DEDUCTION SYSTEMS

Answer Set Programming: Basics

Markus Krötzsch
Chair for Knowledge-Based Systems
Slides by Sebastian Rudolph, and based on a lecture by Martin Gebser and Torsten Schaub (CC-By 3.0)

TU Dresden, 18 June 2018

ASP Basics: Overview

(9) ASP in a Nutshell
(2) ASP Syntax
(3) Semantics
(4) Examples
(5) Completion

6 Loops and Loop Formulas

Outline

2) ASP Syntax
(3) Semantics
(4) Examples
(5) Completion

6 Loops and Loop Formulas

Answer Set Programming

in a Nutshell

Answer Set Programming

in a Nutshell

- ASP is an approach to declarative problem solving, combining
- a rich yet simple modeling language
- with high-performance solving capacities

Answer Set Programming

in a Nutshell

- ASP is an approach to declarative problem solving, combining
- a rich yet simple modeling language
- with high-performance solving capacities
- ASP has its roots in
- (deductive) databases
- logic programming (with negation)
- (logic-based) knowledge representation and (nonmonotonic) reasoning
- constraint solving (in particular, SATisfiability testing)

Answer Set Programming

in a Nutshell

- ASP is an approach to declarative problem solving, combining
- a rich yet simple modeling language
- with high-performance solving capacities
- ASP has its roots in
- (deductive) databases
- logic programming (with negation)
- (logic-based) knowledge representation and (nonmonotonic) reasoning
- constraint solving (in particular, SATisfiability testing)
- ASP allows for solving all search problems in $N P\left(\right.$ and $\left.N P^{N P}\right)$ in a uniform way

Answer Set Programming

in a Nutshell

- ASP is an approach to declarative problem solving, combining
- a rich yet simple modeling language
- with high-performance solving capacities
- ASP has its roots in
- (deductive) databases
- logic programming (with negation)
- (logic-based) knowledge representation and (nonmonotonic) reasoning
- constraint solving (in particular, SATisfiability testing)
- ASP allows for solving all search problems in $N P\left(\right.$ and $\left.N P^{N P}\right)$ in a uniform way
- ASP is supported by several fast solvers, such as clasp, DLV, and smodels

Outline

(2) ASP Syntax
(3) Semantics

4 Examples
(5) Completion

6 Loops and Loop Formulas

Normal logic programs

- A logic program, P, over a set \mathcal{A} of atoms is a finite set of rules
- A (normal) rule, r, is of the form

$$
a_{0} \leftarrow a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}
$$

where $0 \leq m \leq n$ and each $a_{i} \in \mathcal{A}$ is an atom for $0 \leq i \leq n$

Normal logic programs

- A logic program, P, over a set \mathcal{A} of atoms is a finite set of rules
- A (normal) rule, r, is of the form

$$
a_{0} \leftarrow a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}
$$

where $0 \leq m \leq n$ and each $a_{i} \in \mathcal{A}$ is an atom for $0 \leq i \leq n$

- Notation

$$
\begin{aligned}
\operatorname{head}(r) & =a_{0} \\
\operatorname{body}(r) & =\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\} \\
\operatorname{body}(r)^{+} & =\left\{a_{1}, \ldots, a_{m}\right\} \\
\operatorname{body}(r)^{-} & =\left\{a_{m+1}, \ldots, a_{n}\right\} \\
\operatorname{atom}(P) & =\bigcup_{r \in P}\left(\{\operatorname{head}(r)\} \cup \operatorname{body}(r)^{+} \cup \operatorname{body}(r)^{-}\right) \\
\operatorname{body}(P) & =\{\operatorname{body}(r) \mid r \in P\}
\end{aligned}
$$

Normal logic programs

- A logic program, P, over a set \mathcal{A} of atoms is a finite set of rules
- A (normal) rule, r, is of the form

$$
a_{0} \leftarrow a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}
$$

where $0 \leq m \leq n$ and each $a_{i} \in \mathcal{A}$ is an atom for $0 \leq i \leq n$

