

DEDUCTION SYSTEMS

Answer Set Programming: Basics

Markus Krötzsch

Chair for Knowledge-Based Systems

Slides by Sebastian Rudolph, and based on a lecture by Martin Gebser and Torsten Schaub (CC-By 3.0)

TU Dresden, 18 June 2018

ASP Basics: Overview

2 ASP Syntax

Outline

- ASP is an approach to declarative problem solving, combining
 - a rich yet simple modeling language
 - with high-performance solving capacities

- ASP is an approach to declarative problem solving, combining
 - a rich yet simple modeling language
 - with high-performance solving capacities
- ASP has its roots in
 - (deductive) databases
 - logic programming (with negation)
 - (logic-based) knowledge representation and (nonmonotonic) reasoning
 - constraint solving (in particular, SATisfiability testing)

- ASP is an approach to declarative problem solving, combining
 - a rich yet simple modeling language
 - with high-performance solving capacities
- ASP has its roots in
 - (deductive) databases
 - logic programming (with negation)
 - (logic-based) knowledge representation and (nonmonotonic) reasoning
 - constraint solving (in particular, SATisfiability testing)
- ASP allows for solving all search problems in *NP* (and *NP^{NP}*) in a uniform way

- ASP is an approach to declarative problem solving, combining
 - a rich yet simple modeling language
 - with high-performance solving capacities
- ASP has its roots in
 - (deductive) databases
 - logic programming (with negation)
 - (logic-based) knowledge representation and (nonmonotonic) reasoning
 - constraint solving (in particular, SATisfiability testing)
- ASP allows for solving all search problems in *NP* (and *NP^{NP}*) in a uniform way
- ASP is supported by several fast solvers, such as clasp, DLV, and smodels

Outline

Normal logic programs

- A logic program, P, over a set A of atoms is a finite set of rules
- A (normal) rule, r, is of the form

 $a_0 \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n$

where $0 \le m \le n$ and each $a_i \in \mathcal{A}$ is an atom for $0 \le i \le n$

Normal logic programs

- A logic program, P, over a set A of atoms is a finite set of rules
- A (normal) rule, r, is of the form

 $a_0 \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n$

where $0 \le m \le n$ and each $a_i \in A$ is an atom for $0 \le i \le n$

Notation

$$head(r) = a_0$$

$$body(r) = \{a_1, \dots, a_m, \sim a_{m+1}, \dots, \sim a_n\}$$

$$body(r)^+ = \{a_1, \dots, a_m\}$$

$$body(r)^- = \{a_{m+1}, \dots, a_n\}$$

$$atom(P) = \bigcup_{r \in P} \left(\{head(r)\} \cup body(r)^+ \cup body(r)^-\right)$$

$$body(P) = \{body(r) \mid r \in P\}$$

Normal logic programs

- A logic program, P, over a set A of atoms is a finite set of rules
- A (normal) rule, r, is of the form

 $a_0 \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n$

where $0 \le m \le n$ and each $a_i \in A$ is an atom for $0 \le i \le n$

Notation

$$\begin{aligned} head(r) &= a_0\\ body(r) &= \{a_1, \dots, a_m, \sim a_{m+1}, \dots, \sim a_n\}\\ body(r)^+ &= \{a_1, \dots, a_m\}\\ body(r)^- &= \{a_{m+1}, \dots, a_n\}\\ atom(P) &= \bigcup_{r \in P} \left(\{head(r)\} \cup body(r)^+ \cup body(r)^-\right)\\ body(P) &= \{body(r) \mid r \in P\} \end{aligned}$$

• A program *P* is positive if $body(r)^- = \emptyset$ for all $r \in P$

TU Dresden, 18 June 2018

Outline

- A set of atoms X is closed under a positive program P iff for any r ∈ P, head(r) ∈ X whenever body(r)⁺ ⊆ X
 - Then *X* (seen as an interpretation) corresponds to a model of *P* (seen as a propositional logic formula)

- A set of atoms X is closed under a positive program P iff for any r ∈ P, head(r) ∈ X whenever body(r)⁺ ⊆ X
 - Then *X* (seen as an interpretation) corresponds to a model of *P* (seen as a propositional logic formula)
- The smallest set of atoms which is closed under a positive program *P* is denoted by *Cn*(*P*)
 - Cn(P) corresponds to the \subseteq -smallest model of P

