TECHNISCHE
@ UNIVERSITAT
DRESDEN

DEDUCTION SYSTEMS

Answer Set Programming: Basics
Markus Krotzsch
Chair for Knowledge-Based Systems

Slides by Sebastian Rudolph, and based on a lecture by Martin Gebser and Torsten Schaub (CC-By 3.0)

TU Dresden, 18 June 2018

https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch

TECHNISCHE
@ UNIVERSITAT
DRESDEN

ASP Basics: Overview

ASP in a Nutshell

ASP Syntax

Semantics

Examples

Completion

Loops and Loop Formulas

TU Dresden, 18 June 2018 Deduction Systems slide 2 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Outline

° ASP in a Nutshell

TU Dresden, 18 June 2018 Deduction Systems slide 3 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Answer Set Programming
in a Nutshell

TU Dresden, 18 June 2018 Deduction Systems slide 4 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Answer Set Programming
in a Nutshell

® ASP is an approach to declarative problem solving, combining
— arich yet simple modeling language
— with high-performance solving capacities

TU Dresden, 18 June 2018 Deduction Systems slide 5 of 97

TECHNISCHE
UNIVERSITAT
DRESDEN

Answer Set Programming
in a Nutshell

® ASP is an approach to declarative problem solving, combining
— arich yet simple modeling language
— with high-performance solving capacities

® ASP has its roots in

— (deductive) databases

— logic programming (with negation)

— (logic-based) knowledge representation and (nonmonotonic) reasoning
— constraint solving (in particular, SATisfiability testing)

TU Dresden, 18 June 2018 Deduction Systems

slide 6 of 97

TECHNISCHE
UNIVERSITAT
DRESDEN

Answer Set Programming
in a Nutshell

® ASP is an approach to declarative problem solving, combining
— arich yet simple modeling language
— with high-performance solving capacities

® ASP has its roots in

— (deductive) databases

— logic programming (with negation)

— (logic-based) knowledge representation and (nonmonotonic) reasoning
— constraint solving (in particular, SATisfiability testing)

® ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

TU Dresden, 18 June 2018 Deduction Systems

slide 7 of 97

TECHNISCHE
UNIVERSITAT
DRESDEN

Answer Set Programming
in a Nutshell

® ASP is an approach to declarative problem solving, combining
— arich yet simple modeling language
— with high-performance solving capacities

® ASP has its roots in

— (deductive) databases
— logic programming (with negation)
— (logic-based) knowledge representation and (nonmonotonic) reasoning
— constraint solving (in particular, SATisfiability testing)
® ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

® ASP is supported by several fast solvers, such as clasp, DLV, and smodels

TU Dresden, 18 June 2018 Deduction Systems

slide 8 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Outline

e ASP Syntax

TU Dresden, 18 June 2018 Deduction Systems slide 9 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Normal logic programs

® A logic program, P, over a set .A of atoms is a finite set of rules
® A (normal) rule, r, is of the form

ap £ Aly e oy Amy MApt1 s+ -+ ~An

where 0 <m <nandeacha; € Aisanatomfor0 <i<n

TU Dresden, 18 June 2018 Deduction Systems slide 10 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Normal logic programs

® A logic program, P, over a set .A of atoms is a finite set of rules
® A (normal) rule, r, is of the form

ap £ Aly e oy Amy MApt1 s+ -+ ~An

where 0 <m <nandeacha; € Aisanatomfor0 <i<n

® Notation
head(r) = ag
body(r) = {ai,...,amy~apt1,-..,~an}
body(r)t = {ay,...,am}
body(r)” = A{amy1,---,an}
atom(P) = U,ep <{head(r)} U body(r)™ U body(r)7>
body(P) = {body(r) | r € P}

TU Dresden, 18 June 2018 Deduction Systems slide 11 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Normal logic programs

® A logic program, P, over a set .A of atoms is a finite set of rules
® A (normal) rule, r, is of the form

ap £ Aly e oy Amy MApt1 s+ -+ ~An

where 0 <m <nandeacha; € Aisanatomfor0 <i<n

® Notation
head(r) = ag
body(r) = {ai,...,amy~apt1,-..,~an}
body(r)t = {ay,...,am}
body(r)” = A{amy1,---,an}
atom(P) = U,ep <{head(r)} U body(r)™ U body(r)7>
body(P) = {body(r) | r € P}

