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° ASP in a Nutshell
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in a Nutshell

® ASP is an approach to declarative problem solving, combining
— arich yet simple modeling language
— with high-performance solving capacities
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Answer Set Programming
in a Nutshell

® ASP is an approach to declarative problem solving, combining
— arich yet simple modeling language
— with high-performance solving capacities

® ASP has its roots in

— (deductive) databases

— logic programming (with negation)

— (logic-based) knowledge representation and (nonmonotonic) reasoning
— constraint solving (in particular, SATisfiability testing)
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® ASP is an approach to declarative problem solving, combining
— arich yet simple modeling language
— with high-performance solving capacities

® ASP has its roots in

— (deductive) databases

— logic programming (with negation)

— (logic-based) knowledge representation and (nonmonotonic) reasoning
— constraint solving (in particular, SATisfiability testing)

® ASP allows for solving all search problems in NP (and NPNP)
in a uniform way
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Answer Set Programming
in a Nutshell

® ASP is an approach to declarative problem solving, combining
— arich yet simple modeling language
— with high-performance solving capacities

® ASP has its roots in

— (deductive) databases
— logic programming (with negation)
— (logic-based) knowledge representation and (nonmonotonic) reasoning
— constraint solving (in particular, SATisfiability testing)
® ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

® ASP is supported by several fast solvers, such as clasp, DLV, and smodels
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Normal logic programs

® A logic program, P, over a set .A of atoms is a finite set of rules
® A (normal) rule, r, is of the form

ap £ Aly e oy Amy MApt1 s+ -+ ~An

where 0 <m <nandeacha; € Aisanatomfor0 <i<n
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Normal logic programs

® A logic program, P, over a set .A of atoms is a finite set of rules
® A (normal) rule, r, is of the form

ap £ Aly e oy Amy MApt1 s+ -+ ~An

where 0 <m <nandeacha; € Aisanatomfor0 <i<n

® Notation
head(r) = ag
body(r) = {ai,...,amy~apt1,-..,~an}
body(r)t = {ay,...,am}
body(r)” = A{amy1,---,an}
atom(P) = U,ep <{head(r)} U body(r)™ U body(r)7>
body(P) = {body(r) | r € P}
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Normal logic programs

® A logic program, P, over a set .A of atoms is a finite set of rules
® A (normal) rule, r, is of the form

ap £ Aly e oy Amy MApt1 s+ -+ ~An

where 0 <m <nandeacha; € Aisanatomfor0 <i<n

® Notation
head(r) = ag
body(r) = {ai,...,amy~apt1,-..,~an}
body(r)t = {ay,...,am}
body(r)” = A{amy1,---,an}
atom(P) = U,ep <{head(r)} U body(r)™ U body(r)7>
body(P) = {body(r) | r € P}

® A program P is positive if body(r)” = 0 forall r € P
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o Semantics

TU Dresden, 18 June 2018 Deduction Systems slide 13 of 97



TECHNISCHE
@ UNIVERSITAT
DRESDEN

Formal Definition
Stable models of positive programs
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Formal Definition
Stable models of positive programs

® A set of atoms X is closed under a positive program P iff
for any r € P, head(r) € X whenever body(r)" C X

— Then X (seen as an interpretation) corresponds to a model of P (seen as a propositional
logic formula)
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Formal Definition
Stable models of positive programs

® A set of atoms X is closed under a positive program P iff
for any r € P, head(r) € X whenever body(r)" C X

— Then X (seen as an interpretation) corresponds to a model of P (seen as a propositional
logic formula)

® The smallest set of atoms which is closed under a positive program P is denoted by Cn(P)
— Cn(P) corresponds to the C-smallest model of P
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Formal Definition
Stable models of positive programs

® A set of atoms X is closed under a positive program P iff
for any r € P, head(r) € X whenever body(r)" C X
— Then X (seen as an interpretation) corresponds to a model of P (seen as a propositional
logic formula)

® The smallest set of atoms which is closed under a positive program P is denoted by Cn(P)
— Cn(P) corresponds to the C-smallest model of P

® The set Cn(P) of atoms is the stable model of a positive program P
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Formal Definition
Stable models of normal programs

® The (Gelfond-Lifschitz) reduct PX of a program P relative to a set X of atoms is defined by