- A set of atoms X is closed under a positive program P iff for any r ∈ P, head(r) ∈ X whenever body(r)⁺ ⊆ X
 - Then *X* (seen as an interpretation) corresponds to a model of *P* (seen as a propositional logic formula)
- The smallest set of atoms which is closed under a positive program *P* is denoted by *Cn*(*P*)
 - Cn(P) corresponds to the \subseteq -smallest model of P
- The set *Cn*(*P*) of atoms is the stable model of a positive program *P*

Formal Definition Stable models of normal programs

• The (Gelfond-Lifschitz) reduct *P*^{*X*} of a program *P* relative to a set *X* of atoms is defined by

 $P^{X} = \{head(r) \leftarrow body(r)^{+} \mid r \in P \text{ and } body(r)^{-} \cap X = \emptyset\}$

Formal Definition Stable models of normal programs

• The (Gelfond-Lifschitz) reduct *P*^{*X*} of a program *P* relative to a set *X* of atoms is defined by

 $P^{X} = \{head(r) \leftarrow body(r)^{+} \mid r \in P \text{ and } body(r)^{-} \cap X = \emptyset\}$

• A set *X* of atoms is a stable model of a program *P*, if $Cn(P^X) = X$

Formal Definition Stable models of normal programs

• The (Gelfond-Lifschitz) reduct *P*^{*X*} of a program *P* relative to a set *X* of atoms is defined by

 $P^{X} = \{head(r) \leftarrow body(r)^{+} \mid r \in P \text{ and } body(r)^{-} \cap X = \emptyset\}$

- A set X of atoms is a stable model of a program P, if $Cn(P^X) = X$
- Note: $Cn(P^X)$ is the \subseteq -smallest (classical) model of P^X
- Note: Every atom in *X* is justified by an "applying rule from *P*"

A closer look at P^X

• In other words, given a set *X* of atoms from *P*,

 P^X is obtained from P by deleting

- (1) each rule having $\sim a$ in its body with $a \in X$ and then
- (2) all negative atoms of the form $\sim a$ in the bodies of the remaining rules

A closer look at P^X

• In other words, given a set *X* of atoms from *P*,

 P^X is obtained from P by deleting

- (1) each rule having $\sim a$ in its body with $a \in X$ and then
- (2) all negative atoms of the form $\sim a$ in the bodies of the remaining rules
- Note: Only negative body literals are evaluated wrt X

Outline

X	P^X	$Cn(P^X)$
{ }	$p \leftarrow p$	$\{q\}$
	$q \leftarrow$	
$\{p\}$	$p \leftarrow p$	Ø
		(a)
{ <i>q</i> }	$p \leftarrow p$	{9}
	$q \leftarrow$	
$\{p,q\}$	$p \leftarrow p$	Ø

X	P^X	$Cn(P^X)$
{ }	$p \leftarrow p$	$\{q\}$ X
	$q \leftarrow$	đ
{ <i>p</i> }	$p \leftarrow p$	Ø
$\{q\}$	$p \leftarrow p$	$\{q\}$
	$q \leftarrow$	
$\{p,q\}$	$p \leftarrow p$	Ø

X	P^X	$Cn(P^X)$
{ }	$p \leftarrow p$	$\{q\}$ X
	$q \leftarrow$	<i>d</i>
$\{p\}$	$p \leftarrow p$	Ø 🗙
()		()
{ q}	$p \leftarrow p$	$\{q\}$
<u> </u>	$q \leftarrow$	0
$\{p,q\}$	$p \leftarrow p$	Ø

X	P^X	$Cn(P^X)$
{ }	$p \leftarrow p$	$\{q\}$ X
	$q \leftarrow$	
$\{p\}$	$p \leftarrow p$	Ø×
$\{q\}$	$p \leftarrow p$	$\{q\}$
	$q \leftarrow$	
$\{p,q\}$	$p \leftarrow p$	Ø

X	P^X	$Cn(P^X)$
{ }	$p \leftarrow p$	$\{q\}$ X
	$q \leftarrow$	
$\{p\}$	$p \leftarrow p$	Ø 🗙
()		
{ q}	$p \leftarrow p$	$\{q\}$
	$q \leftarrow$	<i>d</i>
$\{p,q\}$	$p \leftarrow p$	Ø 🗙