® A program P is positive if body(r)” = 0 forall r € P

TU Dresden, 18 June 2018 Deduction Systems slide 12 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Outline

o Semantics

TU Dresden, 18 June 2018 Deduction Systems slide 13 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Formal Definition
Stable models of positive programs

TU Dresden, 18 June 2018 Deduction Systems slide 14 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Formal Definition
Stable models of positive programs

® A set of atoms X is closed under a positive program P iff
for any r € P, head(r) € X whenever body(r)" C X

— Then X (seen as an interpretation) corresponds to a model of P (seen as a propositional
logic formula)

TU Dresden, 18 June 2018 Deduction Systems slide 15 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Formal Definition
Stable models of positive programs

® A set of atoms X is closed under a positive program P iff
for any r € P, head(r) € X whenever body(r)" C X

— Then X (seen as an interpretation) corresponds to a model of P (seen as a propositional
logic formula)

® The smallest set of atoms which is closed under a positive program P is denoted by Cn(P)
— Cn(P) corresponds to the C-smallest model of P

TU Dresden, 18 June 2018 Deduction Systems slide 16 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Formal Definition
Stable models of positive programs

® A set of atoms X is closed under a positive program P iff
for any r € P, head(r) € X whenever body(r)" C X
— Then X (seen as an interpretation) corresponds to a model of P (seen as a propositional
logic formula)

® The smallest set of atoms which is closed under a positive program P is denoted by Cn(P)
— Cn(P) corresponds to the C-smallest model of P

® The set Cn(P) of atoms is the stable model of a positive program P

TU Dresden, 18 June 2018 Deduction Systems slide 17 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Formal Definition
Stable models of normal programs

® The (Gelfond-Lifschitz) reduct PX of a program P relative to a set X of atoms is defined by

PX = {head(r) + body(r)™ | r € P and body(r)” N X = 0}

TU Dresden, 18 June 2018 Deduction Systems slide 18 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Formal Definition
Stable models of normal programs

® The (Gelfond-Lifschitz) reduct PX of a program P relative to a set X of atoms is defined by
PX = {head(r) + body(r)™ | r € P and body(r)” N X = 0}

® A set X of atoms is a stable model of a program P, if Cn(PX) = X

TU Dresden, 18 June 2018 Deduction Systems slide 19 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Formal Definition
Stable models of normal programs

® The (Gelfond-Lifschitz) reduct PX of a program P relative to a set X of atoms is defined by
PX = {head(r) + body(r)™ | r € P and body(r)” N X = 0}

® A set X of atoms is a stable model of a program P, if Cn(PX) = X

® Note: Cn(PY) is the C—smallest (classical) model of PX
® Note: Every atom in X is justified by an “applying rule from P”

TU Dresden, 18 June 2018 Deduction Systems slide 20 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

A closer look at P¥

® |n other words, given a set X of atoms from P,

PX is obtained from P by deleting
(1) each rule having ~a in its body with a € X
and then
(2) all negative atoms of the form ~a
in the bodies of the remaining rules

TU Dresden, 18 June 2018 Deduction Systems slide 21 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

A closer look at P¥

® |n other words, given a set X of atoms from P,

PX is obtained from P by deleting

(1) each rule having ~a in its body with a € X
and then

(2) all negative atoms of the form ~ua
in the bodies of the remaining rules

® Note: Only negative body literals are evaluated wrt X

TU Dresden, 18 June 2018 Deduction Systems slide 22 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Outline

° Examples

TU Dresden, 18 June 2018 Deduction Systems slide 23 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

A first example

P={p<+p, g ~p}

TU Dresden, 18 June 2018 Deduction Systems slide 24 of 97

TECHNISCHE
UNIVERSITAT
DRESDEN

A first example

TU Dresden, 18 June 2018

P={p<+p, g+ ~p}

Cn(PY)

{3

)

{ 4}

{r;q}

Deduction Systems

slide 25 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

A first example

P={p<+p, g+ ~p}

X P Cn(PY)

