Complexity Theory

Exercise 5: Diagonalization

Exercise 5.1. Find the fault in the following proof of $P \neq NP$.

- 1. Assume that P = NP.
- 2. Then SAT \in P and thus there exists a number $k \in \mathbb{N}$ such that SAT \in DTime (n^k) .
- 3. Because every language in NP is poly-time reducible to SAT, we have NP \subseteq DTime (n^k) .
- 4. It follows that $P \subseteq \mathsf{DTime}(n^k)$.
- 5. By the Time Hierarchy Theorem there exist languages in $\mathsf{DTime}(n^{k+1})$ that are not in $\mathsf{DTime}(n^k)$, contradicting $\mathsf{P}\subseteq\mathsf{DTime}(n^k)$.
- 6. Therefore, $P \neq NP$.

Exercise 5.2. Show the following.

- 1. $TIME(2^n) = TIME(2^{n+1})$
- 2. $TIME_*(2^n) \subsetneq TIME_*(2^{2n})$
- 3. NTIME $(n) \subseteq PSPACE$

Exercise 5.3. Define a function that is computable but not time-constructible.

Exercise 5.4. Consider the function pad : $\Sigma^* \times \mathbb{N} \to \Sigma^* \#^*$ defined as $\mathsf{pad}(s,l) = s \#^j$, where $j = \max\{0, l - |s|\}$. For some language $\mathbf{A} \subseteq \Sigma^*$ and function $f : \mathbb{N} \to \mathbb{N}$ define $\mathsf{pad}(\mathbf{A}, f) := \{\mathsf{pad}(s, f(|s|) \mid s \in \mathbf{A}\}.$

Show all of the following statements.

- 1. If $\mathbf{A} \in \mathsf{DTime}(n^6)$, then $\mathsf{pad}(\mathbf{A}, n^2) \in \mathsf{DTime}(n^3)$.
- 2. If NEXPTIME \neq EXPTIME, then P \neq NP.
- 3. For every $\mathbf{A} \subseteq \Sigma^*$ and $k \in \mathbb{N}$, $\mathbf{A} \in \mathcal{P}$ iff $\mathsf{pad}(\mathbf{A}, n^k) \in \mathcal{P}$.
- 4. $P \neq \mathsf{DSpace}(n)$.
- 5. NP \neq DSpace(n).

Exercise 5.5. You are given two oracles and one of them is the set **TQBF**, but you do not know which one. Design a polynomial algorithm that decides **TQBF** using these oracles.