ShareAlike Your Data: Self-Referential Usage Policies
for the Semantic Web

Markus Krotzsch! and Sebastian Speiser?

! Department of Computer Science, University of Oxford, UK
markus.kroetzsch@cs.ox.ac.uk
2 Institute AIFB, Karlsruhe Institute of Technology, DE
speiser@kit.edu

Abstract. Numerous forms of policies, licensing terms, and related conditions
are associated with Web data and services. A natural goal for facilitating the re-
use and re-combination of such content is to model usage policies as part of
the data so as to enable their exchange and automated processing. This paper
thus proposes a concrete policy modelling language. A particular difficulty are
self-referential policies such as Creative Commons ShareAlike, that mandate that
derived content is published under some license with the same permissions and
requirements. We present a general semantic framework for evaluating such re-
cursive statements, show that it has desirable formal properties, and explain how
it can be evaluated using existing tools. We then show that our approach is com-
patible with both OWL DL and Datalog, and illustrate how one can concretely
model self-referential policies in these languages to obtain desired conclusions.

1 Introduction

Semantic technologies facilitate the sharing and re-use of data and associated services,
but in practice such uses are often governed by a plethora of policies, licensing terms,
and related conditions. Most data and service providers reserve certain rights, but an
increasing number of providers also choose usage terms that encourage the re-use of
content, e.g. by using a Creative Commons® license. Even such policies still impose
restrictions, and it has been estimated that 70% — 90% of re-uses of Flickr images
with Creative Commons Attribution license actually violate the license terms [29]. A
possible reason for frequent violations is that checking license compliance is a tedious
manual task that is often simply omitted in the process of re-using data.

A natural goal therefore is to accurately model usage policies as part of the data so
as to enable their easy exchange and automated processing. This resonates with multiple
topical issues in Semantic Web research. On the one hand, it is increasingly acknowl-
edged that the distribution of semantic data and services may also require transparent
licensing for such content [33,10]. This closely relates to the wider goal of semanti-
cally representing provenance information about the origin and context of data items.
Not surprisingly, the W3C Incubator Group on Provenance also lists support for usage
policies and licenses of artefacts in their requirements report [9].

3 http://creativecommons.org/

http://creativecommons.org/

On the other hand, modelling of policy information is also promising as an ap-
plication area for semantic technologies [17,7]. Capturing the variety of relevant condi-
tions involves domain-specific concepts such as “non-commercial” or “fair use” but also
(when thinking about distribution policies that are internal to an organisation) levels of
confidentiality, and personal access permissions. Semantic technologies offer power-
ful tools and methodologies for developing shared conceptualisations for such complex
modelling problems.

This paper presents a new policy modelling language to address the specific chal-
lenges of this domain. A primary task is to enable the computation of policy contain-
ment, i.e. the automatic decision whether all uses that are allowed by one policy are
also allowed by another [8]. But some policies go a step further and require such con-
tainments to hold as part of their condition. A well-known example are the Creative
Commons ShareAlike licenses which mandate that content is published under some li-
cense that involves the same permissions and requirements — including the requirement
to share under such licenses only. Such self-referential policies introduce recursive de-
pendencies and a form of meta-modelling not found in ontology languages like OWL.

Our main contributions to solving this problem are as follows.

(1) We develop the syntax and semantics of a general policy modelling language. Our
formalisation is guided by an analysis of the requirements for a policy (meta) model
that supports self-referential policies as given by the Creative Commons licenses.

(2) We show that this policy language has desirable formal properties under reasonable
syntactic restrictions on policy conditions and background theories. In particular
we establish how to utilise standard first-order reasoning in a non-trivial way for
computing conclusions under our new semantics.

(3) Using this connection to first-order logic, we instantiate this general policy lan-
guage for the Web Ontology Language OWL and for the basic rule language Data-
log. Both cases lead to expressive policy representation languages that can readily
be used in practice by taking advantage of existing tools. Concretely, we show how
to express the well-known Creative Commons licenses and verify that the expected
relationships are derived.

Section 2 introduces our main use case and Section 3 presents a basic vocabulary to
model policies. In Section 4 we discuss challenges in modelling self-referential policies
formally. We introduce a formal policy semantics in Section 5 and apply it to our use
case in Section 6. Related work is discussed in Section 7. The technical results at the
core of this paper are not obvious and require a notable amount of formal argumentation.
However, the focus of this presentation is to motivate and explain the rationale behind
our proposal. Formal proofs and further details are found in an extended report [20].

2 Use Case: Creative Commons ShareAlike

To motivate our formalisation of policies we discuss some common requirements based
on the popular Creative Commons (CC) licenses. CC provides a family of license mod-
els for publishing creative works on the Web, which share the common goal of enabling
re-use as an alternative to the “forbidden by default” approach of traditional copyright

law. Each license specifies how the licensed work may be used by stating, e.g., in which
cases it can be further distributed (shared) and if derivative works are allowed.

