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Encoding Graphs

We have seen that graphs can be encoded in several ways:

• Adjacency matrix (and variants)

• Adjacency list (and variants)

• Other derived representations

This is enough to store and manipulate graphs in software,
but it is not enough to exchange graphs across applications.

Open questions:

• What kind(s) of graph do we want to exchange?

• How are vertices given (numbers? strings? specific ids? . . . )?

• Are edge labels supported and what are they?

• Can the graph include values of data types (integer? float? string? times? . . . )?

• How exactly are these things encoded in bytes in a file?
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The Resource Description Framework

RDF is a W3C1 standard for exchanging graphs

• First proposed in 1999

• Updated in 2004 (RDF 1.0) and in 2014 (RDF 1.1)

• Originally built for Web data exchange

• Meanwhile used in many graph database applications

• Supported by many other W3C standards (RDFa, SPARQL, OWL, SHACL, . . . )

In this lecture: focus on graph representation features of RDF 1.1

W3C creates open standards: patent-free & freely accessible

• Gentle RDF 1.1 introduction: https://www.w3.org/TR/rdf11-primer/

• Specification of graph model: https://www.w3.org/TR/rdf11-concepts/

• Specific file formats are defined in other documents, linked from those

1World Wide Web Consortium
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Graphs in RDF

RDF allows us to specify graphs that are:

• directed (edges have a source and a target)

• edge-labelled (edges have one label)

• a restricted form of multi-graphs (multiple edges can exist between same vertices,
but only if they have different labels)

Example of such a graph:

Melitta BentzDresden Melitta company

coffee filter

founder

named after

born in

invention inventor
produces

instance of
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Identifiers in RDF
How should we refer to vertices? What kind of labels are allowed?

Definition 2.1: A Uniform Resource Identifier (URI) is a sequence (string) of a
subset of ASCII characters as defined in RFC 3986 (link). Every (absolute) URI
consists of a string that defines a scheme, followed by a colon (:) and another
sequence of characters specifying an authority, path, query, and fragment, where
all parts other than the path are optional.

A International Resource Identifier (IRI) is a generalised form of URI that allows
for an expanded range of Unicode glyphs in part of its syntax.

Example 2.2: URLs are a well-known form of URI, for example:

https︸ ︷︷ ︸
scheme

: //example.org︸               ︷︷               ︸
authority

/some/page︸          ︷︷          ︸
path

?get=something&lang=en︸                                ︷︷                                ︸
query

#results︸      ︷︷      ︸
fragment

Convention: We ignore the differences between URIs and IRIs in this course.
(The lecturer will often say “URI” when he should say “IRI.” Please ignore.)
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URIs vs. URLs

The widely used term Uniform Resource Locator (URL) is an informal way to refer to
URIs that specify the location of a digital document. Not all URIs support this.

Example 2.3: Many URI schemes have been defined. Examples include

• http, https, ftp for transferring data using various protocols

• mailto for emails (=path)

• irc for specifying IRC channels

• file for referring to locations on some file system

• urn for naming resources without defining a protocol or resolution
mechanism; used, e.g., for ISBNs

• . . .

Registered schemes usually provide some additional syntax requirements, access
protocols, and resolution mechanisms, and they often relate to a registration procedure
based on some authority.
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IRIs in RDF
RDF uses IRIs in two ways:

• IRIs define resources that appear as vertices in the graph

• IRIs are used as property labels

Example of such a graph:

https://example

.org/Melitta-Bentz

https://www.

dresden.de/#uri

https://example

.org/Melitta

https://example

.org/company

https://example

.org/coffee-filter

https://example

.org/founder

https://example

.org/named-after

https://example

.org/born-in

https://example

.org/invention https://example

.org/inventor
https://example

.org/produces

http://www.w3.org/1999/

02/22-rdf-syntax-ns#type

Note: It is not always obvious what an IRI is supposed to refer to, and many IRIs may
refer to the same thing – we cannot assume that all RDF data in the world is integrated.
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Which IRIs to use?
Where do the IRIs that we use in graphs come from?