- Notation

$$
\begin{aligned}
\operatorname{head}(r) & =a_{0} \\
\operatorname{body}(r) & =\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\} \\
\operatorname{body}(r)^{+} & =\left\{a_{1}, \ldots, a_{m}\right\} \\
\operatorname{body}(r)^{-} & =\left\{a_{m+1}, \ldots, a_{n}\right\} \\
\operatorname{atom}(P) & =\bigcup_{r \in P}\left(\{\operatorname{head}(r)\} \cup \operatorname{body}(r)^{+} \cup \operatorname{body}(r)^{-}\right) \\
\operatorname{body}(P) & =\{\operatorname{body}(r) \mid r \in P\}
\end{aligned}
$$

- A program P is positive if $\operatorname{body}(r)^{-}=\emptyset$ for all $r \in P$

Outline

2) ASP Syntax
(3) Semantics
(4) Examples
(5) Completion

6 Loops and Loop Formulas

Formal Definition

Stable models of positive programs

Formal Definition

Stable models of positive programs

- A set of atoms X is closed under a positive program P iff for any $r \in P$, head $(r) \in X$ whenever $\operatorname{body}(r)^{+} \subseteq X$
- Then X (seen as an interpretation) corresponds to a model of P (seen as a propositional logic formula)

Formal Definition

Stable models of positive programs

- A set of atoms X is closed under a positive program P iff for any $r \in P$, $\operatorname{head}(r) \in X$ whenever $\operatorname{body}(r)^{+} \subseteq X$
- Then X (seen as an interpretation) corresponds to a model of P (seen as a propositional logic formula)
- The smallest set of atoms which is closed under a positive program P is denoted by $C n(P)$
- $C n(P)$ corresponds to the \subseteq-smallest model of P

Formal Definition

Stable models of positive programs

- A set of atoms X is closed under a positive program P iff for any $r \in P$, head $(r) \in X$ whenever $\operatorname{body}(r)^{+} \subseteq X$
- Then X (seen as an interpretation) corresponds to a model of P (seen as a propositional logic formula)
- The smallest set of atoms which is closed under a positive program P is denoted by $C n(P)$
- $\operatorname{Cn}(P)$ corresponds to the \subseteq-smallest model of P
- The set $C n(P)$ of atoms is the stable model of a positive program P

Formal Definition

Stable models of normal programs

- The (Gelfond-Lifschitz) reduct P^{X} of a program P relative to a set X of atoms is defined by

$$
P^{X}=\left\{\operatorname{head}(r) \leftarrow \operatorname{body}(r)^{+} \mid r \in P \text { and } \operatorname{body}(r)^{-} \cap X=\emptyset\right\}
$$

Formal Definition

Stable models of normal programs

- The (Gelfond-Lifschitz) reduct P^{X} of a program P relative to a set X of atoms is defined by

$$
P^{X}=\left\{\operatorname{head}(r) \leftarrow \operatorname{body}(r)^{+} \mid r \in P \text { and } \operatorname{body}(r)^{-} \cap X=\emptyset\right\}
$$

- A set X of atoms is a stable model of a program P, if $\operatorname{Cn}\left(P^{X}\right)=X$

Formal Definition

Stable models of normal programs

- The (Gelfond-Lifschitz) reduct P^{X} of a program P relative to a set X of atoms is defined by

$$
P^{X}=\left\{\operatorname{head}(r) \leftarrow \operatorname{body}(r)^{+} \mid r \in P \text { and } \operatorname{body}(r)^{-} \cap X=\emptyset\right\}
$$

- A set X of atoms is a stable model of a program P, if $\operatorname{Cn}\left(P^{X}\right)=X$
- Note: $\operatorname{Cn}\left(P^{X}\right)$ is the \subseteq-smallest (classical) model of P^{X}
- Note: Every atom in X is justified by an "applying rule from P "

A closer look at P^{X}

- In other words, given a set X of atoms from P,
P^{X} is obtained from P by deleting
(1) each rule having $\sim a$ in its body with $a \in X$ and then
(2) all negative atoms of the form $\sim a$ in the bodies of the remaining rules

A closer look at P^{X}

- In other words, given a set X of atoms from P,
P^{X} is obtained from P by deleting
(1) each rule having $\sim a$ in its body with $a \in X$ and then
(2) all negative atoms of the form $\sim a$ in the bodies of the remaining rules
- Note: Only negative body literals are evaluated wrt X