{1 [{q}
q <

{r } P 0

{ a} [{q}
q <

{p.q} p 0

TU Dresden, 18 June 2018

Deduction Systems

slide 26 of 97

TECHNISCHE
UNIVERSITAT
DRESDEN

A first example

TU Dresden, 18 June 2018

P={p<+p, g+ ~p}

X P Cn(PY)
{1 P p {ay X
q <
{r } p P 0
{ a} p <« p {q}
q <
{r;q} p P 0

Deduction Systems

slide 27 of 97

TECHNISCHE
UNIVERSITAT
DRESDEN

A first example

TU Dresden, 18 June 2018

P={p<+p, g+ ~p}

X P Cn(PY)
{1 P p {ay X
q <
{r } p P 0 X
{ a} p <« p {q}
q <
{r;q} p P 0

Deduction Systems

slide 28 of 97

TECHNISCHE
UNIVERSITAT
DRESDEN

A first example

TU Dresden, 18 June 2018

P={p<+p, g+ ~p}

X PX Cn(PY)

{1 p p {ay X
q <

{r } p P 0 X

{ a} p <~ P lav v
q <

{r;q} p P 0

Deduction Systems

slide 29 of 97

TECHNISCHE
UNIVERSITAT
DRESDEN

A first example

TU Dresden, 18 June 2018

P={p<+p, g+ ~p}

X PX Cn(PY)

{1 P p {ay X
q <

{r } p P 0 X

{ a} p <~ P lav v
q <

{r;q} p P 0 X

Deduction Systems

slide 30 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

A second example

P={p < ~q, q < ~p}

TU Dresden, 18 June 2018 Deduction Systems slide 31 of 97

TECHNISCHE
UNIVERSITAT
DRESDEN

A second example

TU Dresden, 18 June 2018

P={p < ~q, q < ~p}

X P Cn(PX)

{1} p {r;q}
q <

{r } p {r}

{ a} {q}
q <

{r,q}]

Deduction Systems

slide 32 of 97

TECHNISCHE
UNIVERSITAT
DRESDEN

A second example

TU Dresden, 18 June 2018

P={p+ ~q, g+ ~p}

X PX Cn(PX)
{1} p {p.qa} X
q <
{3 p {r}
{ q} {q}
q <
{r.q}]

Deduction Systems slide 33 of 97

TECHNISCHE
UNIVERSITAT
DRESDEN

A second example

TU Dresden, 18 June 2018

P={p+ ~q, g+ ~p}

X PX Cn(PX)
{1} p {p.qa} X
q <
{3 p {r} v
{ q} {q}
q <
{r,q}]

Deduction Systems slide 34 of 97

TECHNISCHE
UNIVERSITAT
DRESDEN

A second example

TU Dresden, 18 June 2018

P={p+ ~q, g+ ~p}

X PX Cn(PX)

{1} p {p.qa} X
q <

{3 p {r} v

{ q} et v
q <

{r,q}]

Deduction Systems slide 35 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

A second example

P={p < ~q, q < ~p}

X PX Cn(PX)

{1} p {p.qa} X
q <

{3 p {ry v

{ q} et v
q <

{r,q}] X

TU Dresden, 18 June 2018 Deduction Systems slide 36 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

A third example

P={p < ~p}

TU Dresden, 18 June 2018 Deduction Systems slide 37 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

A third example

P={p < ~p}
X PX Cn(PY)
P {r}
P 0

TU Dresden, 18 June 2018

Deduction Systems

slide 38 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

A third example

P={p+ ~p}
X PX Cn(PY)
P i} %
P 0

TU Dresden, 18 June 2018 Deduction Systems slide 39 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

A third example

P={p < ~p}
X PX Cn(PY)
P i} %
2 0 3

TU Dresden, 18 June 2018 Deduction Systems slide 40 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Some properties

® A logic program may have zero, one, or multiple stable models!

TU Dresden, 18 June 2018 Deduction Systems slide 41 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Some properties

® A logic program may have zero, one, or multiple stable models!

® |f X is a stable model of a logic program P,
then X is a model of P (seen as a propositional logic formula with negation instead of ~)

® |f X and Y are stable models of a normal program P,
thenX ¢ Y

TU Dresden, 18 June 2018 Deduction Systems slide 42 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Outline

e Completion

TU Dresden, 18 June 2018 Deduction Systems slide 43 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Motivation

® Question: Is there a propositional formula F(P) such that the models of F(P) correspond to the
stable models of P?

TU Dresden, 18 June 2018 Deduction Systems slide 44 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Motivation

® Question: Is there a propositional formula F(P) such that the models of F(P) correspond to the
stable models of P?