PX = {head(r) + body(r)™ | r € P and body(r)” N X = 0}
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Formal Definition
Stable models of normal programs

® The (Gelfond-Lifschitz) reduct PX of a program P relative to a set X of atoms is defined by
PX = {head(r) + body(r)™ | r € P and body(r)” N X = 0}

® A set X of atoms is a stable model of a program P, if Cn(PX) = X
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Formal Definition
Stable models of normal programs

® The (Gelfond-Lifschitz) reduct PX of a program P relative to a set X of atoms is defined by
PX = {head(r) + body(r)™ | r € P and body(r)” N X = 0}

® A set X of atoms is a stable model of a program P, if Cn(PX) = X

® Note: Cn(PY) is the C—smallest (classical) model of PX
® Note: Every atom in X is justified by an “applying rule from P”
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A closer look at P¥

® |n other words, given a set X of atoms from P,

PX is obtained from P by deleting
(1) each rule having ~a in its body with a € X
and then
(2) all negative atoms of the form ~a
in the bodies of the remaining rules
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A closer look at P¥

® |n other words, given a set X of atoms from P,

PX is obtained from P by deleting

(1) each rule having ~a in its body with a € X
and then

(2) all negative atoms of the form ~ua
in the bodies of the remaining rules

® Note: Only negative body literals are evaluated wrt X
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° Examples
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A first example

P={p<+p, g ~p}
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P={p<+p, g+ ~p}

Cn(PY)

{3

)
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{r;q}
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A first example

P={p<+p, g+ ~p}

X P Cn(PY)

{1 [ {q}
q <

{r } P 0

{ a} [ {q}
q <

{p.q} p 0
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A first example
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P={p<+p, g+ ~p}

X P Cn(PY)
{1 P p {ay X
q <
{r } p P 0
{ a} p <« p {q}
q <
{r;q} p P 0
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X P Cn(PY)
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q <
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P={p<+p, g+ ~p}

X PX Cn(PY)

{1 p p {ay X
q <

{r } p P 0 X

{ a} p <~ P lav v
q <

{r;q} p P 0
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P={p<+p, g+ ~p}

X PX Cn(PY)

{1 P p {ay X
q <

{r } p P 0 X

{ a} p <~ P lav v
q <

{r;q} p P 0 X
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A second example

P={p < ~q, q < ~p}
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A second example
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P={p < ~q, q < ~p}

X P Cn(PX)

{1} p {r;q}
q <

{r } p {r}

{ a} {q}
q <

{r,q} ]
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A second example

TU Dresden, 18 June 2018

P={p+ ~q, g+ ~p}

X PX Cn(PX)
{1} p {p.qa} X
q <
{3 p {r}
{ q} {q}
q <
{r.q} ]
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P={p+ ~q, g+ ~p}

X PX Cn(PX)
{1} p {p.qa} X
q <
{3 p {r} v
{ q} {q}
q <
{r,q} ]
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A second example

TU Dresden, 18 June 2018

P={p+ ~q, g+ ~p}

X PX Cn(PX)

{1} p {p.qa} X
q <

{3 p {r} v

{ q} et v
q <

{r,q} ]
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A second example

P={p < ~q, q < ~p}

X PX Cn(PX)

{1} p {p.qa} X
q <

{3 p {ry v

{ q} et v
q <

{r,q} ] X
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A third example

P={p < ~p}
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A third example

P={p < ~p}
X PX Cn(PY)
P {r}
P 0
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A third example

P={p+ ~p}
X PX Cn(PY)
P i} %
P 0
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A third example

P={p < ~p}
X PX Cn(PY)
P i} %
2 0 3
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Some properties

® A logic program may have zero, one, or multiple stable models!
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Some properties

® A logic program may have zero, one, or multiple stable models!

® |f X is a stable model of a logic program P,
then X is a model of P (seen as a propositional logic formula with negation instead of ~)

® |f X and Y are stable models of a normal program P,
thenX ¢ Y
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e Completion
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Motivation

® Question: Is there a propositional formula F(P) such that the models of F(P) correspond to the
stable models of P?
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Motivation

® Question: Is there a propositional formula F(P) such that the models of F(P) correspond to the
stable models of P?

