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Abstract

Hybrid logic is an extension of modal logic which allows to access the states of a
Kripke structure directly from within the logic. This is achieved with nominals
which are an additional kind of propositional symbols. Nominals can be used to
identify states since they are true at exactly one state of the Kripke structure
by definition. The calculus of structures is a type of inference system which
does not only allow rule applications at the topmost connective of a formula,
as it is the case for classical inference systems like sequent calculus, but also
at subformula positions. An inference system in the calculus of structures is
presented for a basic hybrid logic which contains the jump-operator @ as its
only hybrid operator. A translation between this inference system and two
different sequent calculae for hybrid logic is shown.
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1 Introduction

Modal logic allows to reason about relational structures, i.e. sets of states on
which several relations may be defined. Each of the modal operators, which
compose a particular modal logic, depends on a corresponding relation in the
underlying relational structure. The frame semantics for modal logic is based on
the notion of a model, a relational structure combined with a valuation which
defines at which states the propositional variables are mapped to true. Given
such a model, the satisfaction relation tells whether some modal logic formula
holds at a specific state or not. The definition of the satisfaction relation is the
only place where the modal logic formulae are related to the actual states of
the model and there is no way to access them from within the modal language,
e.g. there is no possibility to access a particular state of a frame or to show
the equivalence of different states in modal logic. Therefore frame properties
like irreflexivity cannot be expressed. This motivates the use of hybrid logic, an
extension of modal logic which allows to access the states directly. Hybrid logic
uses nominals, an additional kind of propositional symbols which can be used
to assign names to the states. In contrast to ordinary propositional variables,
which can be true at any number of states, nominals are true at exactly one state
of a relational structure. If the same nominal holds at two states, then we know
that these two states must be equivalent. Similarly, it is possible to distinguish
between different states within hybrid logic. The basic hybrid logic H(@) which
is used throughout this thesis only contains one hybrid operator (an operator
which depends on the presence of nominals), the satisfaction operator @. More
expressive hybrid logics can be obtained by adding further hybrid operators.

In contrast to classical inference systems where applications of the inference rules
can only deal with the top-most connective of a formula (when it is seen as a
tree), systems which use the approach of deep inference allow rule applications
at arbitrary sub-tree positions of the formula. The calculus of structures is a
type of inference system, which implements the deep inference strategy and was
introduced by Alessio Guglielmi [Gug0§]. It was successfully applied to different
logics, e.g. classical logic [Brii04] and linear logic [Stx03]. This thesis deals with
system BH|T, a system in the calculus of structures for the hybrid logic H(@),
which was proposed by Lutz Strafiburger [Str(7.

The structure of this thesis is as follows: in the remainder of section 1 the
basic hybrid logic H(@Q) will be introduced formally and the calculus of struc-
tures will be presented for classical propositional logic. Afterwards, in section
2 Straburger’s system BH|T will be introduced followed by a discussion of its
drawbacks and improvements to his system. In section 3, translations between
BH|T and two different sequent calculae are presented. Although these transla-
tions do not show cut elimination as it is possible with similar translations for
other logics, they show the admissibility of some other rules. The conclusion
in section 4 points out alternative ways which might lead to cut elimination for
BH|T and lists further open questions in the context of hybrid logic and deep
inference.



1.1 The Basic Hybrid Logic H(Q)

Hybrid logic is an extension of modal logic which allows to access the states
of a Kripke structure within the language itself. This is done by providing a
way to label the states by means of an additional kind of atoms, the so-called
nominals. A nominal is true at exactly one state of a Kripke structure, in
contrast to propositional variables which may be true at various states. The
set V = {p,q,r, -} of propositional variables and the set of nominals N/ =
{i,7,k,- -} are disjoint and the set of atoms A is defined to be the union VUN.

Definition 1.1. (syntax of H(@)): The set of well-formed H(Q) formulae is
inductively defined to be the smallest set such that:

T € H(@) and L € H(@)

p € H(Q) for every p € V

i € H(Q) for every i € N

- € H(@), Op € H(@), and Op € H(Q) for every ¢ € H(Q)

(p A1) € H(Q) and (p V1)) € H(Q) for every ¢ € H(Q) and ¢ € H(Q)

@;p € H(Q@) for every ¢ € H(@Q) and 7 € N (satisfaction statement)

The units T and L are not necessary for the definition of hybrid logic, but they
are introduced here, since the calculus of structures which will be used in later
sections includes units. The language H (@) uses @ as its only hybrid operator.
In general, it is possible to define more hybrid operators, e.g the binder |, which
lead to more expressive hybrid logics. The implication (¢ D 1) is defined as an
abbreviation for (m¢ V ¢). The connectives O and < are dual to each other,
ie. Op = 0w and Cp = O, and @ can be shown to be dual to itself,
i.e. @ = —@Q@;—p. In the literature, @ is sometimes called jump operator or at
operator.

In order to define the semantics of H(@), some further notions have to be
introduced first. A frame (W, —) is a set of states W = {w, w’, w”, - - -} equipped
with a binary relation —C W x W. A waluation v : A — PB(W) is a mapping
assigning to each atom the set of states at which the atom is true. For nominals
i € N these sets are restricted to singleton sets. A model M = (W, —,v) is
a frame together with a valuation. Now the semantics of the hybrid language
H(@) can be defined by the Kripke satisfaction relation in a similar way as for
modal logic.

Definition 1.2. (semantics of H(@)): Let M = (W, —,v) be a model and w
a state. Then the Kripke satisfaction relation M, w IF ¢ for H(@) is defined as
follows:



M,wl-T holds for every M and w

M,wl- L does not hold for any M and w
M,wlkp iff peVandw e v(p)
M, w I —p ifft M,wl e

Mwlk (pAy) ff M,wlkpand M,wlk
Mwlk (V) i Mywlkyor Mywlk 1

M, w kO iff ' eW:w—w and M, w' Ik ¢
M, w Ik Op iff Vu' €W :w — w' implies M, w' I+ ¢
Mwlki iff e N and v(i) = {w}

M, w - Q@ iff M, w' Ik ¢, where v(i) = {w'}

Based on the Kripke satisfaction relation we can now define the different notions
of validity of H(@) formulae.

Definition 1.3. (validity of H(Q@) formulae): Let (F) = (W, —) be a frame,
M = (W, —,v) amodel, and ¢ a formula. Then:

e ¢ is valid in the model M, notation M I ¢, if M, w IF ¢ for all w € W.

e ¢ is valid in the frame F, notation F Ik ¢, if (W, —,v) Ik ¢ for every
valuation v.

e ¢ is valid, notation I+ ¢, if (W, —) Ik ¢ for every frame (W, —).

If not stated explicitly, we are interested in the validity I+ ¢ on arbitrary frames.
The following two formulae are examples for H(Q) formulae:

1. (i D =)

This formula is only valid on irreflexive frames. It says that the state la-
belled with the nominal i may not have itself as its successor w.r.t. —. By
definition of validity on frames, all possible valuations have to be consid-
ered. Since i can denote any state of the frame in a particular valuation,
this means that the frame must be irreflexive. This formula shows that
hybrid logic is indeed an extension of modal logic, since irreflexivity cannot
be expressed in modal logic.

2. ((@la AN @lb) D @i(a VAN b))
The second formula shows the use of the jump operator. If we know that
a holds at a state denoted by the nominal ¢ and that b holds at the same
state, we can conclude that (a A b) holds at this state as well.