® Observation: Although each atom is defined through a set of rules, each such rule provides only a
sufficient condition for its head atom

TU Dresden, 18 June 2018 Deduction Systems slide 45 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Motivation

® Question: Is there a propositional formula F(P) such that the models of F(P) correspond to the
stable models of P?

® Observation: Although each atom is defined through a set of rules, each such rule provides only a
sufficient condition for its head atom

® |dea: The idea of program completion is to turn such implications into a definition by adding the
corresponding necessary counterpart

TU Dresden, 18 June 2018 Deduction Systems slide 46 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Program completion
Let P be a normal logic program
® The (Clark) completion CF(P) of P is defined as follows

CF(P) = {a © V,eppuaa(r)—BF (body(1) | a € atom(P) }

where
BF(bOdy(r)) = /\aEbudy(r)+a A /\aGbady(r)_ Ta

TU Dresden, 18 June 2018 Deduction Systems slide 47 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

An example

a <+

b 4~ ~a
¢4 a,~d
d < ~c, e
e b,~f
e<—e

TU Dresden, 18 June 2018 Deduction Systems

slide 48 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

An example

a <+

b+ ~a
¢4 a,~d
d < ~c, e
e+ b,~f
e+ e

TU Dresden, 18 June 2018

CF(P) =

Deduction Systems

a<+ T

b <> —a
c<ralN—d

d < —c N\ —e
e+ (bA—f)Ve
fe L

slide 49 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

A closer look

® CF(P) is logically equivalent to &(P) u C?(P), where

CF(P) = {a “ Vichop(a/BF(B) | a € amm(P)}
CF(P) = {a= Vichuyy (@ BF(B) | a € atom(P) }
bodyp(a) = {body(r)|r € P and head(r) = a}

TU Dresden, 18 June 2018 Deduction Systems slide 50 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

A closer look

® CF(P) is logically equivalent to H(P) u C?(P), where

CF(P) = {a “ Vichop(a/BF(B) | a € amm(P)}
C?(P) = {a — VBebadyP(a)BF(B) lae amm(P)}
bodyp(a) = {body(r)|r € P and head(r) = a}

° &(P) characterizes the classical models of P

(] EE(P) completes P by adding necessary conditions for all atoms

TU Dresden, 18 June 2018 Deduction Systems slide 51 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

A closer look

a <

b < ~a

¢ a,~d
d < ~oc,~e
e <+ b,~f
e e

TU Dresden, 18 June 2018 Deduction Systems slide 52 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

A closer look

TU Dresden, 18 June 2018

a <—

b < ~a
¢4 a,~d
d <+ ~c, ~e
e < b,~f
e+ e

a+ T

b <+ —a

calN—d
E‘(P)i d <+ —c N —e

e+ (bA—f)Ve

f+ L

Deduction Systems slide 53 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

A closer look

a+ T

b <+ —a

c+alN—d
E‘(P)i d <+ —c N\ —e

e+ (bA—f)Ve

f+ L

TU Dresden, 18 June 2018 Deduction Systems slide 54 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

A closer look

a+ T a— T
b+ —a b — —a
caN—d c—alN—d
&(P)i d <+ —c N\ —e d — —c N\ —e 77‘(1))
e+ (bA=f)Ve e— (bA—f)Ve
[+ L f—1

TU Dresden, 18 June 2018 Deduction Systems slide 55 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

A closer look

a+ T a— T
b+ —a b — —a
caN—d c—alN—d
&(P) d <+ —c N\ —e d — —c N\ —e 77‘(1))
e+ (bA=f)Ve e— (bA—f)Ve
[+ L f—1
a< T
b+ —a
cral—d
CF(P) = d <> —c N\ —e
e<> (bA—f)Ve
fe L

TU Dresden, 18 June 2018 Deduction Systems slide 56 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

A closer look

a+ T a— T

b+ —a b — —a

caN—d c—alN—d

&(P)i d <+ —c N\ —e d — —c N\ —e 77‘(1))

e+ (bA=f)Ve e— (bA—f)Ve

[+ L f—1
a< T
b+ —a
cral—d p=

cr(py =4 SN = CF(P)UCE(P)

e+ (bAN—f)Ve
fe L

TU Dresden, 18 June 2018 Deduction Systems slide 57 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Supported models