® Observation: Although each atom is defined through a set of rules, each such rule provides only a
sufficient condition for its head atom
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Motivation

® Question: Is there a propositional formula F(P) such that the models of F(P) correspond to the
stable models of P?

® Observation: Although each atom is defined through a set of rules, each such rule provides only a
sufficient condition for its head atom

® |dea: The idea of program completion is to turn such implications into a definition by adding the
corresponding necessary counterpart
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Program completion
Let P be a normal logic program
® The (Clark) completion CF(P) of P is defined as follows

CF(P) = {a © V,eppuaa(r)—BF (body(1) | a € atom(P) }

where
BF(bOdy(r)) = /\aEbudy(r)+a A /\aGbady(r)_ Ta
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An example

a <+

b 4~ ~a
¢4 a,~d
d < ~c, e
e b,~f
e<—e
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An example

a <+

b+ ~a
¢4 a,~d
d < ~c, e
e+ b,~f
e+ e

TU Dresden, 18 June 2018

CF(P) =

Deduction Systems

a<+ T

b <> —a
c<ralN—d

d < —c N\ —e
e+ (bA—f)Ve
fe L
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A closer look

® CF(P) is logically equivalent to &(P) u C?(P), where

CF(P) = {a “ Vichop(a/BF(B) | a € amm(P)}
CF(P) = {a= Vichuyy (@ BF(B) | a € atom(P) }
bodyp(a) = {body(r)|r € P and head(r) = a}
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A closer look

® CF(P) is logically equivalent to H(P) u C?(P), where

CF(P) = {a “ Vichop(a/BF(B) | a € amm(P)}
C?(P) = {a — VBebadyP(a)BF(B) lae amm(P)}
bodyp(a) = {body(r)|r € P and head(r) = a}

° &(P) characterizes the classical models of P

(] EE(P) completes P by adding necessary conditions for all atoms
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A closer look

a <

b < ~a

¢ a,~d
d < ~oc,~e
e <+ b,~f
e e
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A closer look
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a <—

b < ~a
¢4 a,~d
d <+ ~c, ~e
e < b,~f
e+ e

a+ T

b <+ —a

calN—d
E‘(P)i d <+ —c N —e

e+ (bA—f)Ve

f+ L
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A closer look

a+ T

b <+ —a

c+alN—d
E‘(P)i d <+ —c N\ —e

e+ (bA—f)Ve

f+ L
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A closer look

a+ T a— T
b+ —a b — —a
caN—d c—alN—d
&(P)i d <+ —c N\ —e d — —c N\ —e 77‘(1))
e+ (bA=f)Ve e— (bA—f)Ve
[+ L f—1
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A closer look

a+ T a— T
b+ —a b — —a
caN—d c—alN—d
&(P) d <+ —c N\ —e d — —c N\ —e 77‘(1))
e+ (bA=f)Ve e— (bA—f)Ve
[+ L f—1
a< T
b+ —a
cral—d
CF(P) = d <> —c N\ —e
e<> (bA—f)Ve
fe L
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A closer look

a+ T a— T

b+ —a b — —a

caN—d c—alN—d

&(P)i d <+ —c N\ —e d — —c N\ —e 77‘(1))

e+ (bA=f)Ve e— (bA—f)Ve

[+ L f—1
a< T
b+ —a
cral—d p=

cr(py =4 SN = CF(P)UCE(P)

e+ (bAN—f)Ve
fe L
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Supported models

® Every stable model of P is a model of CF(P),
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Supported models

® Every stable model of P is a model of CF(P), but not vice versa
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Supported models

® Every stable model of P is a model of CF(P), but not vice versa

® Models of CF(P) are called the supported models of P
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Supported models

® Every stable model of P is a model of CF(P), but not vice versa

Models of CF(P) are called the supported models of P

In other words, every stable model of P is a supported model of P
By definition, every supported model of P is also a model of P
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An example

a < c<4—a,~d e b,~f
P =
b < ~a d + ~c,~e e+ e
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An example

a < c<4—a,~d e b,~f
P =
b < ~a d + ~c,~e e+ e

® P has 21 models, including {a,c}, {a,d}, but also {a,b,c,d,e,f}
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An example

a < c<4—a,~d e b,~f
P =
b < ~a d + ~c,~e e+ e

® P has 21 models, including {a,c}, {a,d}, but also {a,b,c,d,e,f}
® P has 3 supported models, namely {qa, c}, {a,d}, and {a,c,e}
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An example

a < c<4—a,~d e b,~f
P =
b < ~a d + ~c,~e e+ e

® P has 21 models, including {a,c}, {a,d}, but also {a,b,c,d,e,f}
® P has 3 supported models, namely {qa, c}, {a,d}, and {a,c,e}
® P has 2 stable models, namely {a,c} and {a,d}
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Outline

e Loops and Loop Formulas
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Motivation