1.2 Deep Inference and the Calculus of Structures

In classical inference systems like in sequent calculus, one usually only has in-
ference rules to deal with the topmost connectives (viewing the formulae as
trees). Systems which allow to apply inference rules at arbitrary depth within
a formula are said to employ deep inference. One inference system which uses
deep inference is the calculus of structures. This section introduces the calculus
of structures for classical propositional logic and will be extended to H(@) in
Section

In the calculus of structures one works with syntactic objects called structures,
which can be seen as intermediate between formulae and sequents. Formally,
they are defined by the following grammar

R:=al|t|f|R|(R,R)|[R R]

where a can be any atom. In this notation, negation is denoted by a bar, whereas
(A, B) stands for the conjunction and [A, B] for the disjunction of the structures
A and B. Furthermore, the constants T and L are denoted by the symbols t
and f respectively. Capital letters A, B, ... will be used for structures.

The equations from Figure [[] define a smallest congruence relation = on the set
of structures R. Each structure is an element of one equivalence class from the
factor set R/=. That is, each structure is equivalent to all other structures from
its equivalence class.

A normal form for structures is obtained by pushing down negations to the
atoms by using the De Morgan laws and removing superfluous parentheses and
units by associativity and the equivalence rules for units. Normal forms are not
unique because of commutativity, but their number is finite for each equivalence
class.

Before we can introduce inference rules in the calculus of structures, the notion of
a context has to be introduced. Intuitively, a context can be seen as a structure
which contains one occurrence of the hole {}. This can be formalised by the
grammar

Su={} | (S, R) | S, R]

where R stands for a structure. Contexts will be denoted by S, T', ... followed
by the hole {}. A structure R can be plugged into a context S{} by replacing the
hole {} with the structure R. The structure one obtains in this way is denoted
by S{R}. By the definition of contexts the hole or structures which are plugged
into the hole can never be within the scope of a negation.

Having introduced structures and contexts, we can now turn to the definition
of inference rules and deductive systems.



Associativity
((Aa B), C) = (Aa (Ba C))
[[4,B],C] = [A,[B,C]]
Commutativity
(A, B) = (B, 4)
[A,B] = [B, 4]
Units
f,A]=A
(t,A)=A
Negation -
f=t t="f
(4.B) = [A,B] A, B] = (4,B)
A=A
Context Closure
if A= B then S{A} = S{B}
A=DB

Figure 1: Equivalence relation = defined on structures.

Definition 1.4. An inference rules in the calculus of structures is of the form
S{T}
"SRy
where S{} is some context and R and T are schemes for structures. S can
also be the empty context {}. The structure S{T} is called the premise and
S{R} the conclusion of the rule. The inference rules can be seen as rewrite

rules, where an instance of T is replaced by an instance of R. Furthermore, it is
possible to impose additional constraints on the application of inference rules.

Definition 1.5. A (deductive) system S in the calculus of structures is a set of

inference rules.

T
Definition 1.6. The equivalence rule = = can be used to replace a structure

by another one which is syntactically equivalent w.r.t. the equivalence relation
=. The rule is implicitly included in every system and is sometimes dropped for
obvious equivalences.



Figure@shows the inference rules of system SKSg for classical logic. See [Brii04]
for an extensive discussion of classical logic in the calculus of structures.

S{t} L S{(A4,4))

(identity) il SALA i ST1)

(cut)

| S{(A,[B,C])}
(switch) 5 m

(weakening) — w)] ﬁ St4)

star sty

(co-weakening)

a4} s
st Sy

(contraction) ¢|

(co-contraction)

Figure 2: System SKSg.

In the calculus of structures we can try to find derivations which show that one
structure is a logical consequence of another one, or we can show the validity of
a structure by showing that it can be derived from the constant t.

Definition 1.7. A derivation A is a finite chain of instances of inference rules
from a deductive system S:

T

P

P —

/

=

=
T

and is denoted by A H S. A single structure is also a derivation.

R

Definition 1.8. A derivation A can be put into some context S{} to obtain
the derivation S{A} as follows:

S{T}

P Py

P — p—
A= ~ S{A} =

R "SRy

R "SR]



Definition 1.9. A proof II of R in some system S is a derivation starting with
the unit t which only uses inference rules from S. It is denoted by

ns
R

Definition 1.10. The dual rule of some inference rule pE corresponds to

the principle of contraposition and is the rule obtained from p by replacing
the premise with the negation of the conclusion and the conclusion with the
negation of the premise, e.g.

& is dual to 47 M
S{[4, A} S{f}

il
A system is called symmetric if for each inference rule the system also contains

its dual rule. System SKSg is symmetric. For each rule p|, it contains its dual
rule pT. Note that the rule s is dual to itself.

T R

R T

Figure 3: Symmetry of derivations in the calculus of structures.

In symmetric systems there is an interesting top-down symmetry for derivations
(Figure Bl). For a given derivation one obtains its dual derivation by reversing
the order of the inference steps, by exchanging each structure by its negation
and by replacing each inference rule by its dual rule, e.g.

[(0.) .a a

[a, al is dual to f (a,a)
cl w

a ([a,b] ,a)

w]

Whereas the dual object of a derivation is again a derivation, the dual of a proof
is a refutation, i.e. a derivation with f as its conclusion, e.g.

1 t T (la,
[(a,a),a,a]] is dual to ([a,a

[(a,a),a) f

For symmetric systems the notions of derivation and proof are connected by the
following theorem.



Theorem 1.1. (Deduction Theorem).

T
Let S be a symmetric system, then there is a derivation A H s if and only if there
R

is a proof r{ﬂs .
[T, R]

Proof. From a given derivation A one can construct a proof II as follows:

nfs
o T

O

In the calculus of structures the problem of cut elimination from sequent cal-
culus corresponds to the question whether the up-fragment, i.e. the set of rules
whose names contain T-arrows, of a system can be removed while preserving its
completeness. The following definitions help to formalise this problem.

Definition 1.11. A rule p is derivable for a system S if p ¢ S and for every
T

T
instance p — there is a derivation A H S.
R R

Definition 1.12. A rule p is admissible for a system S if p ¢ S and for every
proof Hﬂsu{p} there is a proof Hlﬂs.
R R

Definition 1.13. Two systems S and S’ are strongly equivalent if for every
T T

derivation A H S there is a derivation A’
R R

s'.

10



Definition 1.14. Two systems S and S’ are (weakly) equivalent if for every

proof HHS there is a proof 1 HS .
R R

It can be shown that the up-fragment of system SKSg is admissible for the
system KSg = {i],s,w|,c|} (see [Brii4]). This implies that system SKSg and
the asymmetric and cut-free system KSg are equivalent, and as a consequence
of the deduction theorem we get as a result:

! KS
There is a derivation A H SKSg if and only if there is a proof H,H g,
R T, R]

Unfortunately, the two systems are not strongly equivalent, and as a consequence
the following does not hold:

T

There is a derivation A H KSg if and only if there is a proof __
R T, R]

H”KSg

Therefore the system KSg is used for showing the validity of formulae while the
symmetric system SKSg is used when one is interested in derivations.

11



2 H(@) in the Calculus of Structures

In [Sir(07 an inference system in the calculus of structures is presented for the
hybrid logic H(@). This system BH|] was obtained by simulating the tableau
system for H(@) which is given in [Bla00]. Soundness and completeness of BH| 1
follows from the soundness and completeness of the tableau system. System
BH| T will be presented in this section followed by a discussion of its drawbacks.