Outline

2) ASP Syntax
(3) Semantics
(4) Examples
(5) Completion

6 Loops and Loop Formulas

A first example

$$
P=\{p \leftarrow p, q \leftarrow \sim p\}
$$

A first example

$$
P=\{p \leftarrow p, q \leftarrow \sim p\}
$$

$\}$		$\operatorname{Cn}\left(P^{X}\right)$
$\}$		
$\{p$		
$\{q\}$		
$\{p, q\}$		

A first example

$P=\{p \leftarrow p, q \leftarrow \sim p\}$		
X	P^{X}	$C n\left(P^{X}\right)$
\{ \}	$\begin{array}{lll} p & \leftarrow & p \\ q & \leftarrow & \end{array}$	\{q\}
\{p \}	$p \leftarrow p$	\emptyset
\{ q \}	$\begin{array}{lcc} p & \leftarrow \\ q & \leftarrow & p \end{array}$	\{q\}
\{p,q\}	$p \leftarrow p$	\emptyset

A first example

A first example

A first example

$P=\{p \leftarrow p, q \leftarrow \sim p\}$				
X	P^{X}		$C n\left(P^{X}\right)$	
\{ \}	$p \leftarrow$	p	\{q\}	x
	$q \leftarrow$			
$\{p \quad\}$	$p \leftarrow$	p	\emptyset	x
\{ q \}	$p \leftarrow$	p	\{q\}	\checkmark
	$q \leftarrow$			
$\{p, q\}$	$p \leftarrow$	p	\emptyset	

A first example

$P=\{p \leftarrow p, q \leftarrow \sim p\}$				
X	P^{X}		$C n\left(P^{X}\right)$	
\{ \}	$p \leftarrow p$	p	$\{q\}$	x
	$q \leftarrow$			
\{p \}	$p \leftarrow p$	p	\emptyset	X
\{ q \}	$p \leftarrow p$	p	$\{q\}$	\checkmark
	$q \leftarrow$			
$\{p, q\}$	$p \leftarrow p$	p	\emptyset	X

A second example

$$
P=\{p \leftarrow \sim q, q \leftarrow \sim p\}
$$

A second example

$P=\{p \leftarrow \sim q, q \leftarrow \sim p\}$			
X	P^{X}	$C n\left(P^{X}\right)$	
$\left\{\begin{array}{c}\text { P }\end{array}\right.$	p	\leftarrow	
	q	\leftarrow	
$\{p, q$	p	\leftarrow	
$\{q\}$		$\{p\}$	
$\{p, q\}$	q	\leftarrow	

A second example

$P=\{p \leftarrow \sim q, q \leftarrow \sim p\}$				
X	P^{X}		$C n\left(P^{X}\right)$	
\{ $\}$		\leftarrow	$\{p, q\}$	x
	q	\leftarrow		
\{p $\}$		\leftarrow	$\{p\}$	
\{ q \}			\{q\}	
	q	\leftarrow		
$\{p, q\}$			\emptyset	

A second example

$P=\{p \leftarrow \sim q, q \leftarrow \sim p\}$				
X	P^{X}		$C n\left(P^{X}\right)$	
\{ \}		\leftarrow	$\{p, q\}$	x
		\leftarrow		
\{p \}		\leftarrow	\{p\}	\checkmark
\{ q \}			$\{q\}$	
$\{p, q\}$			\emptyset	

A second example

$P=\{p \leftarrow \sim q, q \leftarrow \sim p\}$				
X	P^{X}		$C n\left(P^{X}\right)$	
\{ \}		\leftarrow	$\{p, q\}$	x
		\leftarrow		
\{p \}		\leftarrow	\{p\}	\checkmark
$\{q\}$			\{q\}	\checkmark
$\{p, q\}$			\emptyset	

A second example

$P=\{p \leftarrow \sim q, q \leftarrow \sim p\}$				
X	P^{X}		$C n\left(P^{X}\right)$	
\{ \}		\leftarrow	$\{p, q\}$	x
		\leftarrow		
\{p \}		\leftarrow	\{p\}	\checkmark
\{ q \}			$\{q\}$	\checkmark
$\{p, q\}$			\emptyset	X

