a c← d d ← b, c

}

d a c e

b

• loop(P) = {{c, d}}

TU Dresden, 18 June 2018 Deduction Systems slide 79 of 97



Yet another example

• P =

{
a← ∼b c← a d ← b, c e← b,∼a
b← ∼a c← b, d d ← e e← c, d

}

b

a c d e

• loop(P) = {{c, d}, {d, e}, {c, d, e}}

TU Dresden, 18 June 2018 Deduction Systems slide 80 of 97



Yet another example

• P =

{
a← ∼b c← a d ← b, c e← b,∼a
b← ∼a c← b, d d ← e e← c, d

}

b

a c d e

• loop(P) = {{c, d}, {d, e}, {c, d, e}}

TU Dresden, 18 June 2018 Deduction Systems slide 81 of 97



Yet another example

• P =

{
a← ∼b c← a d ← b, c e← b,∼a
b← ∼a c← b, d d ← e e← c, d

}

b

a c d e

• loop(P) = {{c, d}, {d, e}, {c, d, e}}

TU Dresden, 18 June 2018 Deduction Systems slide 82 of 97



Loop formulas

Let P be a normal logic program
• For L ⊆ atom(P), define the external supports of L for P as

ESP(L) = {r ∈ P | head(r) ∈ L and body(r)+ ∩ L = ∅}

• Define the external bodies of L in P as EBP(L) = body(ESP(L))

• The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

a∈La
)
→
(∨

B∈EBP(L)BF(B)
)

≡
(∧

B∈EBP(L)¬BF(B)
)
→
(∧

a∈L¬a
)

• Note: The loop formula of L enforces all atoms in L to be false whenever L is not externally
supported

• Define LF(P) = {LFP(L) | L ∈ loop(P)}

TU Dresden, 18 June 2018 Deduction Systems slide 83 of 97



Loop formulas

Let P be a normal logic program
• For L ⊆ atom(P), define the external supports of L for P as

ESP(L) = {r ∈ P | head(r) ∈ L and body(r)+ ∩ L = ∅}

• Define the external bodies of L in P as EBP(L) = body(ESP(L))

• The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

a∈La
)
→
(∨

B∈EBP(L)BF(B)
)

≡
(∧

B∈EBP(L)¬BF(B)
)
→
(∧

a∈L¬a
)

• Note: The loop formula of L enforces all atoms in L to be false whenever L is not externally
supported

• Define LF(P) = {LFP(L) | L ∈ loop(P)}

TU Dresden, 18 June 2018 Deduction Systems slide 84 of 97



Loop formulas

Let P be a normal logic program
• For L ⊆ atom(P), define the external supports of L for P as

ESP(L) = {r ∈ P | head(r) ∈ L and body(r)+ ∩ L = ∅}

• Define the external bodies of L in P as EBP(L) = body(ESP(L))

• The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

a∈La
)
→
(∨

B∈EBP(L)BF(B)
)

≡
(∧

B∈EBP(L)¬BF(B)
)
→
(∧

a∈L¬a
)

• Note: The loop formula of L enforces all atoms in L to be false whenever L is not externally
supported

• Define LF(P) = {LFP(L) | L ∈ loop(P)}

TU Dresden, 18 June 2018 Deduction Systems slide 85 of 97



Loop formulas

Let P be a normal logic program
• For L ⊆ atom(P), define the external supports of L for P as

ESP(L) = {r ∈ P | head(r) ∈ L and body(r)+ ∩ L = ∅}

• Define the external bodies of L in P as EBP(L) = body(ESP(L))

• The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

a∈La
)
→
(∨

B∈EBP(L)BF(B)
)

≡
(∧

B∈EBP(L)¬BF(B)
)
→
(∧

a∈L¬a
)

• Note: The loop formula of L enforces all atoms in L to be false whenever L is not externally
supported