® Question: Is there a propositional formula F(P) such that the models of F(P) correspond to the
stable models of P ?
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Motivation

® Question: Is there a propositional formula F(P) such that the models of F(P) correspond to the
stable models of P ?

® Observation: Starting from the completion of a program,

the problem boils down to eliminating the circular support of atoms holding in the supported
models of the program
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Motivation

® Question: Is there a propositional formula F(P) such that the models of F(P) correspond to the
stable models of P ?

® Observation: Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms holding in the supported
models of the program

® |dea: Add formulas prohibiting circular support of sets of atoms
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Motivation

® Question: Is there a propositional formula F(P) such that the models of F(P) correspond to the
stable models of P ?

® Observation: Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms holding in the supported
models of the program

® |dea: Add formulas prohibiting circular support of sets of atoms

® Note: Circular support between atoms « and b is possible,
if a has a path to » and b has a path to a
in the program’s positive atom dependency graph
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Loops

Let P be a normal logic program, and
let G(P) = (atom(P), E) be the positive atom dependency graph of P
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Loops

Let P be a normal logic program, and
let G(P) = (atom(P), E) be the positive atom dependency graph of P

® Aset() C L C atom(P)is aloop of P
if it induces a non-trivial strongly connected subgraph of G(P)
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Loops
Let P be a normal logic program, and
let G(P) = (atom(P), E) be the positive atom dependency graph of P

® Aset() C L C atom(P)is aloop of P
if it induces a non-trivial strongly connected subgraph of G(P)

That is, each pair of atoms in L is connected by a path of non-zero length in (L,EN (L x L))
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Loops

Let P be a normal logic program, and
let G(P) = (atom(P), E) be the positive atom dependency graph of P

® Aset() C L C atom(P)is aloop of P
if it induces a non-trivial strongly connected subgraph of G(P)

That is, each pair of atoms in L is connected by a path of non-zero length in (L,EN (L x L))

® \We denote the set of all loops of P by loop(P)
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Loops

Let P be a normal logic program, and
let G(P) = (atom(P), E) be the positive atom dependency graph of P

® Aset() C L C atom(P)is aloop of P
if it induces a non-trivial strongly connected subgraph of G(P)

That is, each pair of atoms in L is connected by a path of non-zero length in (L,EN (L x L))

® \We denote the set of all loops of P by loop(P)

® Note: A program P is tight iff loop(P) = 0
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Example
° a<— c4—a,~d e<—b,~f
P=
b+ ~a d + ~c,~e e+e

@O @

0080
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Example
° a<— c4—a,~d e<—b,~f
P=
b+ ~a d + ~c,~e e+e

@O @

0080

o loop(P) = {{e}}
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Another example

e p— a<n~b c<ab d<a e < ~a,~b
T b+r~a c<+d d <+ b,c
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Another example

e p— a<n~b c<ab d<a e < ~a,~b
Tl b+ r~a c+d d <+ b,c

® loop(P) = {{c,d}}
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Yet another example

o p— a<~b c<+a d<b,c e<b,~a
T | b<—m~a c<+byd d+e e+ c,d
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Yet another example

o p— a<~b c<+a d<b,c e<b,~a
T | b<—m~a c<+byd d+e e+ c,d
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Yet another example

o p— a<—nr~b c<a d<b,c e<b,~a
T | b<—m~a c<+byd d+e e+ c,d

)
octye

hd IOOP(P) = {{Cad}a {dae}a {Cada e}}
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Loop formulas

Let P be a normal logic program
® For L C atom(P), define the external supports of L for P as

ESp(L) = {r € P | head(r) € L and body(r)™ NL = 0}
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Loop formulas

Let P be a normal logic program
® For L C atom(P), define the external supports of L for P as