X	P^X	$Cn(P^X)$
{ }	$\begin{array}{cccc} p & \leftarrow & \\ q & \leftarrow & \end{array}$	$\{p,q\}$
{ <i>p</i> }	$p \leftarrow$	{p}
$\{q\}$	$q \leftarrow$	$\{q\}$
$\{p,q\}$		Ø

X	P^X	$Cn(P^X)$
{ }	$p \leftarrow$	$\{p,q\}$ X
	$q \leftarrow$	
$\{p\}$	$p \leftarrow$	$\{p\}$
$\{q\}$		$\{q\}$
	$q \leftarrow$	4
$\{p,q\}$		Ŵ

X	P^X	$Cn(P^X)$
{ }	$p \leftarrow$	$\{p,q\}$ X
<u> </u>	$q \leftarrow$	
{ <i>p</i> }	$p \leftarrow$	{ <i>p</i> }
$\{a\}$		<i>{a}</i>
(1)	$q \leftarrow$	(4)
$\{p,q\}$		Ø

X	P^X	$Cn(P^X)$
{ }	$p \leftarrow$	$\{p,q\}$ X
	$q \leftarrow$	
$\{p\}$	$p \leftarrow$	{ <i>p</i> }
$\{ q\}$		{q} ✓
	$q \leftarrow$	
$\{p,q\}$		Ø

X	P^X	$Cn(P^X)$
{ }	$p \leftarrow q \leftarrow$	$\{p,q\}$ X
{ <i>p</i> }	$p \leftarrow$	{p} ✓
{ q}		{q} v
$\{p,q\}$	$q \leftarrow$	Ø×

 $P = \{p \leftarrow \sim p\}$

 $P = \{p \leftarrow \sim p\}$ P^X $Cn(P^X)$ $p \leftarrow$ $\{p\}$ { }

Ø

X

 $\{p\}$

 $P = \{p \leftarrow \neg p\}$

X	P^X	$Cn(P^X)$	
{ }	$p \leftarrow$	$\{p\}$	X
$\{p\}$		Ø	×

Some properties

• A logic program may have zero, one, or multiple stable models!

Some properties

- A logic program may have zero, one, or multiple stable models!
- If X is a stable model of a logic program P, then X is a model of P (seen as a propositional logic formula with negation instead of ~)
- If X and Y are stable models of a normal program P, then X ⊄ Y

Outline

• Question: Is there a propositional formula *F*(*P*) such that the models of *F*(*P*) correspond to the stable models of *P*?

- Question: Is there a propositional formula *F*(*P*) such that the models of *F*(*P*) correspond to the stable models of *P*?
- Observation: Although each atom is defined through a set of rules, each such rule provides only a sufficient condition for its head atom

- Question: Is there a propositional formula *F*(*P*) such that the models of *F*(*P*) correspond to the stable models of *P*?
- Observation: Although each atom is defined through a set of rules, each such rule provides only a sufficient condition for its head atom
- Idea: The idea of program completion is to turn such implications into a definition by adding the corresponding necessary counterpart

Program completion

Let P be a normal logic program

• The (Clark) completion *CF*(*P*) of *P* is defined as follows

$$CF(P) = \left\{ a \leftrightarrow \bigvee_{r \in P, head(r) = a} BF(body(r)) \mid a \in atom(P) \right\}$$

where

$$BF(body(r)) = \bigwedge_{a \in body(r)^+} a \land \bigwedge_{a \in body(r)^-} \neg a$$

$$P = \left\{ \begin{array}{l} a \leftarrow \\ b \leftarrow \sim a \\ c \leftarrow a, \sim d \\ d \leftarrow \sim c, \sim e \\ e \leftarrow b, \sim f \\ e \leftarrow e \end{array} \right\}$$

$$P = \left\{ \begin{array}{c} a \leftarrow \\ b \leftarrow \neg a \\ c \leftarrow a, \neg d \\ d \leftarrow \neg c, \neg e \\ e \leftarrow b, \neg f \\ e \leftarrow e \end{array} \right\} \qquad CF(P) = \left\{ \begin{array}{c} a \leftrightarrow \top \\ b \leftrightarrow \neg a \\ c \leftrightarrow a \wedge \neg d \\ d \leftrightarrow \neg c \wedge \neg e \\ e \leftrightarrow (b \wedge \neg f) \lor e \\ f \leftrightarrow \bot \end{array} \right\}$$