• They can be newly created for an application
{ avoid confusion with resources in other graphs

• They can be IRIs that are already in common use
{ support information integration and re-use across graphs

Guidelines for creating new IRIs:

1. Check if you could re-use an existing IRI { avoid duplication if feasible

2. Use http(s) IRIs { useful protocols, registries, resolution mechanisms

3. Create new IRIs based on domains that you own { clear ownership; no
danger of clashing with other peoples’ IRIs

4. Don’t use URLs of existing web pages, unless you want to store data about
pages { avoid confusion between pages and more abstract resources

5. Make your IRIs return some useful content via http(s) { helps others to get
information about your resources
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Why IRIs?

URIs may seem a bit complicated

• They look a bit technical and complex

• They are hard to display or draw in a graph

• The guidelines just given may seem quite demanding to newcomers

However, it’s not that hard:

• RDF can work with any form of IRI (most tools would probably accept any Latin
letter string with a colon inside!)

• The guidelines help sharing graphs across applications – a strength of RDF

• Internet domain name registration is a very simple way to define ownership in a
global data space

• IRIs should not be shown to users (we will introduce human-readable labels soon)
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Excursion: Resolvable IRIs

We asked for IRIs that are different from URLs of Web pages while at the same time
returning some useful content via http(s).

How is this possible?

(1) Use fragments. IRIs with fragments are different from the IRIs (URLs) without the
fragment, but resolving them will return the content of this fragment-less IRI.

(2) Use HTTP redirects. Web servers can be configured to transparently redirect one
URL to another; for IRIs it is common to use HTTP response codes 302 (temporary
redirect) or 303 (see other)

Example 2.4: The Wikidata IRI http://www.wikidata.org/entity/Q5
redirects permanently (301) to https://www.wikidata.org/entity/Q5,
which redirects (303) to https://www.wikidata.org/wiki/Special:
EntityData/Q5, which by default redirects (303) to a JSON document
https://www.wikidata.org/wiki/Special:EntityData/Q5.json.

Real-world server configurations can be complicated.
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Excursion: Content negotiation

The redirect mechanism has another useful application:
Web servers (and the software they run) can dynamically decide where to redirect to.

Content negotiation is the practice of offering several documents under the
same URL by redirecting to the version that is most suitable for the request of a
client. The HTTP protocol allows clients and servers to exchange extra informa-
tion with their request that can be used to state preferences.

Example 2.5: The Accept header is commonly used by clients to select preferred
result formats for a request. For example, the command

curl -L -H "Accept: text/turtle" http://www.wikidata.org/entity/Q5

makes Wikidata return RDF data in Turtle format rather than JSON.
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Data values

IRIs can represent anything, but data values (numbers, strings, times, . . . ) should not be
represented by IRIs!

Why not use IRIs here too?

(1) Data values are the same everywhere{ no use in application-specific IRIs

(2) Many RDF-based applications need a built-in understanding of data values (e.g.,
for sorting content)

(3) Data values are usually more “interpreted” than IRIs.

Example 2.6: Using a hypothetical scheme “integer,” the IRIs integer:42
and integer:+42 would be different, but intuitively they should represent the
same number.
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Encoding data values

• Data values in RDF are written in the format "lexical value"^^datatype-IRI

• They are drawn as rectangular nodes in graphs

Example graph with data values:

https://example

.org/Melitta-Bentz

https://www.

dresden.de/#uri

"547172"^^xsd:int

"Melitta Bentz"^^xsd:string

"1873-01-31"^^xsd:date
https://example

.org/coffee-filter

https://example

.org/born-in

http://www.w3.org/2000/

01/rdf-schema#label

https://example.

org/birthdatehttps://example

.org/invention https://example

.org/inventor

https://example.

org/population

RDF supports many different datatypes, most of which are based on XML Schema (“xsd”)
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RDF datatypes

Definition 2.7: A datatype in RDF is specified by the following components:

• The value space is the set of possible values of this type.