In order to introduce BH|T, the definitions of structures and contexts have to
be extended to the language of H(Q).

Definition 2.1. Structures for the logic H(Q) are defined by the grammar
Ru=al|t|f|R|(R,R)|[R R |OR|OR| QR
where a can be any atom and ¢ is a nominal.

Definition 2.2. Contexts for the logic H(@) are defined by the grammar
Su={}|(S,R) | [S,R] | 0S| S| @S

where 7 is a nominal and R stands for some structure.

Figure Bl shows the extended equivalence relation = on H(@Q) structures, which
adds De Morgan rules for the modal operators O and <& and for the satisfaction
operator @. Due to associativity it is also allowed to use conjunction and dis-
junction in an n-ary form like (A4y,..., A,) or [44,..., A,] instead of the binary
form alone.

The inference rules of system BH|1 are shown in Figure [l The down-fragment
of BH|T, i.e. the set containing the switch rule and all rules marked with
|, is denoted by BH| and analogously the up-fragment of BH|T, i.e. the set
containing the switch rule and all rules marked with T, is denoted by BHT.

System BH|T uses the atomic versions ai| and ai of the interaction and the
cut rule. The non-atomic rules i and 7T

il S{t} . S{(A,A)}
S{[4, A]} S{f}

can be shown to be derivable in BH|T by adapting the inductive proof on the
size of the structures A from [Brii06] to cover the modal operators and the
satisfaction statements of H(@) as well. The missing inductive cases for H(Q)
are the following:

e A=0B:
S{t}

, S{ot}
I
S{[oB,oB]}

e

(IH)

12



Associativity

Commutativity

Units

Negation

Context Closure

((AaB)aC) =

[[Aa B] 70] - [Aa [Bv C]]

(A,B) = (B, A)
[A, B] = [B, A]
[f, A=A
(t,A)=A
f=t

(A,B) = [A, B]
04 =<0A
A=A

if A = B then

(4,(B,0))

t=f

[4,B]= (4,B)
OA=0DA

@A = @4
S{A} = S{B}
A=DB

Figure 4: Equivalence relation = defined on H(@) structures.

e A=3D:

[ ] A:@ZB

S{t}

o S{ot}
km’f S(o[B.5])
S{[¢B,0B]}

e

(IH)

S{t}

€@l7
il S{@it] (IH
5{@;

oy S [BB]
{[@;B,@;B]}

13
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St _S{(A/B,0D) i Sl@))
S{la, al} S{[(A, B),CT} S{f}
o Stf | SlA,A) 514 oy 514
S{A} S{A} S{(A,A)} S{t}
_S{t) _ S{O[A,B]} _ S{(DA,oB)} . S{of}
) Siony S{[0A, OB]} so@pyr © s
jay 51 o S(OIABl} , S(@AGB) . S{0f)
S{at) S{l@:4, @8]} (@, (A, B)} S{E}
st 81, 4))
S{[i, A]} S{@,A}
_os{@Ar . S{@A) . S{@,@;A} L S{o@;A}
S(O@A] Y S{@,@A) " TS @A "S5 @A)
|5 5{@;7} 5{@;i} S{@;i}
5{@:) 7 S1@ig) 7Sy S{f)
(O @], @;4], B,D) __ [C.(@;04,B), D]
o T @A, Bl D) T e (@07.8;4) B) . D]
*j does not occur in A; B, C or D
s{@;ok} S{(@;05,Q;k)}
s{[@nj,@;k]} S{@; ok}

Figure 5: System BH|T for H(Q).

For the cut rule i the proof can be done dually. This result allows us to use
the non-atomic rules in derivations as well. Figure B shows a proof in system
BH|7T for one of the example formulae given in Section [l

One drawback of system BH|T is the form of the rules v] and v]. They cannot
be applied within an arbitrary context S{}, but may only be applied in contexts
of a particular form. Furthermore, the nominal j may not occur in the contexts
(C,[{}, B], D) and [C, ({}, B), D] respectively. These conditions stem from the
simulation of Blackburn’s tableau system. The restricted context reflects the
structure of a tableau, and the condition on the nominal j comes from one of
the tableau rules which is subject to a corresponding condition. Although we
know that the two rules are sound, since the rules of the tableau system were
shown to be sound, they do not represent proper implications in the sense that
the conclusion is a logical consequence of the premise as it is the case for all of
the other inference rules.

14



t
[@:b, ;]
(t. [@:b, @ib])
([Q;a, @;a], [Q;5,Q;3])
(@, (Qra, [@;D, @;))]
Q;a, @b, (Q;a, @ib)]
[@:a, @b, @ (a, b)]

il

S

k@T [

Figure 6: Proof of (Q;a A @;b) D @;(a A b) in system BH|7T.

As mentioned in Section[CZ there is an interest in a system where the whole up-
fragment is admissible. However it is not clear yet, whether this is also possible
for H(@). In the simulation of Blackburn’s tableau system only inference rules
from the set BHT U{k®|} are used. Tableau systems are refutation-based, i.e.
one cannot prove the validity of a formula directly, but one can show whether a
formula is unsatisfiable. The validity of a formula can be shown by proving that
its negation is unsatisfiable. This search for a refutation in the tableau system
is simulated by searching for a refutation in the calculus of structures. The
duality between proofs and refutations implies that the system BH| U{k®1} is
complete for H(@). To obtain a strong cut elimination result, one would have
to show additionally that k7 is admissible for BH].

S{@in4} b W

Mo M seoa)

. Stl@ing, @, 4]} . S{@o4)

gvl staoa; 7 S{@0, @A)

*j does not occur in A or S{}

Figure 7: Generalized versions of the v- and b-rules.

A closer look on the v- and b-rules reveals some kind of similarity between v]
and b] as well as between v] and b7. In Figure [ generalized versions of these
rules are shown. The rules gb| and gbT obviously generalize the rules b| and b
by allowing arbitrary structures A instead of the nominal k in b7 or its negation
Ekin b7. It can be shown that the rules represent valid implications in H(@) by
proving them in BH|1:

15



[@im@szl, @]A]
[0 . 4], 4]
[@z [QA, D‘ﬂ ,@jA]
[@lOA,@lDE,@]A]

n

ko]

©

For gb] the proof can be done analogously. The rules gv| and gvT generalize the
rules v] and v1 by allowing arbitrary contexts S{} instead of the restricted form
of the contexts in the original rules. Completeness is obviously preserved when
the v-rules are replaced by their generalized versions. As the rules v| and v, the
rules gv| and gv| do not incorporate proper implications. However, it can be
shown that the soundness of v| and v] depends on the condition on the nominal
j alone and is independent of the structure of the context. By dropping this
restriction of the context one obtains the generalised versions of the rules. The
proof is done by a case analysis on the context using Kripke semantics. Consider
the rule v| and let M be some model and w some state. Furthermore, let R be
the premise (C, [[@;07,@;A], B], D) and T the conclusion (C, [@;0A, B], D) of
v|. To show that v] is a valid implication, one has to prove that M, w - =RVT
holds. Note that we can assume that B, C, and D are formulae corresponding
to the structures from the contexts of v| (a formal translation between H(@)
structures and H(@) formulae is given in a later section). Now we can start the
case analysis on B, C, and D:

e If M,wh¥F C or M,wl¥ D, then M,wl--RVT.
e f Mwl-C, M,wlk D, and M,w IF B, then M,wl--RVT.

e In the remaining case where M,w I+ C, M,w I+ D, and M,w ¥ B,
M, wlF =RV T holds iff M, w I+ ﬁ(@iDﬁj V @]A) V @;0A holds.