The most permissive CC license is Creative Commons Attribution (CC BY), which
allows all types of uses (sharing and derivation) provided that the original creator of the
work is attributed. Various restrictions can be added to CC BY:

— NoDerivs (ND): the work can be used and redistributed, but it must remain un-
changed, i.e., no derivations can be created.

— NonCommercial (NC): re-use is restricted to non-commercial purposes.

— ShareAlike (SA): derived works have to be licensed under the identical terms.

The CC ShareAlike restriction is particularly interesting, as it does not only restrict
processes using the protected data artefact, but the policy of artefacts generated by those
processes. ShareAlike is formulated in legal code as follows:

“You may Distribute or Publicly Perform an Adaptation only under: (i) the
terms of this License; (ii) a later version of this License [...]; (iii) a Creative
Commons jurisdiction license [...] that contains the same License Elements as
this License [...]""*

Thus derived artefacts can only be published under some version of the exact same CC
license. This could easily be formalised by simply providing an exhaustive list of all
licenses that are currently admissible for derived works. In this case, policies would be
identified by their name, not by the permissions and restrictions that they impose.

This effect can be desired, e.g. for the GPL which thus ensures its “viral” distri-
bution. However, the name-based restriction is not intended for Creative Commons,
as noted by Lessig who originally created CC: rather, it would be desirable to allow
the combination of licenses that share the same intentions but that have a different
name, e.g. to specify that an artefact must be published under a license that allows only
non-commercial uses instead of providing a list of all (known) licenses to which this
characterisation applies [21]. To overcome this incompatibility problem, we propose
content-based policy restrictions that are based on the allowed usages of a policy.

3 Schema for Modelling Policies

Before we can formally specify the semantics of a policy language that can formalise
the “intention” of a policy like CC, we need some basic conceptual understanding of the
modelling task, and also some shared vocabulary that enables the comparison of differ-
ent licenses. In this section, we provide a high-level schema that we use for modelling
policies in this paper.

In general, we understand a policy as a specification that defines what one is allowed
to do with an artefact that has this policy. Thus, a policy can be viewed as a collection
of admissible usages. In order to align with the terminology of the Open Provenance
Model OPM [23] below we prefer to speak of admissible “processes” as the most gen-
eral type of use. The admissible processes can be viewed as “desired states” (in the

4 Section 4(b) in http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

V
wasTriggeredBy used——— | Artefact
property A wasGeneratedBy hasPolicy

T arrow start: domain

-

Fig. 1. Informal view of a simple provenance model

sense of “states of the world” such as when an artefact has been published with suit-
able attribution), which corresponds to the notion of goal-based policies as defined by
Kephart and Walsh [19].

To specify the conditions of a policy, we need a model for further describing such
usage processes and their relationships to concrete artefacts. This model in particular
must represent the origin of the artefact, and the context in which it has been published.
Such provenance information can be described in various ways, e.g. with a provenance
graph that specifies the dependencies between processes and the artefacts they use and
generate. Here we use the very simple provenance model illustrated informally in Fig. 1.
This base model can of course be further specialised for specific applications and other
use cases; we just require a minimal setup for our examples.

The provenance model re-uses the vocabulary elements artefact, process, used, was-
GeneratedBy, and wasTriggeredBy from the Open Provenance Model. For our partic-
ular application, we further split processes into derivations (processes that generate a
new artefact) and other usages that only use artefacts without change. To cover the CC
use case, we introduce the hasPurpose property relating a usage to its purpose, e.g.,
stating that a usage was non-commercial. The hasPolicy property assigns to an arte-
fact a policy, which means that all processes using the artefact are (legally) required to
comply to its policy.

According to OPM, a process p; wasTriggeredBy another process p», if p; can only
have started after p, started. So, somewhat contrary to intuition, the “triggering” is
rather a precondition but not a necessary cause of the triggered one. A usage restriction
that requires attribution would thus be formalised as a policy requiring that the usage
process wasTriggeredBy an attribution process, and not the other way around.

The provenance model provides a basic vocabulary for specifying information about
artefacts and policies. To realise content-based restrictions we further want to talk about
the relationships of policies. For example, ShareAlike requires the value of hasPolicy
to refer to a policy which allows exactly the same uses as the given CC SA license.
This subsumption between policies is called policy containment, and we introduce a
predicate containedin to express it. Informally speaking, the fact containedIn(p, g) can
also be read as: any process that complies with policy p also complies with policy g.
When allowing policy conditions to use containedin, the question whether or not a
process complies to a policy in turn depends on the evaluation of containedln. Our
goal therefore is to propose a formal semantics that resolves this recursive dependency
in a way that corresponds to our intuitive understanding of the policies that occur in
practice.