• The lexical space is a set of stringsa that can be used to denote values of
this type.

• the lexical-to-value mapping is a function that maps each string from the
lexical space to an element of the value space.

aRDF is based on Unicode strings, but this is inessential here.

Datatypes for RDF must be identified by IRIs (known to software that supports them).

Example 2.8: The W3C standard XML Schema defines the datatype integer,
identified by the IRI http://www.w3.org/2001/XMLSchema#integer, has the
value space of all integer numbers (of arbitrarily large absolute value), the lexical
space of finite-length strings of decimal digits (0–9) with an optional leading sign
(− or +), and the expected lexical-to-value mapping.
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• The lexical space is a set of stringsa that can be used to denote values of
this type.

• the lexical-to-value mapping is a function that maps each string from the
lexical space to an element of the value space.

aRDF is based on Unicode strings, but this is inessential here.

Datatypes for RDF must be identified by IRIs (known to software that supports them).

Example 2.8: The W3C standard XML Schema defines the datatype integer,
identified by the IRI http://www.w3.org/2001/XMLSchema#integer, has the
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Important datatypes in RDF
Many standard datatypes are defined by XML Schema (currently in version 1.1 of 2012):

Name Value space Lexical space

string XML-defined subset of Unicode strings Value space (mapping is identity)

boolean The set {true, false} The set {true, false, 1, 0

decimal Arbitrary-precision decimal numbers Sequences of decimal digits, op-
tionally signed and with one .

integer Arbitrary integer numbers Like decimal but without .

int {−2147483648, . . . , 2147483647} (32bit) Integer strings that map to values
within this range

Similar types exist for long (64bit), short (16bit), byte (8bit), unsigned versions, etc.

double IEEE double-precision 64-bit floating
point numbers

decimal strings, exp notation num-
bers, special values (e.g., NaN)

float single-precision 32-bit floating point
numbers

same as double
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Important datatypes in RDF (2)

There are also many types for dates and times:

Name Value space Lexical space

dateTime dates with times represented by a
seven-tuple consisting of year, month,
day, hours, minutes, seconds, timezone
offset (constrained to time-like ranges)

ISO-style date-time strings, e.g.,
2018-10-23T11:45:30+01:00;
one can write Z for offset 00:00

There are also partial time types, such as date, time, gYear (Gregorian year), etc.

Many further types exist: a full list can be found at https:
//www.w3.org/TR/2014/REC-rdf11-concepts-20140225/#section-Datatypes
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RDF datatype literals

Definition 2.9: An RDF literal is an expression of form "lexical value"^^datatype,
where lexical value is a string and datatype is an IRI.

Literals are semantically interpreted to denote a value in the value space as de-
fined by the datatype’s lexical-to-value mapping. If the given string is not a valid
lexical value, the literal is ill-typed.

Note: RDF 1.1 also allows for string literals "lexical value"; in this case XML
Schema string is assumed as datatype.
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Special case: strings in a language

Furthermore, RDF supports strings that have a specific language:

Definition 2.10: A language-tagged string is an expression of the form
"string"@language where string is a Unicode string and language is a well-formed
language tag (after BCP47). They are interpreted as pairs of strings with a (lower-
cased) language tag.

The datatype of these literals is defined to be http://www.w3.org/1999/02/
22-rdf-syntax-ns#langString (but this is never used in syntax).

Example 2.11: The strings "Pommes Frites"@de, "chips"@en-UK, and "French
fries"@en-US are language-tagged.

This special case of literal is widely used in practice to encode human-readable labels.
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Blank nodes
RDF also supports vertices that are not identified by a IRI, called blank nodes or
bnodes.

• Intuitively, bnodes are placeholder for some specific (but unspecified) node

• Their use makes the claim: “there is something at this position”

• Similar to existentially quantified variables in logic

Example: Blank nodes have historically been used for auxiliary vertices

https://www.

dresden.de/#uri

"51.049259"^^xsd:decimal

"13.73836"^^xsd:decimal

https://example

.org/coordinates

https://example

.org/latitude

https://example

.org/longitude

Note: Today, bnodes are largely avoided. They still occur in the RDF-encoding of the
OWL Web Ontology Language, but specialised tools are used in this application anyway.
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RDF Graphs

We now have defined all necessary kinds of RDF terms: IRIs, blank nodes, and literals.