The third case is the only one which can make the implication false. For this to
happen we must have that M, w I (@Q;Oj A@;—=A) vV @,0A for some M and w,
but the condition that j does not occur in A or the context (C, [{}, B], D), i.e.
that j is a new nominal, prevents such a situation. This also shows that gv] is
sound, since it has the same condition that j must be a new nominal. A similar
argumentation can be used to justify the soundness of gvT.

Since the generalized versions of the rules can be applied in a more flexible way
than the original rules, they will be used in the remainder of this thesis.

16



3 Translating between BH|T and Sequent Calculus

A standard technique to show the admissibility of the cut-rule in the calculus of
structures relies on cut elimination results from sequent calculus. By a trans-
lation between the different types of systems it is possible to transfer the cut
elimination result from sequent calculus to the calculus of structures as long
as certain conditions are fulfilled. In this section, it is explained how this can
be done in general. Furthermore, translations between BH|T and two different
sequent systems for H(@) are presented. Unfortunately, none of the two trans-
lations allows to transfer the cut elimination result to BH|T. But we obtain a
way to translate derivations from the calculus of structures into derivations in
two different sequent calculae and vice versa. For the first sequent system, this
can be done for any derivation and the second system allows the same, as long
as there are no instances of gv-rules within the derivation for which the A is
instantiated to a nominal.

3.1 Cut Elimination

It can be shown that admissibility of the cut rule implies that the whole up-
fragment of a system is admissible.
S{P}

S{ﬁi is admissible for {i|,iT,s, p}, where pm

Lemma 3.1. Every rule p/

is the dual rule of p’.

Proof. Replacing every occurence of p’ in a proof II by the following derivation
yields a proof II" without p’.

S5{Q)

- 5{(Q.)}

5@ [P P]))

S{[(Q P), P}

"51[@.Q). P}

_S{[EP])
S{P}

il

al

O

An immediate consequence of this lemma is that each proof II for R in a sym-
metric system S|1 can be turned into a proof I’ for R in S|U{i7}. The only
remaining up-rule is the cut rule ¢7 itself.

One common way to show the admissibility of the cut rule in the calculus of
structures is to use cut elimination results from the sequent calculus. This is

17



done by showing that each proof in the calculus of structures can be translated
into a proof in sequent calculus which may contain cuts, then cut elimination is
applied to the proof in the sequent calculus and finally, the proof is translated
back into a cut-free proof in the calculus of structures. The idea is illustrated
by the following figure:

where G is some cut-free sequent system for the same logic as S|T. In detail,
this kind of cut elimination proof consists of the following steps:

1. A proof in the system S|U{iT} is translated into a proof in the sequent
calculus G + Cut which may contain cuts.

2. The cut elimination procedure for G 4 Cut is applied to obtain a cut-free
proof in G.

3. The cut-free proof in G is translated back into system S|. This step only
works, if no up-rules of §|1 are introduced during the translation.

3.2 The Sequent Calculus Gy a) for Hybrid Logic

According to [I'S96], a two-sided sequent calculus can be transformed into an
equivalent one-sided calculus, a so-called Gentzen-Schiitte system. Here, a cut-
free system from [BraO8| (Chapter 2) is transformed into a one-sided system
which is more suitable for translation between sequent calculus and calculus of
structures. The system was obtained by negating for each rule the sequents on
the left side of - and moving them to the right side. Instead of the implica-
tion rules from the original system, a rule for disjunction is used which better
resembles the rules from the calculus of structures. Furthermore, the contexts
were adapted and rules for weakening and contraction were added to allow mul-
tiplicative instead of additive context treatment. Figure [} shows the resulting
one-sided sequent calculus Gy a) for H(@).

The system Gy(a) + Cut is obtained by adding the following cut rule to G (a)-

ut) S AP @A
o 7

Note that the system only works when all formulae occuring in a proof or a
derivation are satisfaction statements, i.e. all formulae are prefixed with @; for

18



(ax1om) m (T) W
Fo QA WU QB Fo® QA QB
/\R ) 7 9 7 \/R ) 7 9 7
(NR) o, 0, Q;(AAB) (VE) F® Q@ (AVB)
Fd A A [
OB g1 WR) =3 1
% F (I),@Z‘D_'j, @]A OR F (I),@ZO‘] - \I/,@jA
(BR) - ® @,0A (OF) F®, U, Q,0A
Fo QA o ,Q;—i
(OR) 5 -§.a,4 (ref) —5
(nom1) F o, Q) FU QA
© -0, QA
) FT,Q; Fo,Q;Ok FV,Q;0-k
(nom2) FT. 0,0
* j does not appear free in the conclusion

Figure 8: The sequent calculus G a) for H(@).

some nominal ¢. In the original system by Bratiner there is a condition on the
(nom1)-rule which requires that A must be an atom (propositional variable or
nominal). This condition allows to obtain a normalisation result which otherwise
would not be possible (cf. [Bra08|, p.39), but it is not needed for the soundness
of the rule.

3.2.1 Translation from Gy a) to BH[T

The following definition of _- ¢ allows to recursively translate formulae and
sequents from sequent calculus into structures in the calculus of structures. The
assumption that all negation signs are pushed down to the atoms also applies
to the formulae in the sequent calculus.

Definition 3.1. Mapping _- ¢ from formulae and sequents in Gy a) to struc-
tures in BH|T:
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ag = a

Is =t

£5 = f

(AVB), = [Ag.By]

(AAB), = (As.Bg)

DAS = DAS

@_iAs = Q@4

s = f

Aq,. "Ahs = [QS""’ES] where h > 0

Now the translation from sequent calculus to the calculus of structures can be
formalised.

DI 372

Theorem 3.1. For every derivation v in Gy @) + Cut there is a

by

(Z1go-- Skg)
derivation A’
Xg

in BH|T.

Proof. Structural induction on the derivation A.

Base cases:

o A =23 Take Xg.

t
A= TgT . Takee®| —.
° FaQ,T aeel@_t

K2

. t
o A — (axiom) EA A - Takei| ———
’ [Ag, Ag]
Inductive cases:
1.0 2k Ell .. E;

e A = : : : : . By induction hypothesis we have

- ®,@;A -, QB

AR
(NB) o, 0, Q;(AAB)
SrgShg)  (Shgeenn D)
two derivations A, |[BH]T and Ao H BH/T which are plugged into

[@g,@;Ag] Vg, @Q;Bg]

20



the contexts A} = (Al,E_’IS,.

tain the derivation

(Zig,--

..,&S) and A} = ([®g, @;Ag], Az) to ob-

I
kg S

BH]T

3
Al

([QS7 @iASLE_/lSa s 7225)

A

BHLT

([237 @iAS]a [gSa @1§S]>

" s, (@5, @A), @,By)]

E®1

[QS, ES’ @i(Asv ES)]

DI D 3/

o A= : : . By induction hypothesis we have a derivation

Fo,Q,A QB
(VR) —————
F® Q;(AV B)
(&57 cee 7&5)
A H BH]T
[Q,S'v @iAS; @’LBS]

(Sig--

which leads to the derivation

- Zkg)
A H BH] T

[Q,S'v @iA,S'v @ZES]

[@g,Q;[Ag, f],@;[Bg, f]]