4 Challenges of Defining a Semantics for Policies

For formalising our above understanding of policies, we use the syntax of first-order
logic as a general framework. Thus, our earlier ‘classes’ and ‘properties’ become pred-
icates of arity 1 and 2, respectively. A policy that represents a set of allowed processes
then corresponds to a formula ¢[x] with one free variable x, representing the set of in-
dividuals that make ¢[x] true when assigned as values to x.> For example, a policy p
that allows no uses other than derivations that generate artefacts with policy p can be
described as:

p : Derivation(x) A dy.(wasGeneratedBy(y, x) A hasPolicy(y, p)). n

More generally, we can use containedIn to allow derived artefacts to use any policy that
is at least as restrictive as p:

p : Derivation(x) A dy.(wasGeneratedBy(y, x) A

dz.(hasPolicy(y, z) A containedIn(z, p))). @

A collection of such policy definitions p : ¢,[x] will be called a policy system. Given
a policy system with definitions p : ¢, for all policy names p € Np, we can formalise
some general restrictions that conform to our intuition:

Yx.conformsTo(x, p) < ¢p[x] for all p € Np, 3)
Vx,y.containedIn(x, y) < Vz.(conformsTo(z, x) — conformsTo(z, y)). (@]

Formula (3) defines conformsTo to relate processes to the policies they conform to.
Please note the difference between conformsTo (actual semantic conformance) and
hasPolicy (legally required conformance). Formula (4) ensures that containedIn re-
lates two policies exactly if fewer (or at most the same) processes conform to the first,
i.e. if the first policy is at least as restrictive as the second. The set of these two types of
sentences (for a given set of policy names Np) is denoted by T;.

Unfortunately, these formulae under first-order semantics do not lead to the in-
tended interpretation of policies. Consider the policy (2), and a second policy ¢ that
is defined by exactly the same formula, but with p replaced by g. Intuitively, p and
q have the same conditions but merely different names, so they should be in a mu-
tual containedin relationship. Indeed, there are first-order models of T where this
is the case: if containedIn(p, g) holds, then Vx.p,[x] — ¢,[x] is also true. How-
ever, this is not the only possible interpretation: if containedIn(p, g) does not hold,
then Yx.@,[x] — ¢,4[x] is not true either. First-order logic does not prefer one of
these interpretations, so in consequence we can conclude neither containedIn(p, g) nor
—containedin(p, q).

Working with first-order interpretations still has many advantages for defining a
semantics, in particular since first-order logic is widely known and since many tools
and knowledge representation languages are using it. This also enables us to specify
additional background knowledge using first-order formalisms of our choice, e.g. the

> We assume basic familiarity with first-order logic. Formal definitions are given in [20].

OWL DL ontology language. However, we would like to restrict attention to first-order
models that conform to our preferred reading of containedIn. Logical consequences
can still be defined as the statements that are true under all of the preferred interpre-
tations, but undesired interpretations will be ignored for this definition. Our goal of
defining the semantics of self-referential policies thus boils down to defining the “de-
sired” interpretations of a given first-order theory that uses containedIn. To do this, we
propose a semantics for policy containment that, intuitively speaking, always prefers
containedIn(p, ¢) to hold if this is possible without making additional unjustified as-
sumptions. For illustration, consider the following policy ¢ that further restricts p from
(2) to non-commercial uses:

q : Derivation(x) A Yw.(hasPurpose(x, w) - NonCommercial(w)) A

5
dy.(wasGeneratedBy(y, x) A Jz.(hasPolicy(y, z) A containedIn(z, g))). ©)

Though the policy ¢ is clearly more restrictive than p, there still is a first-order interpre-
tation that satisfies containedIn(p, ¢) by simply assuming that all things that conform
to p happen to have non-commercial uses only. Nothing states that this is not the case,
yet we do not want to make such assumptions to obtain more containedIn conclusions.
We thus distinguish basic predicates such as NonCommercial and hasPolicy from
the two “special” predicates containedln and conformsTo. Basic predicates are given
by the data, and represent the available information, and their interpretation should not
be considered a matter of choice. Special predicates in turn should be interpreted to
reflect our intended understanding of policy containment, and as shown in the above
example it is often desirable to maximise containedIn entailments. In other words, we
would like to ensure that the consideration of a policy system does not lead to new
logical consequences over basic predicates — merely defining license conditions should
not increase our knowledge of the world. More formally: the policy semantics should be
conservative over first-order semantics w.r.t. sentences that use only basic predicates.
Unfortunately, this is not easy to accomplish, and indeed Theorem 1 only achieves a
limited version of this. One reason is that even T may entail undesired consequences.
Consider policies as follows (we use abstract examples to highlight technical aspects):

p: A(x) A containedIn(p, ¢) q: B(x). 6)

This policy system entails containedIn(p, ¢). Indeed, if containedIn(p, g) would not
hold, then nothing would conform to p by (3). But the empty set is clearly a subset of
every other set, hence containedIn(p, g) would follow by (4). Thus all interpretations
that satisfy T must satisfy Vx.A(x) A containedIn(p, g) — B(x), and thus Yx.A(x) —
B(x) is a consequence over basic predicates. Clearly, the mere definition of licenses
should not entail that some otherwise unrelated class A is a subclass of B.