A third example

$$
P=\{p \leftarrow \sim p\}
$$

A third example

$$
P=\{p \leftarrow \sim p\}
$$

X	P^{X}	$\operatorname{Cn}\left(P^{X}\right)$
$\}$	$p \leftarrow$	$\{p\}$
$\{p\}$		\emptyset

A third example

$$
P=\{p \leftarrow \sim p\}
$$

X	P^{X}	$\operatorname{Cn}\left(P^{X}\right)$	
$\}$	$p \leftarrow$	$\{p\}$	\mathbf{X}
$\{p\}$		\emptyset	

A third example

$$
P=\{p \leftarrow \sim p\}
$$

X	P^{X}	$\operatorname{Cn}\left(P^{X}\right)$	
$\}$	$p \leftarrow$	$\{p\}$	\mathbf{X}
$\{p\}$		\emptyset	\mathbf{X}

Some properties

- A logic program may have zero, one, or multiple stable models!

Some properties

- A logic program may have zero, one, or multiple stable models!
- If X is a stable model of a logic program P, then X is a model of P (seen as a propositional logic formula with negation instead of \sim)
- If X and Y are stable models of a normal program P, then $X \not \subset Y$

Outline

2) ASP Syntax
(3) Semantics
(4) Examples
(5) Completion

6 Loops and Loop Formulas

Motivation

- Question: Is there a propositional formula $F(P)$ such that the models of $F(P)$ correspond to the stable models of P ?

Motivation

- Question: Is there a propositional formula $F(P)$ such that the models of $F(P)$ correspond to the stable models of P ?
- Observation: Although each atom is defined through a set of rules, each such rule provides only a sufficient condition for its head atom

Motivation

- Question: Is there a propositional formula $F(P)$ such that the models of $F(P)$ correspond to the stable models of P ?
- Observation: Although each atom is defined through a set of rules, each such rule provides only a sufficient condition for its head atom
- Idea: The idea of program completion is to turn such implications into a definition by adding the corresponding necessary counterpart

Program completion

Let P be a normal logic program

- The (Clark) completion $C F(P)$ of P is defined as follows

$$
C F(P)=\left\{a \leftrightarrow \bigvee_{r \in P, \operatorname{head}(r)=a} B F(\operatorname{body}(r)) \mid a \in \operatorname{atom}(P)\right\}
$$

where

$$
B F(\operatorname{body}(r))=\bigwedge_{a \in \operatorname{body}(r)^{+}} a \wedge \bigwedge_{a \in \operatorname{body}(r)^{-} \neg a}
$$

An example

$$
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow \sim a \\
c \leftarrow a, \sim d \\
d \leftarrow \sim c, \sim e \\
e \leftarrow b, \sim f \\
e \leftarrow e
\end{array}\right\}
$$

An example

$$
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow \sim a \\
c \leftarrow a, \sim d \\
d \leftarrow \sim c, \sim e \\
e \leftarrow b, \sim f \\
e \leftarrow e
\end{array}\right\} \quad C F(P)=\left\{\begin{array}{l}
a \leftrightarrow \top \\
b \leftrightarrow \neg a \\
c \leftrightarrow a \wedge \neg d \\
d \leftrightarrow \neg \wedge \neg e \\
e \leftrightarrow(b \wedge \neg f) \vee e \\
f \leftrightarrow \perp
\end{array}\right\}
$$

A closer look

- $C F(P)$ is logically equivalent to $\overleftarrow{C F}(P) \cup \overrightarrow{C F}(P)$, where

$$
\begin{aligned}
\overleftarrow{C F}(P) & =\left\{a \leftarrow \bigvee_{B \in \operatorname{body}_{P}(a)} B F(B) \mid a \in \operatorname{atom}(P)\right\} \\
\overrightarrow{C F}(P) & =\left\{a \rightarrow \bigvee_{B \in \operatorname{body}_{P}(a)} B F(B) \mid a \in \operatorname{atom}(P)\right\} \\
\operatorname{body}_{P}(a) & =\{\operatorname{body}(r) \mid r \in P \text { and } \operatorname{head}(r)=a\}
\end{aligned}
$$