ESp(L) = {r € P | head(r) € L and body(r)™ NL = 0}

® Define the external bodies of L in P as EBp(L) = body(ESp(L))
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Loop formulas

Let P be a normal logic program
® For L C atom(P), define the external supports of L for P as

ESp(L) = {r € P | head(r) € L and body(r)™ NL = 0}

® Define the external bodies of L in P as EBp(L) = body(ESp(L))
® The (disjunctive) loop formula of L for P is

Lip(L) = (Veera) = (\/BEEBP(L)BF(B))
= (/\BEEBP(LPBF(B)) = (Auer™a)
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Loop formulas

Let P be a normal logic program
® For L C atom(P), define the external supports of L for P as

ESp(L) = {r € P | head(r) € L and body(r)™ NL = 0}

® Define the external bodies of L in P as EBp(L) = body(ESp(L))
® The (disjunctive) loop formula of L for P is

Lip(L) = (Veera) = (\/BEEBP(L)BF(B))
= (/\BEEBP(LPBF(B)) = (Auer™a)

® Note: The loop formula of L enforces all atoms in L to be false whenever L is not externally
supported

e Define LF(P) = {LFp(L) | L € loop(P)}
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Example
o p— a<— ¢4 a,~d e < b,~f
b < ~a d <+ ~c,r~e e+ e

02020

Gg@

o loop(P) = {{e}}

TU Dresden, 18 June 2018 Deduction Systems

slide 87 of 97



TECHNISCHE

UNIVERSITAT
DRESDEN
Example
o p— a<— ¢4 a,~d e < b,~f
b < ~a d <+ ~c,r~e e+ e

02020

Gg@

® loop(P) = {{e}}
® LF(P) = {e— bA—f}
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Another example

e p— a<n~b c<ab d<a e < r~a,~b
Tl b+r~a c+d d <+ b,c

o loop(P) = {{c,d}}
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Another example

e p— a<n~b c<ab d<a e < r~a,~b
Tl b+r~a c+d d <+ b,c

o loop(P) = {{c,d}}
® LF(P)={cVd— (anb)Va}
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Yet another example

o p— a<n~b c<a d< b,c e< b,~a
T | b+m~a c<+b,d d<+oe e+ c,d

® Joop(P) = {{c,d},{d,e},{c,d,e}}
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Yet another example

o p— a<n~b c<a d< b,c e< b,~a
T | b+m~a c<+b,d d<+oe e+ c,d

® Joop(P) = {{c,d},{d,e},{c,d,e}}

cVd—aVe
® [F(P)=< dVe—(bAc)V (bA—a)
cVdVe—aV(bA—a)
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Yet another example

o p— a<n~b c<a d< b,c e< b,~a
T | b+m~a c<+b,d d<+oe e+ c,d

® Joop(P) = {{c,d},{d,e},{c,d,e}}

cVd—aVe
® [F(P)=< dVe—(bAc)V (bA—a)
cVdVe—aV(bA—a)
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Yet another example

o p— a<n~b c<a d< b,c e< b,~a
T | b+m~a c<+b,d d<+oe e+ c,d

® Joop(P) = {{c,d},{d,e},{c,d,e}}

cVd—aVe
® [F(P)=< dVe—(bANc)V(bA—a)
cVdVe—aV(bA—a)
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Yet another example

o p— a<n~b c<a d< b,c e< b,~a
T | b+m~a c<+b,d d<+oe e+ c,d

® Joop(P) = {{c,d},{d,e},{c,d,e}}

cVd—aVe
® [F(P)=< dVe—(bAc)V (bA—a)
cVdVe—aV(bA—a)
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Lin-Zhao Theorem

The following result is due to Fangzhen Lin and Yuting Zhao [2004], who used it to implement ASP using
SAT solvers:

Let P be a normal logic program and X C atom(P)
Then, X is a stable model of P iff X = CF(P) U LF(P)

Note: There can be exponentially many loops in the worst case, so the reduction may incur a substantial
blow-up. However, practical problems often include only a rather small number of loops.
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Summary

Answer Set Programming is non-monotonic logic programming with a stable-model semantics
Main reasoning task: computing (all, zero or more) stable models (a.k.a. answer sets)

Reduction to SAT is possible by
® Clark completion (supported models) +
® | oop formulae (answer sets)
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