5 A Formal Language for Policy Definitions

In order to address the challenges discussed in the previous section, we now formally
define a policy language. More precisely, we define a language for policies and a first-
order language that is to be used for background theories. These definitions are intended

to be very general to impose only those restrictions that we found necessary to obtain a
well-behaved semantics. Section 6 shows how this general framework can be instanti-
ated in various well-known modelling languages.

The basic restriction that we impose on the logic is connectedness. Intuitively, this
ensures that a formula can only refer to a connected relational structure of individuals.
In our setting the conformance of a process to a policy thus only depends on the charac-
teristics of individuals directly or indirectly reachable from the process. We argue that
this is a small restriction. It might even be a best practice for “controlled” modelling in
an open environment like the Web, as it ensures that the classification of any object is
based only on its “environment” and not on completely unrelated individuals.

Our formal definition is reminiscent of the Guarded Fragment (GF) of first-order
logic [4] and indeed it can be considered as a generalization of GF, though without
the favourable formal properties that motivated GF. We first define open connected
formulae (with free variables) and then closed ones. We write ¢[x] to indicate that ¢
has at most the free variables that occur in x (or possibly less). For technical reasons,
our first definition distinguishes “guard predicates” that must not use constant symbols
from “non-guard predicates” where constants are allowed:

Definition 1. Consider a first-order signature X where each predicate in X is marked
as a guard predicate or as a non-guard predicate. The connected open fragment COF of
first-order logic over X' is the smallest set of formulae over X that satisfies the following
properties:

1. Every atomic formula p(t) with t a vector of terms that contain at least one variable
belongs to COF, provided that t contains only variables if p is a guard predicate.

2. If o1 and @, are in COF then so are =1, ©1 A @2, 1 V @2, and @1 — .

3. Consider a formula ¢[x,y] in COF, and a conjunction a[x,y] = aj[x,y] A ... A
ay[x,y] of atomic formulae «; that contain only guard predicates and variables,
such that x, y are both non-empty and do not share variables. Then the formulae

dy.alx,y] A ¢lx,y] Yy.alx,y] — ¢[x,yl,

are in COF provided that for each variable y in y, there is some variable x in x and
some atom «a;[x,y] where both x and y occur.

The distinction of guard and non-guard predicates is important, but a suitable choice
of guard predicates can be easily made for a given formula set of formulae in COF by
simply using exactly those predicates as guards that do not occur in atomic formulae
with constants. The only predicate that we really need to be a non-guard is containedin.
Therefore, we will omit the explicit reference to the signature 2 in the following and
simply assume that one signature has been fixed.

Definition 2. The connected fragment CF of first-order logic consists of the following
sentences:

— Every formula without variables is in CF.
— If plx] is a COF formula with one free variable x, then ¥ x.¢[x] and Ax.¢[x] are in
CE

We will generally restrict to background theories that belong to CF. As discussed in
Section 6 below, large parts of OWL DL and Datalog fall into this fragment. A typical
example for a non-CF sentence is the formula —-3x.A(x) V =3x.B(x). Also note that the
formulae (3) and (4) of T are not in CF — we consider them individually in all our
formal arguments. On the other hand, the policy conditions (1), (2), (5), and (6) all are
in COF. Using the terminology of connected formulae, we can define policy conditions,
policy descriptions, and policy systems that we already introduced informally above:

Definition 3. Let Np be a set of policy names. A policy condition ¢ for Np is a for-
mula that may use an additional binary predicate containedIn that cannot occur in
background theories, and where:

— ¢ is a COF formula with one free variable,

— ¢ contains at most one constant symbol p € Np that occurs only in atoms of the
Sform containedIn(y, p) or containedIn(p, y),

— every occurrence of containedIn in ¢ is positive (i.e. not in the scope of a negation)
and has the form containedIn(y, p) or containedIn(p, y).

A policy description for a policy p € Np is a pair {p,¢) where ¢ is a policy condi-
tion. A policy system P for Np is a set of policy descriptions that contains exactly one
description for every policy p € Np.

This definition excludes the problematic policy p in (6) above while allowing (1),
(2), and (5). Moreover, it generally requires containedIn to be a non-guard predicate.

We define the semantics of policy containment as the greatest fixed point of an
operator introduced next. Intuitively, this computation works by starting with the as-
sumption that all named policies are contained in each other. It then refers to the policy
definitions to compute the actual containments that these assumptions yield, and re-
moves all assumptions that cannot be confirmed. This computation is monotone since
the assumptions are reduced in each step, so it also has a greatest fixed point.

Definition 4. Consider a set of CF sentences T (background theory), a set of policy
names Np that includes the top policy p+ and the bottom policy p,, and a policy system
P for Np such that {p+, T(x)),{(pL, L(x)) € P.% Let Ty be the following theory:

T = {¥Yx,y,z.containedIn(x, y) A containedIn(y, z) — containedIn(x, z),
Vx.containedIn(x, p1), Yx.containedIn(p_, x)}.