[257@

i[ASaBS]v@i[fv ES]]

(@5, @i[Ag, Bs], Qi[Ag, Bs]]

(@5, Q;[Ag, Bs]]

The argumentation for branching rules is similar to the one for the (AR)-rule
and for non-branching rules the argumentation follows the one for the (VR)-rule.
Therefore, only the relevant part of the derivation is shown for the remaining

rules.

e (CR) leads to

o (WR) leads to

[257 AS) AS]

[QSW AS]

[Qsa f]
[237 AS]

21



e (OR) leads to
[QSv @imﬁj’ @jAS]
(@5, @;044]

gvl

The condition of the (OR)-rule ensures that the condition of the gv|-rule
is fulfilled.

e (OR) leads to
, [25,@i0]], W5, @A5])
, (25, (Qi0), [¥s, @;A4])]
(@5, Ty, (Q; O, @jAS)]

2
g, 0y, @,0A4)

e (QR) leads to

[®g,@Q;Q@;Ag]

Q@

(ref) leads to

T [25’7 @1;]
r
@37 f]

_Qs

(nom1) leads to
. ([@g,@i5], [¥g, @;Ag])
. (D, (@5, Vg, Q;Ag])]
oy (@5, ¥, (@5, @i A5)]
" (@5, ¥, Qi(j, Ag)]
@ [gsagsv@i@jés]
(@5, ¥, @;A]

e (nom2) leads to

s ([257 @lj]a [gSa @iOk]; [Es, @jDﬁk’])
5 Vs, ([Lg, Q] [@g,Q; Ok, @;0-k))
5 ¥, ([([Lg, @ij], Q;Ok), 2g], @;0k)]

[¥s, ([(Qi), Q;Ok), [Lg, )], @;0-k)]
Lg, @4, ¥g, (Q;5,Q; Ok, @;0-k)]

Lg, Pg, ¥, (Q,(4, Ck), Q;0-k)]

@1 s, ®g,¥g, (Q;Q;Ok, Q;0-k)]
[ES’gSaES’ (@jOka @jmﬁk)]
L, g, Y]

k/’@
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e (cut) leads to

s (@s,As]a [ES’ ﬁAS])
RO ))
(@5, ¥, (A5, ~As)]
[QS’iSa f]
(@5, Y]

O

The stronger result that for every derivation in Gy (a) there is a corresponding
derivation in BH| (similar to the result given in [Brii(4] for classical logic) is not
achieved for H(@), since not only the translation of the (cut)-rule introduces the
¢]-rule but also the (nom2)-rule. Furthermore, the translations of some of the
other rules, namely the rules (AR), (OR), (ref), (noml), and (nom2), introduce
more rules from the up-fragment of BH|T. For that reason, the translation
between G4y and BH|T does not prove cut elimination as desired. However,
we obtain a different result. Starting with system Gs¢(a), which is complete for
H (@), we obtain proofs in BH|T which only use the rules i, s, c|, w|, n®],
gul, €®], i1, rT, K97, nT, n®1, and ¢gb]. Together with Lemma Bl this yields:

Lemma 3.2. The system {i,i],s,cl,w],n®],e®],r], k%], nl,gbl,gv]}is com-
plete for H(@), and the rules e |, k|, nP], and o,,] as well as their dual rules
are admissible for this system.

3.2.2 Translation from BH|T to Gy (a)

Even though we are not able to show cut elimination by translation from system
G(a) to BH(T, it is interesting whether it is possible to translate derivations
in the other direction as well. The translation from the calculus of structures
to the sequent calculus also follows the approach of [Brii04] for classical logic.
For the following definition, recall that negations in BH|T only occur on atoms
and that by associativity disjunction as well as conjunction can be assumed to
be in binary form.

Definition 3.2. Mapping _-_ from structures in BH|T to formulae in Gy a):

ac = a

to - T

fG = 1
(AB). = (AcABg)
OA. = UOAg
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For better readability the mapping -  is not always shown explicitly. In
addition to the translation from structures to formulae in the sequent calculus,
we need a way to imitate deep inference in sequent calculus. Therefore, the
following lemma is needed.

Lemma 3.3. For every two formulae A, B and every context C'{} there exists
F@Q;A,Q;-B
a derivation in Gy a)-

FQ,C{A4},@,-~C{B}

Proof. By structural induction on the context C{}. The base case for C{} = {}
is trivial. Inductive cases:

e For C{} = 0C:{} the derivation is

A —
o) CG55.807 8,01 {A).8,-Cu(B)
F@;0-5,@,;C{A}, Q;0-C{B
(OR) s Lo

F @Z-DC’l{A}, @ZO_‘Cl{B}

e For C'{} = OC1{} the derivation is

A =
(aziom)

FaQ,¢j,Qo0-; F@Q,Ci{A},Q,—~C1{B
(<>R) J J J 1{ } J 1{ }

R) = @1001{14}, @iDﬁj, @jﬁCl{B}
H @iOCl{A}, @iDﬁcl{B}
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e For C{} = @;C1{} the derivation is

- @,;C1{A},@,~C1{B}
- @,C1{A},@,0;~C,{B}
- @,0,C1{A}, @,@,-C,{B}

(QR)
(QR)

e For C{} = (Cy A C2{}) the derivation is

A =
<a$zz’;‘; F GOy @iaCr F @,Ca{A}, @i—Co{B)
VR) F@;(C1 A C2{A}),@,=Cy,@;~C2{B})

= @1(01 N CQ{A}), @i(ﬁcl \Y ﬁCVQ{B})

e For C{} = (Cy V C2{}) the derivation is

A:
(axzzg F @Oy, @-Cr b @Cy{A},@~Co{B)}
- @,Cy, @,Co{ A}, @;(~Ch A ~Co{B
(VR) 1 2{A},Q;(=Cy 2{B})

= @1(01 V CQ{A}), @i(ﬁcl N ﬁCVQ{B})

The derivations marked with A’ exist by induction hypothesis. For applications
of the (OR)-rule, the nominal j can always be chosen in such a way that it does
not occur freely in the conclusion by taking a new nominal. O

Now we can translate derivations in BH|T into derivations in Gy (a)-

- @,Q,

Q
Theorem 3.2. For every derivation A H in BH|T thereis a derivation
P

'_ @ZBG
in G'H(@)-
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Proof. The derivation A’ in Gy(a) is constructed by induction on the length of
the derivation in BH|T.

Base Case
If A is the trivial derivation consisting of a single structure P, i.e. P and Q
coincide, then the corresponding derivation is - @; P, for some nominal 7.