• CF(P) is logically equivalent to $\overleftarrow{CF}(P) \cup \overrightarrow{CF}(P)$, where

$$\begin{aligned} \overleftarrow{CF}(P) &= \left\{ a \leftarrow \bigvee_{B \in body_P(a)} BF(B) \mid a \in atom(P) \right\} \\ \overrightarrow{CF}(P) &= \left\{ a \rightarrow \bigvee_{B \in body_P(a)} BF(B) \mid a \in atom(P) \right\} \end{aligned}$$

$$body_P(a) = \{body(r) \mid r \in P \text{ and } head(r) = a\}$$

• CF(P) is logically equivalent to $\overleftarrow{CF}(P) \cup \overrightarrow{CF}(P)$, where

$$\begin{aligned} \overleftarrow{CF}(P) &= \left\{ a \leftarrow \bigvee_{B \in body_P(a)} BF(B) \mid a \in atom(P) \right\} \\ \overrightarrow{CF}(P) &= \left\{ a \rightarrow \bigvee_{B \in body_P(a)} BF(B) \mid a \in atom(P) \right\} \end{aligned}$$

$$body_P(a) = \{body(r) \mid r \in P \text{ and } head(r) = a\}$$

- $\overleftarrow{CF}(P)$ characterizes the classical models of *P*
- $\overrightarrow{CF}(P)$ completes *P* by adding necessary conditions for all atoms

$$P = \left\{ \begin{array}{c} a \leftarrow \\ b \leftarrow \sim a \\ c \leftarrow a, \sim d \\ d \leftarrow \sim c, \sim e \\ e \leftarrow b, \sim f \\ e \leftarrow e \end{array} \right\}$$

$$P = \begin{cases} a \leftarrow \\ b \leftarrow \sim a \\ c \leftarrow a, \sim d \\ d \leftarrow \sim c, \sim e \\ e \leftarrow b, \sim f \\ e \leftarrow e \end{cases} \qquad \overleftarrow{CF}(P) = \begin{cases} a \leftarrow \top \\ b \leftarrow \neg a \\ c \leftarrow a \land \neg d \\ d \leftarrow \neg c \land \neg e \\ e \leftarrow (b \land \neg f) \lor e \\ f \leftarrow \bot \end{cases}$$

$$\overleftarrow{CF}(P) = \begin{cases} a \leftarrow \top \\ b \leftarrow \neg a \\ c \leftarrow a \land \neg d \\ d \leftarrow \neg c \land \neg e \\ e \leftarrow (b \land \neg f) \lor e \\ f \leftarrow \bot \end{cases}$$

$$\overleftarrow{CF}(P) = \left\{ \begin{array}{c} a \leftarrow \top \\ b \leftarrow \neg a \\ c \leftarrow a \land \neg d \\ d \leftarrow \neg c \land \neg e \\ e \leftarrow (b \land \neg f) \lor e \\ f \leftarrow \bot \end{array} \right\} \left\{ \begin{array}{c} a \rightarrow \top \\ b \rightarrow \neg a \\ c \rightarrow a \land \neg d \\ d \rightarrow \neg c \land \neg e \\ e \rightarrow (b \land \neg f) \lor e \\ f \rightarrow \bot \end{array} \right\} = \overrightarrow{CF}(P)$$

$$\begin{split} \overleftarrow{CF}(P) &= \left\{ \begin{array}{c} a \leftarrow \top \\ b \leftarrow \neg a \\ c \leftarrow a \wedge \neg d \\ d \leftarrow \neg c \wedge \neg e \\ e \leftarrow (b \wedge \neg f) \lor e \\ f \leftarrow \bot \end{array} \right\} \left\{ \begin{array}{c} a \rightarrow \top \\ b \rightarrow \neg a \\ c \rightarrow a \wedge \neg d \\ d \rightarrow \neg c \wedge \neg e \\ e \rightarrow (b \wedge \neg f) \lor e \\ f \rightarrow \bot \end{array} \right\} = \overrightarrow{CF}(P) \\ \\ CF(P) &= \left\{ \begin{array}{c} a \leftrightarrow \top \\ b \leftrightarrow \neg a \\ c \leftrightarrow a \wedge \neg d \\ d \leftrightarrow \neg c \wedge \neg e \\ e \leftrightarrow (b \wedge \neg f) \lor e \\ f \leftrightarrow \bot \end{array} \right\} \end{split}$$