For a set C C NIZ,, define CI(C) := {containedIn(p,q) | {p,q) € C}. An operator
Pr: SD(NE,) - P(N%),where SD(NIZ:,) is the powerset of N3, is defined as follows:

Pr(C) = {p. @) 1 {p, 0p), (g, ¢g) € Pand T U T¢; U CI(C) = Vx.0p[x] = @4lx]}.

Proposition 1. The operator Pr has a greatest fixed point gfp(Pr) that can be obtained
by iteratively applying Pr to Nf, until a fixed point is reached. More concretely, the
greatest fixed point is of the form P'}(N%) for some natural number n < |Np|* where P
denotes n-fold application of Pr.

% As usual, we consider T/L as unary predicates that are true/false for all individuals.

The fact that Py requires the existence of policies p+ and p, is not restricting the ap-
plicability of our approach since the according standard policy declarations can always
be added. Using the greatest fixed point of Py, we now define what our “preferred”
models for a policy system and background theory are.

Definition 5. Given a policy system P, a P-model for a theory T is a first-order inter-
pretation I that satisfies the following theory:

I TUTgUCHKgfp(Pr) U T,)

where T and Cl(Qfp(P7)) are as in Definition 4, and where T is the collection of all
sentences of the form (3) and (4). In this case, we say that I P-satisfies T. A sentence ¢
is a P-consequence of T, written T |=p ¢, if I |= ¢ for all P-models I of T.

It is essential to note that the previous definition uses a fixed point computation only
to obtain a minimal set of containments among named policies that must be satisfied by
all P-models. It is not clear if and how the semantics of P-models could be captured by
traditional fixed point logics (cf. Section 7). At the core of this problem is that policy
conformance is inherently non-monotonic in some policies that we want to express.
A policy p might, e.g., require that the policy of all derived artefacts admits at least
all uses that are allowed by p. Then the fewer uses are allowed under the p, the more
policies allow these uses too, and the more uses conform to p. This non-monotonic
relationship might even preclude the existence of a model.

The policy semantics that we defined above is formal and well-defined for all pol-
icy systems and background theories, even without the additional restrictions of Defi-
nition 2 and 3. However, three vital questions have to be answered to confirm that it is
appropriate for our purpose: (1) How can we compute the entailments under this new
semantics? (2) Does this semantics avoid the undesired conclusions discussed in Sec-
tion 4?7 (3) Does the semantics yield the intended entailments for our use cases? The
last of these questions will be discussed in Section 6. Questions (1) and (2) in turn are
answered by the following central theorem of this paper:

Theorem 1. Consider a theory T and a policy system P. For every ¢ that is a CF
formula over the base signature, or a variable-free atom (fact) over the predicates
containedIn or conformsTo we have:

T, Te, Cl(gfp(Pr). Tyt = ¢ i TFEre ®)

where T and Cl(gfp(Pr)) are defined as in Definition 4, and where T is the collection
of all sentences of the form (3).

Let us first discuss how Theorem 1 answers the above questions.

(1) The theorem reduces P-entailment to standard first-order logic entailment. Since
ofp(Pr) can be computed under this semantics as well, this means that reasoning
under our semantics is possible by re-using existing tools given that one restricts
to fragments of (CF) first-order logic for which suitable tools exist. We pursue this
idea in Section 6.

(2) The theorem asserts that all CF formulae that are P-entailments are entailed by the
first-order theory TUT,UCI(gfp(Pr)). It is easy to see that T; and Cl(gfp(P7)) only
affect the interpretation of formulae that use containedIn. All other CF formulae
are P-entailments of T if and only if they are first-order entailments of 7. Thus,
new entailments over base predicates or even inconsistencies are not caused by
considering a policy system.

The proof of Theorem 1 is not straightforward. At its core, it hinges on the fact
that every model I of T U T; U Cl(gfp(Pr)) can be extended into a P-model TofT
that satisfies no containedIn or conformsTo facts that have not already been satisfied
by 7. Constructing this P-model requires a number of auxiliary constructions centred
around the idea that, for every policy containment not in Cl(gfp(Pr)), one can find a
witness (a process conforming to the one policy but not to the other) in some model of
T U T U Cl(gfp(Pr)). This witness (and all of its environment) is then copied into the
P-model that we want to construct. This is only feasible since the CF formulae in T
are inherently “local” and will not change their truth value when extending the model
by new (disjoint) individuals. After enough witnesses have been included to refute all
non-entailed containedin facts, the construction of 1 is completed by defining suitable
extensions for conformsTo where care is needed to do this for “unnamed” policies so
that T is satisfied. A full formal argument is found in the technical report [20].

6 Practical Policy Languages

In this section, we provide concrete instantiations of the general formalism introduced
above. The CF fragment still is overly general for practical use, in particular since the
computation of entailments in this logic is undecidable which precludes many desired
applications where policy containment would be checked automatically without any
user interaction.” However, Theorem 1 asserts that we can generally evaluate formal
models under the semantics of first-order logic which is used in many practical knowl-
edge representation languages. By identifying the CF fragments of popular modelling
formalisms, we can therefore obtain concrete policy modelling languages that are suit-
able for specific applications.