Inductive Case
For the inductive case the topmost rule instance in A is singled out:

S{T}
Q P ooy
S{R}
A H BH|T = N H a1
P P

Now the corresponding derivation in Gy @) is constructed as follows:

N

- @R, @u—T

F@;S{R},@,~5{T} +@;S{T}
-@,;S{R}

(cut)

)

FaQ,P

where A, exists by Lemma and Aj by induction hypothesis. The proof II
has to be shown for each rule in BH| T individually:

° i]:

W(’vog)) TaAaA
WH F@;(AV-A)

F@;(AV-A),Q; L
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(axiom) (axiom)

, - @,B,Q;,-B - @,C,@,-C
(aziom) —g7aa W) FG.B,@,C,@,(~B A -C)
(NE) vy AN D), 6.C,6~A,6, (2B A ~0)
(VR) FQ;(AAB),Q,C,Q,(mAV (=B A-C))
FQ;((AAB)V(C),Q;(=AV (-BA-C))
e w|:
(D +a7
W T exaT
e c|: ) )
(ax(zigi TaAda A (axiom) TaoAda A
() FOAGAGEAN )
F @A, Q; (<A A —A)
o e
D +g7
(WR) —— 0T
FQ,oOT,Q, L
o k9 .
(é‘gom) F@;0j, 9,0 I
(Cr) £ 8075 @07, 6,4, 6:0B, 6,.0CA A B)
F @0, @; A, @08, Q;0(—A A —B)
(OR)

H @Z‘DA, @zOB, @ZO(_'A A _|B)

VR
( ) H @i(DA\/OB),@iQ(ﬁA/\ﬁB)

where I is the proof

(axiom) —— (axiom) ——
(asiom) ) A G4 - Q,B,Q,-B
O e 0, @04 - Q,;A,@,B,Q;(-AA—-B)
(<>R) J J J
H @jA, @jB, @iD_‘j; @ZO(_‘A A _‘B)
o 9:
(a7
(@R) —————
(W R) - CT
FQ;@,T,Q@; L
o k9:
(axiom) ———— (axiom) ————
(i) T84 BA - @,B,a,—B
(@R) FQ;A,Q;B,Q,; (ﬁA A ﬁB)
(@R) FQ;A,Q;B, @j@i(ﬁA A ﬁB)
(@R) FQ;A, @j@iB, @j@i(ﬁA A\ ﬁB)
) I Ci®A G GiB, 60,04 N B)

- @,(@;AV@;B),Q,a;(=A A —B)
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nP|:

(axiom) (axiom)

- @i, @i F @A QA
- @i, @A, @A

F @i, @A, @;@;~A

- @, (i vV A),@;@,-A

(noml)
(QR)
(VR)

(axiom)
(QR)

(QR)
(WR)
(OR)

F@,A QA
F@4,Q,0,-A
- @y@,A4, ;@A
- @0k, @,@,4, @,Q,-A
F @jD@iA,@j@iﬁA

The nominal k& can be chosen in such a way that it does not occur in A.

n9:

Onl:

gbl:

(axiom)
(QR)
(QR)
(QR)

- @A, @-A
F@,A, @@, A

F@,@;A, @,@,-A
F@,@;@,A, @@~ A

(axiom)

(ref)
(QR)
(WR)

F @i, @i
F Qi
0,0
F@,Q.,Q; 1
(aziom) (aziom)
(QR)
(nom1)

FQ;Q;—7, Q5 F Qi
- @0, @,
- @;Q@;j, @;Q;i

(QR)

(axiom) (axiom)

@0, 0] FGQ.AG A
(OR) o 7Y i

F @0, @A, @;0-A
- @;0j, @, 4, @;0A

H @k@iDﬁj, @k@jA, @,0—-A

- @p(@;0-j V @, A), @;0-A

- @ (Q;0-j V @, A), @,@;0-A

(QR)
(QR)
(VR)

(QR)
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e gul:

(a:m'om) (axiom)

(@R) - @iD_‘j, @10‘] (@R) - @jA, @j—\A
WER - @iD_‘j, @j@zo‘] R - @jA, @j@j_‘A
( R) H @iD_‘j; @]A,@j@ZO] ( R) - @iD_‘j, @jA, @j@j_‘A
(OF) — G074 6,6,0; (OF) —G.04.0,0,-4
(/\R) J J=)
(CR) = @iDA, @Z‘DA, @j(@ZOj A @j"A)
(@R) F@Q;0A, @](@10] A\ @jﬁA)

H @j@iDA, @](@10] A\ @jﬁA)

We can assume that the nominal j does not occur freely in A, since the
gv]-rule may only be applied in BH]|T if this is the case. By binding
the only remaining free occurrence of j with @;, we can ensure that the
condition of the (OR)-rule is fulfilled for both of its applications.

The proofs for the up-rules can be found analogously. O

During the translation from BH|T to G/ (a) the (nom2)-rule is not used. Com-
pleteness of BH|T implies that the (nom2)-rule is not needed for the complete-
ness of Gy a). The reason for this is that in Braiiner’s original system the rule
is needed because of his stronger condition on the (noml)-rule. That means for
the system as it is presented here, that the (nom2)-rule could also be dropped
without losing completeness.

After it was clear that the translation via Gy does not lead to the desired
goal of showing cut elimination for BH|T, a second sequent system for H(@)
was examined. The result of this attempt is shown in the next section.

3.3 The Sequent Calculus G;{(@) for Hybrid Logic

Figure @ shows a one-sided sequent calculus G’H(@) based on another sequent

system from [Bra0§| (Chapter 3) and was constructed in a similar way as G(a)
in the previous section.

The system G;i(@) is much closer to Blackburn’s sequent system and hence,
also closer to the corresponding tableau system [Bla00] from which BH|T was
constructed. The reason why G;i(@ was favoured over Blackburn’s sequent
system is that Braiiner gives a much more detailed discussion of the properties
of his system. Note that system G/, g, is not cut-free whereas for Blackburn’s
system the cut rule is admissible. This is caused by the different rules for the
nominals in the two systems. Nevertheless, this does not become a problem since
cut elimination already fails for the same reasons as it does with Gya) and the
same problems arise when a translation is tried with Blackburn’s system.
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As for system Gyya), all formulae occuring in a proof or a derivation have
to be satisfaction statements. Note that in Braiiner’s original system the rule
corresponding to (OR) of G’H(@) is subject to the condition that j is a new
nominal in contrast to j does not occur freely in the conclusion which applies
to the (OR)-rule. The stronger condition is needed in Braiiner’s system because
his system H (@) shares the rules with another system for a logic where another
hybrid operator is used besides @.

(axiom) F @, @A, G A (T) T
(QR) % (ref)! %
(nom1)? H®,Q;A,Q,~j,QA

F (I)7 @iﬁja @lA

Fo, @A FU,@-A
o, 0

(quasi-analytic cut)*

I the nominal 4 occurs in, or below, the conclusion
2 the nominal j does not occur freely in the conclusion and A is not a nominal
3 A is an atom (propositional variable or nominal)

4 the nominal i and the formulae A are subformulae of the end-sequent

Figure 9: The sequent calculus G, g, for H(@).

3.3.1 Translation from G;i(@) to BH]|T

The mapping from G;i(@) formulae to BH| T structures is defined as for Gy (a)-
Theorem Bl can be adapted to G;i(@) as follows:
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)P Y

Theorem 3.3. For every derivation v in G;i(@) there is a derivation

by

(Z1gs---2 Bag)
A/
Xg

in BH|T.

Proof. Structural induction on the derivation A.