A closer look

- $C F(P)$ is logically equivalent to $\overleftarrow{C F}(P) \cup \overrightarrow{C F}(P)$, where

$$
\begin{aligned}
\overleftarrow{C F}(P) & =\left\{a \leftarrow \bigvee_{B \in \operatorname{body}_{P}(a)} B F(B) \mid a \in \operatorname{atom}(P)\right\} \\
\overrightarrow{C F}(P) & =\left\{a \rightarrow \bigvee_{B \in \operatorname{body}_{P}(a)} B F(B) \mid a \in \operatorname{atom}(P)\right\} \\
\operatorname{body}_{P}(a) & =\{\operatorname{body}(r) \mid r \in P \text { and } \operatorname{head}(r)=a\}
\end{aligned}
$$

- $\overleftarrow{C F}(P)$ characterizes the classical models of P
- $\overrightarrow{C F}(P)$ completes P by adding necessary conditions for all atoms

A closer look

$$
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow \sim a \\
c \leftarrow a, \sim d \\
d \leftarrow \sim c, \sim e \\
e \leftarrow b, \sim f \\
e \leftarrow e
\end{array}\right\}
$$

A closer look

$$
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow \sim a \\
c \leftarrow a, \sim d \\
d \leftarrow \sim c, \sim e \\
e \leftarrow b, \sim f \\
e \leftarrow e
\end{array}\right\} \quad \overleftarrow{C F}(P)=\left\{\begin{array}{l}
a \leftarrow \top \\
b \leftarrow \neg a \\
c \leftarrow a \wedge \neg d \\
d \leftarrow \neg c \wedge \neg e \\
e \leftarrow(b \wedge \neg f) \vee e \\
f \leftarrow \perp
\end{array}\right\}
$$

A closer look

$$
\overleftarrow{C F}(P)=\left\{\begin{array}{l}
a \leftarrow \top \\
b \leftarrow \neg a \\
c \leftarrow a \wedge \neg d \\
d \leftarrow \neg c \wedge \neg e \\
e \leftarrow(b \wedge \neg f) \vee e \\
f \leftarrow \perp
\end{array}\right\}
$$

A closer look

$$
\overleftarrow{C F}(P)=\left\{\begin{array}{l}
a \leftarrow \top \\
b \leftarrow \neg a \\
c \leftarrow a \wedge \neg d \\
d \leftarrow \neg c \wedge \neg e \\
e \leftarrow(b \wedge \neg f) \vee e \\
f \leftarrow \perp
\end{array}\right\}\left\{\begin{array}{l}
a \rightarrow \top \\
b \rightarrow \neg a \\
c \rightarrow a \wedge \neg d \\
d \rightarrow \neg \wedge \neg e \\
e \rightarrow(b \wedge \neg f) \vee e \\
f \rightarrow \perp
\end{array}\right\}=\overrightarrow{C F}(P)
$$

A closer look

$$
\begin{aligned}
& \overleftarrow{C F}(P)=\left\{\begin{array}{l}
a \leftarrow \top \\
b \leftarrow \neg a \\
c \leftarrow a \wedge \neg d \\
d \leftarrow \neg c \wedge \neg e \\
e \leftarrow(b \wedge \neg f) \vee e \\
f \leftarrow \perp
\end{array}\right\}\left\{\begin{array}{l}
a \rightarrow \top \\
b \rightarrow \neg a \\
c \rightarrow a \wedge \neg d \\
d \rightarrow \neg \wedge \neg \neg \\
e \rightarrow(b \wedge \neg f) \vee e \\
f \rightarrow \perp
\end{array}\right\}=\overrightarrow{C F}(P) \\
& C F(P)=\left\{\begin{array}{l}
a \leftrightarrow \top \\
b \leftrightarrow \neg a \\
c \leftrightarrow a \wedge \neg d \\
d \leftrightarrow \neg c \wedge \neg e \\
e \leftrightarrow(b \wedge \neg f) \vee e \\
f \leftrightarrow \perp
\end{array}\right\}
\end{aligned}
$$