There are various possible candidates for knowledge representation languages that
can be considered under a first-order semantics and for which good practical tool sup-
port is available. Obvious choices include the Web Ontology Language OWL under its
Direct Semantics [32], and the rule language Datalog under first-order semantics [3]
which we will discuss in more detail below.

As we will explain for the case of Datalog, one can also model policy conditions
as (conjunctive/disjunctive) queries with a single result, given that the query language
uses a first-order semantics. Query evaluation is known to be difficult for expressive
modelling languages, but can be very efficient when restricting to a light-weight back-
ground theory. A possible example is the combination of SPARQL for OWL [11] with

7 This is easy to see in many ways, for example since (as noted below) CF allows us to ex-
press description logics like SRZQ, whereas CF does not impose the regularity or acyclicity
conditions that are essential for obtaining decidability of reasoning in these logics [15].

the lightweight OWL QL or OWL RL languages [32]. The below cases thus can only
serve as an illustration of the versatility of our approach, not as a comprehensive listing.

6.1 Modelling Policies in OWL DL

The Direct Semantics of OWL 2 is based on description logics which in turn are based
on the semantics of first-order logic [32]. The ontology language OWL 2 DL for which
this semantics is defined can therefore be viewed as a fragment of first-order logic to
which we can apply the restrictions of Section 5. The standard translation to first-order
logic (see, e.g., [14]) produces formulae that are already very close to the syntactic form
of CF sentences described above. Moreover, OWL class expressions are naturally trans-
lated to first-order formulae with one free variable, and are thus suitable candidates for
expressing policies. Policy containment then corresponds to class subsumption check-
ing — a standard inferencing task for OWL reasoners. The binary predicates of our sim-
ple provenance model, as well as the special predicates containedln and conformsTo
can be represented by OWL properties, whereas unary predicates from the provenance
model correspond to primitive OWL classes.

Some restrictions must be taken into account to ensure that we consider only on-
tologies that are CF theories, and only classes that are valid policy conditions. Nominals
(enumerated classes as provided by ObjectOneOf in OWL) are expressed in first-order
logic using constant symbols, and must therefore be excluded from background ontolo-
gies. On the other hand nominals must be used in containedIn in policy descriptions
(in OWL this particular case can conveniently be expressed with ObjectHasValue).
Besides nominals, the only non-connected feature of OWL 2 that must be disallowed is
the universal role (owl: topObjectProperty). On the other hand, cardinality restric-
tions are unproblematic even though they are usually translated using a special built-in
equality predicate ~ that we did not allow in first-order logic in Section 5. The reason is
that = can easily be emulated in first-order logic using a standard equality theory [20],
so that all of our earlier results carry over to this extension.

To apply Theorem 1 for reasoning, we still must be able to express T¢; of Definition 4
in OWL. Transitivity of containedIn is directly expressible, and the remaining axioms
can be written as follows:®

T C dcontainedIn.{p} T C dcontainedin™ {p,}

Note that the represented axioms are not in CF, and likewise the restriction to nominal-
free OWL is not relevant here.

Concrete policies are now easily modelled. The public domain (PD) policy that
allows every type of usage and derivation is expressed as:

PD: Usage U Derivation .

Processes compliant to CC BY are either usages that were triggered by some attribu-
tion, or derivations for which all generated artefacts have only policies that also require

8 Throughout this section we use the usual DL notation for concisely writing OWL axioms and
class expressions; see [14] for an extended introduction to the relationship with OWL 2 syntax.

attributions, i.e., which are contained in BY:

BY: (Usage n dwasTriggeredBy.Attribution) LI
(Derivation 1 ¥ wasGeneratedBy~'.¥ hasPolicy.d containedin.{BY}).

To account for the modular nature of CC licenses, it is convenient to re-use class ex-
pressions as the one for BY. Thus, we will generally write Cpy to refer to the class
expression for BY, and similarly for the other policies we define. To define NoDerivs
(ND) licenses that allow all processes that are not derivations, we introduce Cnp as an
abbreviation for Process M —Derivation. We can thus express CC BY-ND as

BY-ND: Cgy M Cnp.

The ShareAlike (SA) condition cannot be modelled as an independent building block,
as it refers directly to the policy in which it is used. As an example, we model the
condition for the CC BY-SA policy as a requirement that all policies of all generated
artefacts are equivalent to BY-SA, i.e., they are contained in BY-SA and BY-SA is
contained in them:

BY-SA: Cgy M \/wasGenera’[edBy’1 .Y hasPolicy.(3 containedIn.{BY-SA} 1
Jcontainedin™ .{BY-SA}).

To validate the basic practicability of this modelling approach, we used the OWL
reasoner HermiT® to compute the fixed point semantics of the policy system. We then
conducted some basic tests with the formalised CC policies.!” Not surprisingly, it can
be observed that the fixed point of Py is reached after just 2 iterations, which is sig-
nificantly less than the rough upper bound of |[Np|> which was 49 in case of the 7 CC
licenses. In general, one may presume that even big numbers of policies do rarely ex-
pose a linear dependency that would lead to long iterations for reaching a fixed point.