• Define LF(P) = {LFP(L) | L ∈ loop(P)}

TU Dresden, 18 June 2018 Deduction Systems slide 86 of 97



Example

• P =

{
a← c← a,∼d e← b,∼f
b← ∼a d ← ∼c,∼e e← e

}

a c d

b e f

• loop(P) = {{e}}

• LF(P) = {e→ b ∧ ¬f}

TU Dresden, 18 June 2018 Deduction Systems slide 87 of 97



Example

• P =

{
a← c← a,∼d e← b,∼f
b← ∼a d ← ∼c,∼e e← e

}

a c d

b e f

• loop(P) = {{e}}
• LF(P) = {e→ b ∧ ¬f}

TU Dresden, 18 June 2018 Deduction Systems slide 88 of 97



Another example

• P =

{
a← ∼b c← a, b d ← a e← ∼a,∼b
b← ∼a c← d d ← b, c

}

d a c e

b

• loop(P) = {{c, d}}

• LF(P) = {c ∨ d → (a ∧ b) ∨ a}

TU Dresden, 18 June 2018 Deduction Systems slide 89 of 97



Another example

• P =

{
a← ∼b c← a, b d ← a e← ∼a,∼b
b← ∼a c← d d ← b, c

}

d a c e

b

• loop(P) = {{c, d}}
• LF(P) = {c ∨ d → (a ∧ b) ∨ a}

TU Dresden, 18 June 2018 Deduction Systems slide 90 of 97



Yet another example

• P =

{
a← ∼b c← a d ← b, c e← b,∼a
b← ∼a c← b, d d ← e e← c, d

}

b

a c d e

• loop(P) = {{c, d}, {d, e}, {c, d, e}}

• LF(P) =

 c ∨ d → a ∨ e
d ∨ e→ (b ∧ c) ∨ (b ∧ ¬a)
c ∨ d ∨ e→ a ∨ (b ∧ ¬a)



TU Dresden, 18 June 2018 Deduction Systems slide 91 of 97



Yet another example

• P =

{
a← ∼b c← a d ← b, c e← b,∼a
b← ∼a c← b, d d ← e e← c, d

}

b

a c d e

• loop(P) = {{c, d}, {d, e}, {c, d, e}}

• LF(P) =

 c ∨ d → a ∨ e
d ∨ e→ (b ∧ c) ∨ (b ∧ ¬a)
c ∨ d ∨ e→ a ∨ (b ∧ ¬a)



TU Dresden, 18 June 2018 Deduction Systems slide 92 of 97



Yet another example

• P =

{
a← ∼b c← a d ← b, c e← b,∼a
b← ∼a c← b, d d ← e e← c, d

}

b

a c d e

• loop(P) = {{c, d}, {d, e}, {c, d, e}}

• LF(P) =

 c ∨ d → a ∨ e
d ∨ e→ (b ∧ c) ∨ (b ∧ ¬a)
c ∨ d ∨ e→ a ∨ (b ∧ ¬a)



TU Dresden, 18 June 2018 Deduction Systems slide 93 of 97



Yet another example

• P =

{
a← ∼b c← a d ← b, c e← b,∼a
b← ∼a c← b, d d ← e e← c, d

}

b

a c d e

• loop(P) = {{c, d}, {d, e}, {c, d, e}}

• LF(P) =

 c ∨ d → a ∨ e
d ∨ e→ (b ∧ c) ∨ (b ∧ ¬a)
c ∨ d ∨ e→ a ∨ (b ∧ ¬a)



TU Dresden, 18 June 2018 Deduction Systems slide 94 of 97



Yet another example

• P =

{
a← ∼b c← a d ← b, c e← b,∼a
b← ∼a c← b, d d ← e e← c, d

}

b

a c d e

• loop(P) = {{c, d}, {d, e}, {c, d, e}}

• LF(P) =

 c ∨ d → a ∨ e
d ∨ e→ (b ∧ c) ∨ (b ∧ ¬a)
c ∨ d ∨ e→ a ∨ (b ∧ ¬a)



TU Dresden, 18 June 2018 Deduction Systems slide 95 of 97



Lin-Zhao Theorem
The following result is due to Fangzhen Lin and Yuting Zhao [2004], who used it to implement ASP using
SAT solvers:

Theorem
Let P be a normal logic program and X ⊆ atom(P)
Then, X is a stable model of P iff X |= CF(P) ∪ LF(P)

Note: There can be exponentially many loops in the worst case, so the reduction may incur a substantial
blow-up. However, practical problems often include only a rather small number of loops.

TU Dresden, 18 June 2018 Deduction Systems slide 96 of 97



Summary

Answer Set Programming is non-monotonic logic programming with a stable-model semantics

Main reasoning task: computing (all, zero or more) stable models (a.k.a. answer sets)

Reduction to SAT is possible by
• Clark completion (supported models) +
• Loop formulae (answer sets)

TU Dresden, 18 June 2018 Deduction Systems slide 97 of 97


	ASP Basics
	ASP in a Nutshell
	ASP Syntax
	Semantics
	Examples
	Completion
	Loops and Loop Formulas