Base cases:

o A =23 Take Xg.

o n=(T) Fa,T - Take e?]

t
[@"ES’ @@s}
{@j@ifs, @@5}
{@j [g, fs} ; @@s} -
|41, 050,07,

m {@i% @igsv @jfs}

il

n@L

. Take ™l
k@l

o A= faxiom) - Q;~j, @imp, Qjp

Inductive cases:

1. 2k Ell E;

e A = : : : : . By induction hypothesis we have

- ®,@;A -, Q;B

AR
(NR) Fo, 0, Q(AADB)
(S Shg)  (Shye 0y
two derivations A, |[BH]T and Ao H BH|T which are plugged into

(@5, @i Asg] Wy, @;Bg]
contexts A} = (Al,E_’ls,...,gS) and Ay = ([®g, @Q;Ag], Az) to obtain
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the derivation

(&Sv e a&saz_/lsa s 52254)
AL BHLT
([QSW @iASLE_/lSa s 72254)
2y [ enlt

s ([st @iAS]a [isa @iﬁs])
s [257 ([Qsa @iAS]a @iﬁs)]
Qs, gsv (@iASv @iﬁs)]

E®1 [
(@5, ¥g,@Q;(Ag, Bg)]
DT 372
o A= : : . By induction hypothesis we have a derivation

o Q;A,Q,B

(VR) ——————~

F® ,Q;(AV B)

(Z1g-- 5 Skg)

A H BH]T which leads to the derivation
[Q,S'v @iAS; @’LBS]

(&57 e 7&5)
A H BH|T
[st @iA& @lﬁs]

[gsa @i[ASa f]? @i[ﬁsa f]]
(@5, Qi[Ag, B, Qi[f, B]|
[st @i[ASaES]’ @i[ASaES]]
(2, @;i[Ag, Bsl]

For the rest of the rules only the relevant derivations are shown.

(CR) leads to

[257 AS) AS]
[QSW AS]

o (WR) leads to

e (QR) leads to

e (ref) leads to
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e (OR) leads to -
[QSa @lDJa @]AS]
(@5, @;0Ag]

gvl

e (OR) leads to

[@5,Q;45,Q;07,Q;0Ag]
[@5,@;Q;A5,Q;05,Q;0A]
[@g,@,00;Aq, Q@;07, Q@;CAg]
(@5, @;0[), Ag), @;07, @; 0 Ag]
(@, Q;[07, ©Ag), @05, Q;CAg]
[QS? Q,;075,Q@;0Ag, @0y, @ioés]
[@5,Q@;07,Q@;CAg]

n®|

a

a

k@

e (noml) leads to
[Qsa @Ja @iAS’ @jAS]
[@5,Q;5,@;A5,Q;@;Ag]
[@g,Qij, @Q;Ag, Q;j, Ag]]
[@g,Q@;5,Q;Ag,Q;j,@; Ag]
[@g,@;5,@;Ag]

Q

k@

o (cut) leads to -
(25, QiAg], W, @i Ag])

S —
s [ESa ([gSa @iAS]v @ZéS)]
[QS; gs; (@iASa @’LAS)]
[QSaES]

O

Similar to the situation with the translation between Gy @) and BH[T, cut
elimination fails because various up-rules are introduced by the translation.
Again only a subset of the rules from BH|T are needed when translating from
G’H(@) to BH|T, namely the rules i, s, w|, c|, e®], n®], n], k9|, n?], k2|,
onl, gvl, K®7, 71, and i]. Together with Lemma Bl we obtain:

Lemma 3.4. The system {i],i],s,w],cl,e®,n®|,nl,k®|,n°], k%], 0,],r],
gvl} is complete for H(@) and the rules e, €21, gb|, and gb] are admissible
for this system.

If a Gentzen-Schiitte system derived from Blackburn’s sequent calculus is used
for the translation, one obtains a similar result, which shows that €| and e®1
can be dropped without losing completeness.
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3.3.2 Translation from BH|] to G;i(@)

The mapping between structures and formulae is defined in the same way as
in the corresponding section for system Gy a). The Lemma can easily be
adapted to system G;i(@):

Lemma 3.5. For every two formulae A, B and every formula context C'{} there
F@;A Q;-B
exists a derivation in Giya)-

F@;C{A},@Q;~C{B}

Proof. By structural induction on the context C{}. The base case for C{} = {}
is trivial. Inductive cases:

e For C{} = 0C:{} the derivation is

- @,C1{A},@,~C,{B}
- @,C1{A},@;0~C1{B},@,~C1{B}
- @;0j,@;C1{A}, @;0~C1{B}, @;~C1{ B}
- @;0j,@;C1{A},@;0-C1 {B}
- @,0C1{A},@;0-Cy{B}

(WR)
(WR)
(OR)

(OR)

e For C{} = ©C1{} the derivation is

Fa@,C{A},Q;~C1{B}
Fa,;C{A}, Q;0-j,@;~C{B}
- @,C1{A}, @00 {A}, @0, @;,~C1 {B)
(OR) F@;0C1{A}, @;0-j,@;-C1{ B}
- @,0C {A}, @,0-C1 (B}

(WR)

(WR)
(OR
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e For C{} = @;C1{} the derivation is

F@;Ci1{A},@;~C1{B}
- @jcl{A},@i@jﬁcl{B}
- @;@,01{A}, @,Q,~C1{B}

(QR)
(QR)

e For C{} = (Cy A C2{}) the derivation is

A — (axiom)
(ref)

(AR)

(VR)

- @;C1, @;—C1, Qi
F @0y, @0y - @Cy{A}, @-Co{B)}

- @;(Cy A Co{A}), @;—Ch, @;~CH{B})

- @;(Cy A Co{A}), @;(~Cy V ~Co{B})

e For C{} = (C1 V Ca2{}) the derivation is

A= (az(wﬂ;; FQ;Cy,Q;=C,Q;—i
Te(AR) - @01, @-Cr F@Co{A}, @~Cy{B}
F @,Cy, @,Cof A}, @;(=Cy A —Cof B
(VR) 1 2{ A}, @Q;(=Cy 2{B})

F @i(Cl \Y CQ{A}), @i(ﬁcl A\ ﬁCQ{B})

The derivations marked with A’ exist by induction hypothesis. For applications
of the (OR)-rule, the nominal j can always be chosen in such a way that it does
not occur freely in the conclusion by taking a new nominal. O

The translation of derivations in BH| T to derivations in G’H(@) is formalized by
the following theorem.
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Q
Theorem 3.4. For every derivation A H in BH|[T\{gv/, gv1} there is a deriva-
P

- Q;Q,,

tion in G/H(@)'

Proof. The derivation A’ in G’H(@) is constructed by induction on the length of
the derivation in BH|[T\{gv]|, gv1}.

Base Case
If A is the trivial derivation consisting of a single structure P, i.e. P and Q
coincide, then the corresponding derivation is - @Q; P, for some nominal i.

Inductive Case
For the inductive case the topmost rule instance in A is singled out:

0 S{T}

p 2 S

"SRy
AILBHLT\{!}ULQUT}— AUIUDBHH\{QULQ”T}

Now the corresponding derivation in G;i(@) is constructed as follows:

N

- @R, @y T

F@;S{R},@;-S{T} F@;S{T}
Fa@;S{R} '

(cut)

FaQ,P

where A; exists by Lemma B3 and Ay by induction hypothesis. The proof 11
has to be shown for each rule in BH|T\{gv|, gv1} individually:
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(axiom) @A, QA Qi
S VX
FQ;(Av—A)
WR A Gav -4y, 0,1
® s (aziom)
(Tef) F@;A,Q~A,Q;—i

F@;A,Q;-A I
- Q;(AA B),Q,C,Q;-A,Q;(~B A =C)
- @;(AAB),@;C,Q;(=AV (-B A =C))
- @;((AAB)VC),Q;(~AV (=B A—C))