The formal definition of RDF graph is maybe slightly different from expectations:

Definition 2.12: An RDF graph is a set of triples consisting of the following parts:

• a subject that is an IRI or blank node

• a predicate that is an IRI

• a object that is an IRI, blank node, or literal

Notes:

• This view resembles a (labelled) adjacency list encoding

• The restrictions on the use of blank nodes and literals in triples is a bit arbitrary

• RDF graphs are mostly syntactic (rather what we write than what we mean)

• In particular, literals are not interpreted when defining graphs
{ multiple ways of writing the same value lead to multiple graphs
{ ill-formed literals are allowed in graphs
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Serialisations
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RDF Serialisations

What we outlined so far is the abstract sytnax of RDF. To exchange graphs, we need
concrete syntactic forms to encode RDF graphs.

There are numerous syntactic formats available:

• N-Triples as a simple line-based format

• Turtle adds convenient abbreviations to N-Triples

• JSON-LD for encoding RDF graphs in JSON

• RDF/XML for encoding RDF graphs in XML

• RDFa for embedding RDF graphs into HTML

Further historic/unofficial formats exist but are hardly relevant today.
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N-Triples

N-Triples is almost the simplest format conceivable:
• Each line encodes one triple:

– IRIs are written in pointy brackets, e.g., <https://www.dresdenrespekt.de/>
– Literals are written as usual with a given type IRI, e.g.,
"2018-10-21"^^<http://www.w3.org/2001/XMLSchema#date> or with a
language-tag, e.g., "Wir sind mehr"@de

– Blank nodes are written as _ : stringId, where stringId is a string that identifies
the blank node within the document (it has no global meaning)

– Parts are separated by whitespace, and lines end with .

• Unicode is supported, but various escape sequences also work

• Comments are allowed after triples (nowhere else); they start with #

Full specification at https://www.w3.org/TR/n-triples/
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Example

https://example

.org/Melitta-Bentz

https://www.

dresden.de/#uri

"547172"^^xsd:int

"Melitta Bentz"@en

"1873-01-31"^^xsd:date

https://example

.org/born-in

http://www.w3.org/2000/

01/rdf-schema#label

https://example.

org/birthdatehttps://example

.org/invention https://example

.org/inventor

https://example.

org/population

could be encoded as (line-breaks within triples for presentation only):

<https://example.org/Melitta-Bentz> <http://www.w3.org/2000/01/rdf-schema#label> "Melitta Bentz"@en .

<https://example.org/Melitta-Bentz> <https://example.org/birthdate>

"1873-01-31"^^<http://www.w3.org/2001/XMLSchema#date> .

<https://example.org/Melitta-Bentz> <https://example.org/invention> _:1 .

<https://example.org/Melitta-Bentz> <https://example.org/born-in> <https://www.dresden.de/#uri> .

<https://www.dresden.de/#uri> <https://example.org/population>

"547172"^^<http://www.w3.org/2001/XMLSchema#int> .

_:1 <https://example.org/inventor> <https://example.org/Melitta-Bentz> .
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N-Triples: Summary

Advantages:

• Very simple

• Fast and easy to parse

• Processable even with basic text-processing tools, e.g., grep

Disadvantages:

• Somewhat inefficient in terms of storage space

• Not particularly human-friendly (reading and writing)
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Summary

RDF is a W3C standard for describing directed, edge-labelled graphs in an interoperable
way

It identifies vertices and edge-types using IRIs, and it can use many datatypes

Several syntactic formats exist for exchanging RDF data, the simplest being N-Triples

What’s next?

• How can we encode data in RDF?

• Where can we get RDF data? Application examples?

• How can we query and analyse such graphs?
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