As a basic example of how to apply automated conformance checking, we modelled
for every combination (porig, Pderiv) Of Creative Commons licenses a derivation which
uses an artefact with policy pori; and generates a new artefact with policy pgeriy. If such
a derivation is compliant to peg, We know that pgeiy is a valid license for derivations
of porig licensed artefacts. The results (as expected) agree with the official Creative
Commons compatibility chart.!!

It can be noted that, besides its use for conformance checking, the computation of
containedIn can also assist in modelling policies. For example, one can readily infer
that any ShareAlike (SA) requirement is redundant when a NoDerivs (ND) requirement
is present as well: adding SA to any ND license results in an equivalent license, i.e. one
finds that the licenses are mutually contained in each other.

% http://www.hermit-reasoner.com/

10 For reasons of space, we did not include all formalisations for all CC licenses here; the com-
plete set of example policies for OWL and Datalog is available at http://people.aitb.kit.edu/
ssp/creativecommons_policies.zip

11 see Point 2.16 in http://wiki.creativecommons.org/FAQ, accessed 15th June 2011

http://www.hermit-reasoner.com/
http://people.aifb.kit.edu/ssp/creativecommons_policies.zip
http://people.aifb.kit.edu/ssp/creativecommons_policies.zip
http://wiki.creativecommons.org/FAQ

6.2 Modelling Policies in Datalog

Datalog is the rule language of function-free definite Horn clauses, i.e., implications
with only positive atoms and a single head atom. It can be interpreted under first-order
semantics [3]. The syntax corresponds to first-order logic with the only variation that
quantifiers are omitted since all variables are understood to be quantified universally.
Datalog rules can thus be used to express a background theory. Policies can be expressed
by conjunctive or disjunctive queries, i.e., by disjunctions and conjunctions of atomic
formulae where one designated variable represents the free variable that refers to the
conforming processes, while the other variables are existentially quantified.

Again we have to respect syntactic restrictions of Section 5. Thus we can only use
rules that are either free of variables, or that contain no constants. In the latter case, all
variables in the rule head must occur in its body (this is known as safety in Datalog), and
the variables in the rule body must be connected via the atoms in which they co-occur.
For policy queries, we also require this form of connection, and we allow constants in
containedIn. The (non-CF) theory T of Definition 4 is readily expressed in Datalog.

Containment of conjunctive and disjunctive queries is decidable, and can be reduced
to query answering [2]. Namely, to check containment of a query ¢; in a query g,, we
first create for every conjunction in g; (which is a disjunction of conjunctive queries)
a grounded version, i.e., we state every body atom in the conjunction as a fact by uni-
formly replacing variables with new constants. If, for each conjunction in g, these new
facts provide an answer to the query ¢, then g; is contained in g,. Note that Datalog
systems that do not support disjunctive query answering directly can still be used for
this purpose by expressing disjunctive conditions with multiple auxiliary rules that use
the same head predicate, and querying for the instances of this head.

As above, the simplest policy is the public domain (PD) license:

PD: Usage(x) Vv Derivation(x).

Here and below, we always use x as the variable that represents the corresponding pro-
cess in a policy description. CC BY can now be defined as follows:

BY: (Usage(x) A wasTriggeredBy(x, y) A Attribution(y)) v
(Derivation(x) A wasGeneratedBy(z, x) A
hasPolicy(z, v) A containedin(v, BY)) .

This formalisation alone would leave room for derivations that are falsely classified as
compliant, since the condition only requires that there exists one artefact that has one
contained policy. Further artefacts or policies that violate these terms might then exist.
We can prevent this by requiring hasPolicy to be functional and wasGeneratedBy to
be inverse functional (as before, we assume that ~ has been suitably axiomatised, which
is possible in Datalog; see [20] for details):

v1 = vo « hasPolicy(x, v;) A hasPolicy(x, v,),
71 = 7 < wasGeneratedBy(z;, x) A wasGeneratedBy(z, x) .

Using this auxiliary modelling, we can easily express BY-ND and BY-SA as well [20].

7 Related Work

The formalisation of policies and similar restrictions has been considered in many
works, but the relationship to our approach is often limited. For example, restrictions
in Digital Rights Management (DRM) systems can be specified in a rights expression
language such as ODRL [16]. Policy containment or self-referentiality is not considered
there. Similarly, ccREL offers an RDF representation for Creative Commons licenses
but uses a static name-based encoding that cannot capture the content-based relation-
ships that we model [1]. Using rules in the policy language AIR [18], the meaning
of ccREL terms has been further formalised but without attempting to overcome the
restrictions of name-based modelling [30].

Bonatti and Mogavero consider policy containment as a formal reasoning task, and
restrict the Protune policy language so that this task is decidable [8]. Reasoning about
policy conformance and containment also motivated earlier studies by the second au-
thor, where policies have been formalised as conjunctive queries [31]. Our present work
can be viewed as a generalisation of this approach.