® Every stable model of P is a model of CF(P),

TU Dresden, 18 June 2018 Deduction Systems slide 58 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Supported models

® Every stable model of P is a model of CF(P), but not vice versa

TU Dresden, 18 June 2018 Deduction Systems slide 59 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Supported models

® Every stable model of P is a model of CF(P), but not vice versa

® Models of CF(P) are called the supported models of P

TU Dresden, 18 June 2018 Deduction Systems slide 60 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Supported models

® Every stable model of P is a model of CF(P), but not vice versa

Models of CF(P) are called the supported models of P

In other words, every stable model of P is a supported model of P
By definition, every supported model of P is also a model of P

TU Dresden, 18 June 2018 Deduction Systems slide 61 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

An example

a < c<4—a,~d e b,~f
P =
b < ~a d + ~c,~e e+ e

TU Dresden, 18 June 2018 Deduction Systems slide 62 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

An example

a < c<4—a,~d e b,~f
P =
b < ~a d + ~c,~e e+ e

® P has 21 models, including {a,c}, {a,d}, but also {a,b,c,d,e,f}

TU Dresden, 18 June 2018 Deduction Systems slide 63 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

An example

a < c<4—a,~d e b,~f
P =
b < ~a d + ~c,~e e+ e

® P has 21 models, including {a,c}, {a,d}, but also {a,b,c,d,e,f}
® P has 3 supported models, namely {qa, c}, {a,d}, and {a,c,e}

TU Dresden, 18 June 2018 Deduction Systems slide 64 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

An example

a < c<4—a,~d e b,~f
P =
b < ~a d + ~c,~e e+ e

® P has 21 models, including {a,c}, {a,d}, but also {a,b,c,d,e,f}
® P has 3 supported models, namely {qa, c}, {a,d}, and {a,c,e}
® P has 2 stable models, namely {a,c} and {a,d}

TU Dresden, 18 June 2018 Deduction Systems slide 65 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Outline

e Loops and Loop Formulas

TU Dresden, 18 June 2018 Deduction Systems slide 66 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Motivation

® Question: Is there a propositional formula F(P) such that the models of F(P) correspond to the
stable models of P ?

TU Dresden, 18 June 2018 Deduction Systems slide 67 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Motivation

® Question: Is there a propositional formula F(P) such that the models of F(P) correspond to the
stable models of P ?

® Observation: Starting from the completion of a program,

the problem boils down to eliminating the circular support of atoms holding in the supported
models of the program

TU Dresden, 18 June 2018 Deduction Systems slide 68 of 97

TECHNISCHE
UNIVERSITAT
DRESDEN

Motivation

® Question: Is there a propositional formula F(P) such that the models of F(P) correspond to the
stable models of P ?

® Observation: Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms holding in the supported
models of the program

® |dea: Add formulas prohibiting circular support of sets of atoms

TU Dresden, 18 June 2018 Deduction Systems slide 69 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Motivation

® Question: Is there a propositional formula F(P) such that the models of F(P) correspond to the
stable models of P ?

® Observation: Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms holding in the supported
models of the program

® |dea: Add formulas prohibiting circular support of sets of atoms

® Note: Circular support between atoms « and b is possible,
if a has a path to » and b has a path to a
in the program’s positive atom dependency graph

TU Dresden, 18 June 2018 Deduction Systems slide 70 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Loops

Let P be a normal logic program, and
let G(P) = (atom(P), E) be the positive atom dependency graph of P

TU Dresden, 18 June 2018 Deduction Systems slide 71 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Loops

Let P be a normal logic program, and
let G(P) = (atom(P), E) be the positive atom dependency graph of P

® Aset() C L C atom(P)is aloop of P
if it induces a non-trivial strongly connected subgraph of G(P)

TU Dresden, 18 June 2018 Deduction Systems slide 72 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Loops
Let P be a normal logic program, and
let G(P) = (atom(P), E) be the positive atom dependency graph of P

® Aset() C L C atom(P)is aloop of P
if it induces a non-trivial strongly connected subgraph of G(P)

That is, each pair of atoms in L is connected by a path of non-zero length in (L,EN (L x L))

TU Dresden, 18 June 2018 Deduction Systems slide 73 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Loops

Let P be a normal logic program, and
let G(P) = (atom(P), E) be the positive atom dependency graph of P