(AR)
(VR)
(VR)

where II’ is the proof

iom) ) e
re(/\R) - Q,B,Qi~B " FaceC
= @zBa @lca @l(ﬁB A ﬁc)
e wl:
(M —g=
FaT
WER Ta4 a1
e c|:
(az(m;; F@4,8-4,@-i (ax(m% T
Te(/\R) F@,4,@-4 " - 94,074
() A A G N A
F @A, Qi (-AN-A)
e e
M+a7
) ey T
( R) F@,07j,4,T,0,L
(OF) —G.o7, a1
° e@l:
oy O
i F T
O
° kj@l:
(ax(zorzi F @iA, @i—'A, @;—i (aw(lon;; - @iBa @i_‘Bv Qi—i
re F@;A,Q,-A a - Q;B,@;-B
(AR)

@A, @B, @(-A N -B)

- @;A,@;B,@,;Q;(=A A —B)
- @;A,Q;@;B,@;Q;(~A A -B)
- @;@;A,Q;Q;B,@;Q;(~A A -B)
- @;(@;AV@;B),@;0;(~AA-B)

(@R)
(@R)
(@R)
(VR)
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(axiom)
(QR)
(VR)

F@,~i,@,4,,-4
F@,-i,@,4,@,a,-4
F @j(ﬁi Vv A), Q;@,-A

(axiom)
(ref)
(QR)

(QR)
(WR)
(OR

FaQA,Q,-A, Q;—i
F@,A QA
F@,4,@,G,-A
- @y@,A, ;@A
- @0k, @,@,4, @,Q,-A
F @jD@iA, @j@iﬁA

The nominal k& can be chosen in such a way that it does not occur in A.

®

(axiom)
(ref)
(QR)
(QR)
(QR)

F @A, @A, @;—i
F@;A,@;,-A
F@,A, @@, A
F@,@;A, @,@,—A
F@,@;@,A, @@~ A

(axiom)
(ref)
(ref)

(@R)

(WR)

F @i, @i, @i
F @i, @i

F @i
F@,Q
F@,@,i,@,

e 0,l:

(axiom)
(ref)
(QR)
(QR)

- @, @4, @i
- @), @i
- @;Q@;, @i
- @,@;j,@,;@;i

(axiom)

ooy 054 8,85
v A G,oA
(WR) H @iDﬁj, @jA,@jﬁA
- @io_‘A, @ilj_'j, @jA, @j_‘A

(WR)

; axiom .
(OR) l—@iO(A/\B),@iQﬁA, @iDﬁj,@jA, @jﬁA ( ) H @j—‘B,@jB,@j—']

- @;0(A A B),@;0-A,@;0-j,@,A (ref) —F @,-B,Q,B
- @;0(A A B),@;0-A, @,0j, @B, @;(A A B)

- @Q;0(AA B), Q;0—A, @;0-j, Q;-B

- @, 0(A A B),@;0-A,@;0-B
F@,0(AAB),Q;(0—=AVO-B)

(AR)
(OR)

(OR)
(VR)
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The nominal j can be chosen in such a way that it does not occur in A or
B.

e gbl:

(aziom) 5 G465

(ref) — @, 4,4
(WR) Q, A4, @,0—A, @,—A
((vgg - @,0-,@; A4, @,0-A, QA
- @0, @; 4, @,0-A
(OF) 5077 @, 4, @,@;0-A
(QR) @,0-, @, Q; A, Q0,0 A
(@R) - @k@ilj—'j, @k@jA, @k@z<>—|A
VB) G @0y v 8, 4), 8,804

The proofs for the up-rules can be found in a similar way. O

The reason why Theorem B4 only holds for BH|T\{gv], gvT} is that gv] cannot
be translated in all possible cases. While constructing the proof II for gv| which
would be needed to show that Theorem Bl also holds for BH| T, the following

situation was encountered:

. azxiom :
(axiom) F .07, 6.0, G ( ) F@;A Q—A Q;—j

re : : (ref)
(/\R) FQ@;0-7, @]@ZOJ F @jA,@j@jﬁA
([]R) - @iD_‘j, @jA, @](@ZO‘]/\@]_‘A)

F @j@iDA, @](@103 AN @jﬁA)

We can assume that the nominal j does not occur freely in A, since the gv|-rule
may only be applied in BH| T if this is the case. By binding the only remaining
free occurrence of j with @;, we can ensure that this part of the condition of the
(O)-rule is fulfilled. However, the proof for gv| is only correct in cases where A
is not a nominal. If it is a nominal, then the condition on the (O)-rule would
be violated. One would have to construct a second proof for this particular
case. Unfortunately, no such proof was found. Since neither the (noml)-rule
nor the (quasi-analytic cut)-rule were used in the proofs for the other rules, it
is likely that such a proof - if it exists - would require these two rules. For gv|
the situation is the same.

This problem involving the gv-rules represents a second reason why cut elimi-
nation via G’H(@) was not achieved.
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4 Conclusions

The cut elimination technique which uses a translation between a system in the
calculus of structures and a cut-free sequent calculus for the same logic was not
successful for BH|T and H(@), although it was tried with two different sequent
systems. It was not possible to show the admissibility of the cut-rule with
this approach, since for both systems the translation from the sequent calculus
back to the calculus of structures introduces up-rules other than the cut rule
iT. In this regard, it was not possible to improve the result by Straflburger
[Str(17] which already states the completeness of system BH|U{k®1}. However,
a way to translate proofs from BH|T into proofs in one of the sequent systems
Gya) and G’H(@) (with a minor restriction on gv| and gvl), as well as in
the opposite direction was found. Furthermore, both translations back to the
calculus of structures have shown the admissibility of some of the inference
rules which results in two complete systems for H(Q) with a smaller number
of rules than BH|U{k®1}. As possible ways to show cut elimination for BH|T,
there are several options which could be tried next: A proof similar to the
syntactic cut elimination procedures given in [Brii04] and [Str(3] could lead to
the admissibility of i1 itself. Likewise, one could also try to show that k®7 is not
needed for completeness by induction on the structure of BH| T proofs. Another
option would be to follow Blackburn’s proof which uses Hintikka sets to show

completeness for his tableau system and adapt it to a completeness proof for
BH|.

The second drawback of system BH|T that the rules v] and vT do not represent
valid implications (in the sense that the premise should imply the conclusion),
still persists with their generalized versions gv| and gvT which allow an arbitrary
context. The rules only represent valid implications if the side condition that
7 does not occur in the conclusion is fulfilled, i.e. the condition is needed such
that the implication holds w.r.t. the Kripke semantics. This implies that it is
not possible to get rid of the side condition but it might be the case that the
rules are not needed for completeness of the inference system (which could be
tried using the same approaches as suggested above for the rules i1 and k:@T).

As already suggested by Strafiburger in [Str(7, it is straightforward to con-
struct a deep inference system which can also deal with hybrid operators other
than @ by transforming the rules from the tableau systems or sequent calculae
in [Bla00], [Bra08|, or [Sel0] into deep inference rules. But it is likely that
such a system will contain rules with side conditions which arise from the side
conditions of the corresponding rules in the original systems, similar as it is the
case for the gv-rules. Therefore, an important task would be to find out which
of these conditions are really needed for completeness and which of them are
only used in order to achieve some particular property for the system, e.g. a
normalisation result as in Braiiner’s first system. As a comparison between the
two sequent systems by Bratiner and Blackburn’s system suggests, there is some
flexibility with the structure of the rules for the nominals. Hence, an investi-
gation on which set of rules for the nominals is more suitable for a translation
into the calculus of structures is advisable.
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A further problem for future investigation, which is also presented in [Str(7], is
the question how axioms for different frame classes can be incorporated in the
calculus of structures.
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