A closer look

$$
\begin{gathered}
\overleftarrow{C F}(P)=\left\{\begin{array}{l}
a \leftarrow \top \\
b \leftarrow \neg a \\
c \leftarrow a \wedge \neg d \\
d \leftarrow \neg c \wedge \neg e \\
e \leftarrow(b \wedge \neg f) \vee e \\
f \leftarrow \perp
\end{array}\right\}\left\{\begin{array}{l}
a \rightarrow \top \\
b \rightarrow \neg a \\
c \rightarrow a \wedge \neg d \\
d \rightarrow \neg \wedge \neg e \\
e \rightarrow(b \wedge \neg f) \vee e \\
f \rightarrow \perp
\end{array}\right\}=\overrightarrow{C F}(P) \\
C F(P)=\left\{\begin{array}{l}
a \leftrightarrow \top \\
b \leftrightarrow \neg a \\
c \leftrightarrow a \wedge \neg d \\
d \leftrightarrow \neg c \wedge \neg e \\
e \leftrightarrow(b \wedge \neg f) \vee e \\
f \leftrightarrow \perp
\end{array}\right\} \equiv \stackrel{C}{C F}(P) \cup \overrightarrow{C F}(P)
\end{gathered}
$$

Supported models

- Every stable model of P is a model of $C F(P)$,

Supported models

- Every stable model of P is a model of $C F(P)$, but not vice versa

Supported models

- Every stable model of P is a model of $C F(P)$, but not vice versa
- Models of $C F(P)$ are called the supported models of P

Supported models

- Every stable model of P is a model of $C F(P)$, but not vice versa
- Models of $C F(P)$ are called the supported models of P
- In other words, every stable model of P is a supported model of P
- By definition, every supported model of P is also a model of P

An example

$$
P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
$$

An example

$$
P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
$$

- P has 21 models, including $\{a, c\},\{a, d\}$, but also $\{a, b, c, d, e, f\}$

An example

$$
P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
$$

- P has 21 models, including $\{a, c\},\{a, d\}$, but also $\{a, b, c, d, e, f\}$
- P has 3 supported models, namely $\{a, c\},\{a, d\}$, and $\{a, c, e\}$

An example

$$
P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
$$

- P has 21 models, including $\{a, c\},\{a, d\}$, but also $\{a, b, c, d, e, f\}$
- P has 3 supported models, namely $\{a, c\},\{a, d\}$, and $\{a, c, e\}$
- P has 2 stable models, namely $\{a, c\}$ and $\{a, d\}$

Outline

ASP in a Nutshell
2) ASP Syntax
(3) Semantics
(4) Examples
(5) Completion

6 Loops and Loop Formulas

Motivation

- Question: Is there a propositional formula $F(P)$ such that the models of $F(P)$ correspond to the stable models of P ?

Motivation

- Question: Is there a propositional formula $F(P)$ such that the models of $F(P)$ correspond to the stable models of P ?
- Observation: Starting from the completion of a program, the problem boils down to eliminating the circular support of atoms holding in the supported models of the program

Motivation

- Question: Is there a propositional formula $F(P)$ such that the models of $F(P)$ correspond to the stable models of P ?
- Observation: Starting from the completion of a program, the problem boils down to eliminating the circular support of atoms holding in the supported models of the program
- Idea: Add formulas prohibiting circular support of sets of atoms

Motivation

- Question: Is there a propositional formula $F(P)$ such that the models of $F(P)$ correspond to the stable models of P ?
- Observation: Starting from the completion of a program, the problem boils down to eliminating the circular support of atoms holding in the supported models of the program
- Idea: Add formulas prohibiting circular support of sets of atoms
- Note: Circular support between atoms a and b is possible, if a has a path to b and b has a path to a in the program's positive atom dependency graph

Loops

Let P be a normal logic program, and
let $G(P)=(\operatorname{atom}(P), E)$ be the positive atom dependency graph of P

Loops

Let P be a normal logic program, and
let $G(P)=(\operatorname{atom}(P), E)$ be the positive atom dependency graph of P

- A set $\emptyset \subset L \subseteq \operatorname{atom}(P)$ is a loop of P
if it induces a non-trivial strongly connected subgraph of $G(P)$

Loops

Let P be a normal logic program, and
let $G(P)=(\operatorname{atom}(P), E)$ be the positive atom dependency graph of P