® Aset() C L C atom(P)is aloop of P
if it induces a non-trivial strongly connected subgraph of G(P)

That is, each pair of atoms in L is connected by a path of non-zero length in (L,EN (L x L))

® \We denote the set of all loops of P by loop(P)

TU Dresden, 18 June 2018 Deduction Systems slide 74 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Loops

Let P be a normal logic program, and
let G(P) = (atom(P), E) be the positive atom dependency graph of P

® Aset() C L C atom(P)is aloop of P
if it induces a non-trivial strongly connected subgraph of G(P)

That is, each pair of atoms in L is connected by a path of non-zero length in (L,EN (L x L))

® \We denote the set of all loops of P by loop(P)

® Note: A program P is tight iff loop(P) = 0

TU Dresden, 18 June 2018 Deduction Systems slide 75 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Example
° a<— c4—a,~d e<—b,~f
P=
b+ ~a d + ~c,~e e+e

@O @

0080

TU Dresden, 18 June 2018 Deduction Systems slide 76 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Example
° a<— c4—a,~d e<—b,~f
P=
b+ ~a d + ~c,~e e+e

@O @

0080

o loop(P) = {{e}}

TU Dresden, 18 June 2018 Deduction Systems slide 77 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Another example

e p— a<n~b c<ab d<a e < ~a,~b
T b+r~a c<+d d <+ b,c

TU Dresden, 18 June 2018 Deduction Systems slide 78 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Another example

e p— a<n~b c<ab d<a e < ~a,~b
Tl b+ r~a c+d d <+ b,c

® loop(P) = {{c,d}}

TU Dresden, 18 June 2018 Deduction Systems slide 79 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Yet another example

o p— a<~b c<+a d<b,c e<b,~a
T | b<—m~a c<+byd d+e e+ c,d

TU Dresden, 18 June 2018 Deduction Systems

slide 80 of 97

TECHNISCHE
UNIVERSITAT
DRESDEN

Yet another example

o p— a<~b c<+a d<b,c e<b,~a
T | b<—m~a c<+byd d+e e+ c,d

TU Dresden, 18 June 2018 Deduction Systems

slide 81 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Yet another example

o p— a<—nr~b c<a d<b,c e<b,~a
T | b<—m~a c<+byd d+e e+ c,d

)
octye

hd IOOP(P) = {{Cad}a {dae}a {Cada e}}

TU Dresden, 18 June 2018 Deduction Systems slide 82 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Loop formulas

Let P be a normal logic program
® For L C atom(P), define the external supports of L for P as

ESp(L) = {r € P | head(r) € L and body(r)™ NL = 0}

TU Dresden, 18 June 2018 Deduction Systems slide 83 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Loop formulas

Let P be a normal logic program
® For L C atom(P), define the external supports of L for P as

ESp(L) = {r € P | head(r) € L and body(r)™ NL = 0}

® Define the external bodies of L in P as EBp(L) = body(ESp(L))

TU Dresden, 18 June 2018 Deduction Systems slide 84 of 97

TECHNISCHE
UNIVERSITAT
DRESDEN

Loop formulas

Let P be a normal logic program
® For L C atom(P), define the external supports of L for P as

ESp(L) = {r € P | head(r) € L and body(r)™ NL = 0}

® Define the external bodies of L in P as EBp(L) = body(ESp(L))
® The (disjunctive) loop formula of L for P is

Lip(L) = (Veera) = (\/BEEBP(L)BF(B))
= (/\BEEBP(LPBF(B)) = (Auer™a)

TU Dresden, 18 June 2018 Deduction Systems slide 85 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Loop formulas

Let P be a normal logic program
® For L C atom(P), define the external supports of L for P as

ESp(L) = {r € P | head(r) € L and body(r)™ NL = 0}

® Define the external bodies of L in P as EBp(L) = body(ESp(L))
® The (disjunctive) loop formula of L for P is

Lip(L) = (Veera) = (\/BEEBP(L)BF(B))
= (/\BEEBP(LPBF(B)) = (Auer™a)