$$\begin{split} \overleftarrow{CF}(P) &= \left\{ \begin{array}{c} a \leftarrow \top \\ b \leftarrow \neg a \\ c \leftarrow a \wedge \neg d \\ d \leftarrow \neg c \wedge \neg e \\ e \leftarrow (b \wedge \neg f) \lor e \\ f \leftarrow \bot \end{array} \right\} \left\{ \begin{array}{c} a \rightarrow \top \\ b \rightarrow \neg a \\ c \rightarrow a \wedge \neg d \\ d \rightarrow \neg c \wedge \neg e \\ e \rightarrow (b \wedge \neg f) \lor e \\ f \rightarrow \bot \end{array} \right\} = \overrightarrow{CF}(P) \\ \\ CF(P) &= \left\{ \begin{array}{c} a \leftrightarrow \top \\ b \leftrightarrow \neg a \\ c \leftrightarrow a \wedge \neg d \\ d \leftrightarrow \neg c \wedge \neg e \\ e \leftrightarrow (b \wedge \neg f) \lor e \\ f \leftrightarrow \bot \end{array} \right\} = \overleftarrow{CF}(P) \cup \overrightarrow{CF}(P) \end{split}$$

• Every stable model of *P* is a model of *CF*(*P*),

• Every stable model of *P* is a model of *CF*(*P*), but not vice versa

- Every stable model of *P* is a model of *CF*(*P*), but not vice versa
- Models of *CF*(*P*) are called the supported models of *P*

- Every stable model of *P* is a model of *CF*(*P*), but not vice versa
- Models of *CF*(*P*) are called the supported models of *P*
- In other words, every stable model of *P* is a supported model of *P*
- By definition, every supported model of *P* is also a model of *P*

$$P = \left\{ \begin{array}{ccc} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

$$P = \left\{ \begin{array}{ccc} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

• *P* has 21 models, including $\{a, c\}$, $\{a, d\}$, but also $\{a, b, c, d, e, f\}$

$$P = \left\{ \begin{array}{ccc} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

- *P* has 21 models, including $\{a, c\}$, $\{a, d\}$, but also $\{a, b, c, d, e, f\}$
- *P* has 3 supported models, namely $\{a, c\}$, $\{a, d\}$, and $\{a, c, e\}$

$$P = \left\{ \begin{array}{ccc} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

- *P* has 21 models, including $\{a, c\}$, $\{a, d\}$, but also $\{a, b, c, d, e, f\}$
- *P* has 3 supported models, namely $\{a, c\}$, $\{a, d\}$, and $\{a, c, e\}$
- *P* has 2 stable models, namely $\{a, c\}$ and $\{a, d\}$

Outline

• Question: Is there a propositional formula *F*(*P*) such that the models of *F*(*P*) correspond to the stable models of *P* ?

- Question: Is there a propositional formula *F*(*P*) such that the models of *F*(*P*) correspond to the stable models of *P* ?
- Observation: Starting from the completion of a program, the problem boils down to eliminating the circular support of atoms holding in the supported models of the program

- Question: Is there a propositional formula *F*(*P*) such that the models of *F*(*P*) correspond to the stable models of *P* ?
- Observation: Starting from the completion of a program, the problem boils down to eliminating the circular support of atoms holding in the supported models of the program
- Idea: Add formulas prohibiting circular support of sets of atoms

- Question: Is there a propositional formula *F*(*P*) such that the models of *F*(*P*) correspond to the stable models of *P* ?
- Observation: Starting from the completion of a program, the problem boils down to eliminating the circular support of atoms holding in the supported models of the program
- Idea: Add formulas prohibiting circular support of sets of atoms
- Note: Circular support between atoms a and b is possible, if a has a path to b and b has a path to a in the program's positive atom dependency graph