- A set $\emptyset \subset L \subseteq \operatorname{atom}(P)$ is a loop of P
if it induces a non-trivial strongly connected subgraph of $G(P)$
That is, each pair of atoms in L is connected by a path of non-zero length in ($L, E \cap(L \times L)$)

Loops

Let P be a normal logic program, and
let $G(P)=(\operatorname{atom}(P), E)$ be the positive atom dependency graph of P

- A set $\emptyset \subset L \subseteq \operatorname{atom}(P)$ is a loop of P
if it induces a non-trivial strongly connected subgraph of $G(P)$
That is, each pair of atoms in L is connected by a path of non-zero length in ($L, E \cap(L \times L)$)
- We denote the set of all loops of P by $\operatorname{loop}(P)$

Loops

Let P be a normal logic program, and
let $G(P)=(\operatorname{atom}(P), E)$ be the positive atom dependency graph of P

- A set $\emptyset \subset L \subseteq \operatorname{atom}(P)$ is a loop of P
if it induces a non-trivial strongly connected subgraph of $G(P)$
That is, each pair of atoms in L is connected by a path of non-zero length in ($L, E \cap(L \times L)$)
- We denote the set of all loops of P by $\operatorname{loop}(P)$
- Note: A program P is tight iff $\operatorname{loop}(P)=\emptyset$

Example

- $P=\left\{\begin{array}{lll}a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e\end{array}\right\}$

Example

$\bullet P=\left\{\begin{array}{lll}a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e\end{array}\right\}$

- $\operatorname{loop}(P)=\{\{e\}\}$

Another example

- $P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c & \end{array}\right.$

Another example

- $P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c & \end{array}\right.$

- loop $(P)=\{\{c, d\}\}$

Yet another example

- $P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d\end{array}\right\}$

Yet another example

- $P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d\end{array}\right\}$

Yet another example

- $P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d\end{array}\right\}$

- loop $(P)=\{\{c, d\},\{d, e\},\{c, d, e\}\}$

Loop formulas

Let P be a normal logic program

- For $L \subseteq \operatorname{atom}(P)$, define the external supports of L for P as

$$
E S_{P}(L)=\left\{r \in P \mid \operatorname{head}(r) \in L \text { and } \operatorname{body}(r)^{+} \cap L=\emptyset\right\}
$$

Loop formulas

Let P be a normal logic program

- For $L \subseteq \operatorname{atom}(P)$, define the external supports of L for P as

$$
E S_{P}(L)=\left\{r \in P \mid \operatorname{head}(r) \in L \text { and } \operatorname{body}(r)^{+} \cap L=\emptyset\right\}
$$

- Define the external bodies of L in P as $E B_{P}(L)=\operatorname{body}\left(E S_{P}(L)\right)$

Loop formulas

Let P be a normal logic program

- For $L \subseteq \operatorname{atom}(P)$, define the external supports of L for P as

$$
E S_{P}(L)=\left\{r \in P \mid \operatorname{head}(r) \in L \text { and } \operatorname{body}(r)^{+} \cap L=\emptyset\right\}
$$

- Define the external bodies of L in P as $E B_{P}(L)=\operatorname{body}\left(E S_{P}(L)\right)$
- The (disjunctive) loop formula of L for P is

$$
\begin{aligned}
L F_{P}(L) & =\left(\bigvee_{a \in L} a\right) \rightarrow\left(\bigvee_{B \in E B_{p}(L)} B F(B)\right) \\
& \equiv\left(\bigwedge_{B \in E B B_{p}(L)} \neg B F(B)\right) \rightarrow\left(\bigwedge_{a \in L} \neg a\right)
\end{aligned}
$$

Loop formulas

Let P be a normal logic program

- For $L \subseteq \operatorname{atom}(P)$, define the external supports of L for P as

$$
E S_{P}(L)=\left\{r \in P \mid \operatorname{head}(r) \in L \text { and } \operatorname{body}(r)^{+} \cap L=\emptyset\right\}
$$