® Note: The loop formula of L enforces all atoms in L to be false whenever L is not externally
supported

e Define LF(P) = {LFp(L) | L € loop(P)}

TU Dresden, 18 June 2018 Deduction Systems slide 86 of 97

TECHNISCHE

UNIVERSITAT
DRESDEN
Example
o p— a<— ¢4 a,~d e < b,~f
b < ~a d <+ ~c,r~e e+ e

02020

Gg@

o loop(P) = {{e}}

TU Dresden, 18 June 2018 Deduction Systems

slide 87 of 97

TECHNISCHE

UNIVERSITAT
DRESDEN
Example
o p— a<— ¢4 a,~d e < b,~f
b < ~a d <+ ~c,r~e e+ e

02020

Gg@

® loop(P) = {{e}}
® LF(P) = {e— bA—f}

TU Dresden, 18 June 2018 Deduction Systems

slide 88 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Another example

e p— a<n~b c<ab d<a e < r~a,~b
Tl b+r~a c+d d <+ b,c

o loop(P) = {{c,d}}

TU Dresden, 18 June 2018 Deduction Systems slide 89 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Another example

e p— a<n~b c<ab d<a e < r~a,~b
Tl b+r~a c+d d <+ b,c

o loop(P) = {{c,d}}
® LF(P)={cVd— (anb)Va}

TU Dresden, 18 June 2018 Deduction Systems slide 90 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Yet another example

o p— a<n~b c<a d< b,c e< b,~a
T | b+m~a c<+b,d d<+oe e+ c,d

® Joop(P) = {{c,d},{d,e},{c,d,e}}

TU Dresden, 18 June 2018 Deduction Systems slide 91 of 97

TECHNISCHE
UNIVERSITAT
DRESDEN

Yet another example

o p— a<n~b c<a d< b,c e< b,~a
T | b+m~a c<+b,d d<+oe e+ c,d

® Joop(P) = {{c,d},{d,e},{c,d,e}}

cVd—aVe
® [F(P)=< dVe—(bAc)V (bA—a)
cVdVe—aV(bA—a)

TU Dresden, 18 June 2018 Deduction Systems

slide 92 of 97

TECHNISCHE
UNIVERSITAT
DRESDEN

Yet another example

o p— a<n~b c<a d< b,c e< b,~a
T | b+m~a c<+b,d d<+oe e+ c,d

® Joop(P) = {{c,d},{d,e},{c,d,e}}

cVd—aVe
® [F(P)=< dVe—(bAc)V (bA—a)
cVdVe—aV(bA—a)

TU Dresden, 18 June 2018 Deduction Systems

slide 93 of 97

TECHNISCHE
UNIVERSITAT
DRESDEN

Yet another example

o p— a<n~b c<a d< b,c e< b,~a
T | b+m~a c<+b,d d<+oe e+ c,d

® Joop(P) = {{c,d},{d,e},{c,d,e}}

cVd—aVe
® [F(P)=< dVe—(bANc)V(bA—a)
cVdVe—aV(bA—a)

TU Dresden, 18 June 2018 Deduction Systems

slide 94 of 97

TECHNISCHE
UNIVERSITAT
DRESDEN

Yet another example

o p— a<n~b c<a d< b,c e< b,~a
T | b+m~a c<+b,d d<+oe e+ c,d

® Joop(P) = {{c,d},{d,e},{c,d,e}}

cVd—aVe
® [F(P)=< dVe—(bAc)V (bA—a)
cVdVe—aV(bA—a)

TU Dresden, 18 June 2018 Deduction Systems

slide 95 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Lin-Zhao Theorem

The following result is due to Fangzhen Lin and Yuting Zhao [2004], who used it to implement ASP using
SAT solvers:

Let P be a normal logic program and X C atom(P)
Then, X is a stable model of P iff X = CF(P) U LF(P)

Note: There can be exponentially many loops in the worst case, so the reduction may incur a substantial
blow-up. However, practical problems often include only a rather small number of loops.

TU Dresden, 18 June 2018 Deduction Systems slide 96 of 97

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Summary

Answer Set Programming is non-monotonic logic programming with a stable-model semantics
Main reasoning task: computing (all, zero or more) stable models (a.k.a. answer sets)

Reduction to SAT is possible by
® Clark completion (supported models) +
® | oop formulae (answer sets)

TU Dresden, 18 June 2018 Deduction Systems slide 97 of 97

	ASP Basics
	ASP in a Nutshell
	ASP Syntax
	Semantics
	Examples
	Completion
	Loops and Loop Formulas