Loops

Let *P* be a normal logic program, and let G(P) = (atom(P), E) be the positive atom dependency graph of *P*

Loops

Let P be a normal logic program, and

let G(P) = (atom(P), E) be the positive atom dependency graph of P

 A set Ø ⊂ L ⊆ atom(P) is a loop of P if it induces a non-trivial strongly connected subgraph of G(P)

Loops

Let P be a normal logic program, and

let G(P) = (atom(P), E) be the positive atom dependency graph of P

 A set Ø ⊂ L ⊆ atom(P) is a loop of P if it induces a non-trivial strongly connected subgraph of G(P) That is, each pair of atoms in L is connected by a path of non-zero length in (L, E ∩ (L × L))

Loops

Let P be a normal logic program, and

let G(P) = (atom(P), E) be the positive atom dependency graph of P

- A set Ø ⊂ L ⊆ atom(P) is a loop of P if it induces a non-trivial strongly connected subgraph of G(P) That is, each pair of atoms in L is connected by a path of non-zero length in (L, E ∩ (L × L))
- We denote the set of all loops of *P* by *loop*(*P*)

Loops

Let P be a normal logic program, and

let G(P) = (atom(P), E) be the positive atom dependency graph of P

- A set Ø ⊂ L ⊆ atom(P) is a loop of P if it induces a non-trivial strongly connected subgraph of G(P) That is, each pair of atoms in L is connected by a path of non-zero length in (L, E ∩ (L × L))
- We denote the set of all loops of *P* by *loop*(*P*)
- Note: A program *P* is tight iff $loop(P) = \emptyset$

Example

•
$$P = \left\{ \begin{array}{ccc} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

$$(a) \rightarrow (c) \quad (d)$$
$$(b) \rightarrow (e) \quad (f)$$

Example

•
$$P = \left\{ \begin{array}{l} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

$$(a) \rightarrow (c) \quad (d)$$
$$(b) \rightarrow (e) \quad (f)$$

•
$$loop(P) = \{\{e\}\}$$

Another example

•
$$P = \left\{ \begin{array}{ll} a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c \end{array} \right\}$$

Another example

•
$$P = \left\{ \begin{array}{ll} a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c \end{array} \right\}$$

• $loop(P) = \{\{c, d\}\}$

•
$$P = \left\{ \begin{array}{ll} a \leftarrow \neg b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \neg a \\ b \leftarrow \neg a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d \end{array} \right\}$$

•
$$P = \left\{ \begin{array}{ll} a \leftarrow \neg b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \neg a \\ b \leftarrow \neg a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d \end{array} \right\}$$

•
$$P = \left\{ \begin{array}{ll} a \leftarrow \neg b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \neg a \\ b \leftarrow \neg a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d \end{array} \right\}$$

• $loop(P) = \{\{c, d\}, \{d, e\}, \{c, d, e\}\}$

Let P be a normal logic program

• For $L \subseteq atom(P)$, define the external supports of L for P as

 $ES_{P}(L) = \{r \in P \mid head(r) \in L \text{ and } body(r)^{+} \cap L = \emptyset\}$

Let P be a normal logic program

• For $L \subseteq atom(P)$, define the external supports of L for P as

 $ES_{P}(L) = \{r \in P \mid head(r) \in L \text{ and } body(r)^{+} \cap L = \emptyset\}$

• Define the external bodies of L in P as $EB_P(L) = body(ES_P(L))$

Let P be a normal logic program

• For $L \subseteq atom(P)$, define the external supports of L for P as

$$ES_P(L) = \{r \in P \mid head(r) \in L \text{ and } body(r)^+ \cap L = \emptyset\}$$

- Define the external bodies of L in P as $EB_P(L) = body(ES_P(L))$
- The (disjunctive) loop formula of *L* for *P* is

$$LF_P(L) = (\bigvee_{a \in L} a) \to (\bigvee_{B \in EB_P(L)} BF(B))$$

$$\equiv (\bigwedge_{B \in EB_P(L)} \neg BF(B)) \to (\bigwedge_{a \in L} \neg a)$$

Let P be a normal logic program

• For $L \subseteq atom(P)$, define the external supports of L for P as

 $ES_P(L) = \{r \in P \mid head(r) \in L \text{ and } body(r)^+ \cap L = \emptyset\}$