- Define the external bodies of L in P as $E B_{P}(L)=\operatorname{body}\left(E S_{P}(L)\right)$
- The (disjunctive) loop formula of L for P is

$$
\begin{aligned}
L F_{P}(L) & =\left(\bigvee_{a \in L} a\right) \rightarrow\left(\bigvee_{B \in E B_{p}(L)} B F(B)\right) \\
& \equiv\left(\bigwedge_{B \in E B_{P}(L)} \neg B F(B)\right) \rightarrow\left(\bigwedge_{a \in L} \neg a\right)
\end{aligned}
$$

- Note: The loop formula of L enforces all atoms in L to be false whenever L is not externally supported
- Define $L F(P)=\left\{L_{P}(L) \mid L \in \operatorname{loop}(P)\right\}$

Example

- $P=\left\{\begin{array}{lll}a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e\end{array}\right\}$

- $\operatorname{loop}(P)=\{\{e\}\}$

Example

- $P=\left\{\begin{array}{lll}a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e\end{array}\right\}$

- $\operatorname{loop}(P)=\{\{e\}\}$
- $L F(P)=\{e \rightarrow b \wedge \neg f\}$

Another example

- $P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c & \end{array}\right.$

- $\operatorname{loop}(P)=\{\{c, d\}\}$

Another example

- $P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c & \end{array}\right.$

- loop $(P)=\{\{c, d\}\}$
- $L F(P)=\{c \vee d \rightarrow(a \wedge b) \vee a\}$

Yet another example

- $P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d\end{array}\right\}$

- loop $(P)=\{\{c, d\},\{d, e\},\{c, d, e\}\}$

Yet another example

$\bullet P=\left\{\begin{array}{lll}a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c \\ e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e\end{array} e\right.$

- $\operatorname{loop}(P)=\{\{c, d\},\{d, e\},\{c, d, e\}\}$
- LF $(P)=\left\{\begin{array}{l}c \vee d \rightarrow a \vee e \\ d \vee e \rightarrow(b \wedge c) \vee(b \wedge \neg a) \\ c \vee d \vee e \rightarrow a \vee(b \wedge \neg a)\end{array}\right\}$

Yet another example

- $P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d\end{array}\right\}$

- loop $(P)=\{\{c, d\},\{d, e\},\{c, d, e\}\}$
- $L F(P)=\left\{\begin{array}{l}c \vee d \rightarrow a \vee e \\ d \vee e \rightarrow(b \wedge c) \vee(b \wedge \neg a) \\ c \vee d \vee e \rightarrow a \vee(b \wedge \neg a)\end{array}\right\}$

Yet another example

$\bullet P=\left\{\begin{array}{lll}a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c \\ e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e\end{array} e\right.$

- loop $(P)=\{\{c, d\},\{d, e\},\{c, d, e\}\}$
- LF $(P)=\left\{\begin{array}{l}c \vee d \rightarrow a \vee e \\ d \vee e \rightarrow(b \wedge c) \vee(b \wedge \neg a) \\ c \vee d \vee e \rightarrow a \vee(b \wedge \neg a)\end{array}\right\}$

Yet another example

$\bullet P=\left\{\begin{array}{lll}a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c \\ e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e\end{array} e\right.$

- $\operatorname{loop}(P)=\{\{c, d\},\{d, e\},\{c, d, e\}\}$
- LF $(P)=\left\{\begin{array}{l}c \vee d \rightarrow a \vee e \\ d \vee e \rightarrow(b \wedge c) \vee(b \wedge \neg a) \\ c \vee d \vee e \rightarrow a \vee(b \wedge \neg a)\end{array}\right\}$

Lin-Zhao Theorem

The following result is due to Fangzhen Lin and Yuting Zhao [2004], who used it to implement ASP using SAT solvers:

Theorem

Let P be a normal logic program and $X \subseteq \operatorname{atom}(P)$
Then, X is a stable model of P iff $X \models C F(P) \cup L F(P)$

Note: There can be exponentially many loops in the worst case, so the reduction may incur a substantial blow-up. However, practical problems often include only a rather small number of loops.

Summary

Answer Set Programming is non-monotonic logic programming with a stable-model semantics

Main reasoning task: computing (all, zero or more) stable models (a.k.a. answer sets)

Reduction to SAT is possible by

- Clark completion (supported models) +
- Loop formulae (answer sets)