- Define the external bodies of L in P as $EB_P(L) = body(ES_P(L))$
- The (disjunctive) loop formula of L for P is

$$LF_P(L) = (\bigvee_{a \in L} a) \to (\bigvee_{B \in EB_P(L)} BF(B))$$

$$\equiv (\bigwedge_{B \in EB_P(L)} \neg BF(B)) \to (\bigwedge_{a \in L} \neg a)$$

- Note: The loop formula of *L* enforces all atoms in *L* to be *false* whenever *L* is not externally supported
- Define $LF(P) = \{LF_P(L) \mid L \in loop(P)\}$

Example

•
$$P = \left\{ \begin{array}{ll} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

$$(a) \rightarrow (c) \quad (d)$$
$$(b) \rightarrow (e) \quad (f)$$

• $loop(P) = \{\{e\}\}$

Example

•
$$P = \left\{ \begin{array}{ll} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

(a) (c) (d)
(b) (e) (f)

- $loop(P) = \{\{e\}\}$
- $LF(P) = \{e \rightarrow b \land \neg f\}$

Another example

•
$$P = \left\{ \begin{array}{ll} a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c \end{array} \right\}$$

• $loop(P) = \{\{c, d\}\}$

Another example

•
$$P = \left\{ \begin{array}{ll} a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c \end{array} \right\}$$

- $loop(P) = \{\{c, d\}\}$
- $LF(P) = \{c \lor d \to (a \land b) \lor a\}$

•
$$P = \left\{ \begin{array}{ccc} a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d \end{array} \right\}$$

• $loop(P) = \{\{c, d\}, \{d, e\}, \{c, d, e\}\}$

•
$$P = \left\{ \begin{array}{ll} a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d \end{array} \right\}$$

•
$$loop(P) = \{\{c, d\}, \{d, e\}, \{c, d, e\}\}$$

• $LF(P) = \begin{cases} c \lor d \to a \lor e \\ d \lor e \to (b \land c) \lor (b \land \neg a) \\ c \lor d \lor e \to a \lor (b \land \neg a) \end{cases}$

TU Dresden, 18 June 2018

•
$$P = \left\{ \begin{array}{ccc} a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d \end{array} \right\}$$

•
$$loop(P) = \{\{c, d\}, \{d, e\}, \{c, d, e\}\}$$

• $LF(P) = \begin{cases} c \lor d \to a \lor e \\ d \lor e \to (b \land c) \lor (b \land \neg a) \\ c \lor d \lor e \to a \lor (b \land \neg a) \end{cases}$

TU Dresden, 18 June 2018

•
$$P = \left\{ \begin{array}{ccc} a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d \end{array} \right\}$$

•
$$loop(P) = \{\{c, d\}, \{d, e\}, \{c, d, e\}\}$$

• $LF(P) = \begin{cases} c \lor d \to a \lor e \\ d \lor e \to (b \land c) \lor (b \land \neg a) \\ c \lor d \lor e \to a \lor (b \land \neg a) \end{cases}$

TU Dresden, 18 June 2018

•
$$P = \left\{ \begin{array}{ccc} a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d \end{array} \right\}$$

•
$$loop(P) = \{\{c, d\}, \{d, e\}, \{c, d, e\}\}$$

• $LF(P) = \begin{cases} c \lor d \to a \lor e \\ d \lor e \to (b \land c) \lor (b \land \neg a) \\ c \lor d \lor e \to a \lor (b \land \neg a) \end{cases}$

Lin-Zhao Theorem

The following result is due to Fangzhen Lin and Yuting Zhao [2004], who used it to implement ASP using SAT solvers:

Theorem

Let *P* be a normal logic program and $X \subseteq atom(P)$ Then, *X* is a stable model of *P* iff $X \models CF(P) \cup LF(P)$

Note: There can be exponentially many loops in the worst case, so the reduction may incur a substantial blow-up. However, practical problems often include only a rather small number of loops.

Summary

Answer Set Programming is non-monotonic logic programming with a stable-model semantics

Main reasoning task: computing (all, zero or more) stable models (a.k.a. answer sets)

Reduction to SAT is possible by

- Clark completion (supported models) +
- Loop formulae (answer sets)