Other related works have focussed on different aspects of increasing the expres-
siveness of policy modelling. Ringelstein and Staab present the history-aware PAPEL
policy language that can be processed by means of a translation to Datalog [27]. The
data-purpose algebra by Hanson et al. allows the modelling of usage restrictions of data
and the transformation of the restrictions when data is processed [13].

Many knowledge representation formalisms have been proposed to accomplish non-
classical semantics (e.g. fixed point semantics) and meta-modelling (as present in our
expression of containment as an object-level predicate). However, both aspects are usu-
ally not integrated, or come with technical restrictions that do not suit our application.

Fixed point operators exist in a number of flavours. Most closely related to our
setting are works on fixed point based evaluation of terminological cycles in descrip-
tion logic ontologies [5,25]. Later works have been based on the relationship to the u-
calculus, see [6, Section 5.6] for an overview of the related literature. As is typical for
such constructions, the required monotonicity is ensured on a logical level by restricting
negation. This is not possible in our scenario where we focus on the entailment of im-
plications (policy containments). Another approach of defining preferred models where
certain predicate extensions have been minimised/maximised is Circumscription [22].
This might provide an alternative way to define a semantics that can capture desired
policy containments, but it is not clear if and how entailments could then be computed.

Meta-modelling is possible with first- and higher-order approaches (see, e.g., [24]
for an OWL-related discussion) yet we are not aware of any approaches that provide
the semantics we intend. Glimm et al. [12], e.g., show how some schema entailments
of OWL 2 DL can be represented with ontological individuals and properties, but the
classical semantics of OWL would not yield the desired policy containments.

For relational algebra, it has been proposed to store relation names as individuals,
and to use an expansion operator to access the extensions of these relations [28]. This al-
lows for queries that check relational containment, but based on a fixed database (closed
world) rather than on all possible interpretations (open world) as in our case.

8 Conclusions and Future Work

To the best of our knowledge, we have presented the first formal language for modelling
self-referential policies. A particular advantage of our approach is that it can be instan-
tiated in more specific knowledge representation formalisms, such as rule or ontology
languages, to take advantage of existing tools for automated reasoning.

This opens up a number of directions for practical studies and exploitations. Refined
provenance models, better tool support, and best practices for publishing policies are
still required. On the conceptual side it would also be interesting to ask if our CF-based
syntactic restrictions could be further relaxed without giving up the positive properties
of the semantics.

Acknowledgements We would like to thank Piero Bonatti, Clemens Kupke and the
anonymous reviewers for their comments. Markus Kroétzsch is sponsored by EPSRC
grant EP/F065841/1. Sebastian Speiser is sponsored by the EU FP7 grant 257641.

References

1. Abelson, H., Adida, B., Linksvayer, M., Yergler, N.: ccREL: The Creative Commons
Rights Expression Language. Tech. rep., Creative Commons (2008), available at http:
/[creativecommons.org/projects/ccREL

2. Abiteboul, S., Duschka, O.M.: Complexity of answering queries using materialized views.

In: Proc. 17th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems
(PODS’98). pp. 254-263. ACM (1998)
. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley (1994)
4. Andréka, H., van Benthem, J., Németi, I.: Back and forth between modal logic and classical
logic. Logic Journal of the IGPL 3(5), 685-720 (1995)
5. Baader, F.: Terminological cycles in KL-ONE-based knowledge representation languages.
In: 8th National Conf. on Artificial Intelligence (AAAI’90). pp. 621-626. AAAI Press (1990)
6. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The De-
scription Logic Handbook. Cambridge University Press, second edn. (2007)
7. Bonatti, P.A., De Coi, J.L., Olmedilla, D., Sauro, L.: A rule-based trust negotiation system.
IEEE Transactions on Knowledge and Data Engineering 22(11), 1507-1520 (2010)
8. Bonatti, P.A., Mogavero, F.: Comparing rule-based policies. In: 9th IEEE Int. Workshop on
Policies for Distributed Systems and Networks (POLICY’08). pp. 11-18 (2008)
9. Cheney, J., Gil, Y., Groth, P., Miles, S.: Requirements for Provenance on the Web. Avail-
able at http://www.w3.0rg/2005/Incubator/prov/wiki/User_Requirements, W3C Provenance
Incubator Group (2010)
10. Dodds, L.: Rights statements on the Web of Data. Nodalities Magazine pp. 13-14 (2010)
11. Glimm, B., Krotzsch, M.: SPARQL beyond subgraph matching. In: Patel-Schneider et al.
[26], pp. 241-256

12. Glimm, B., Rudolph, S., Volker, J.: Integrated metamodeling and diagnosis in OWL 2. In:
Patel-Schneider et al. [26], pp. 257-272

13. Hanson, C., Berners-Lee, T., Kagal, L., Sussman, G.J., Weitzner, D.: Data-purpose algebra:
Modeling data usage policies. In: 8th IEEE Int. Workshop on Policies for Distributed Sys-
tems and Networks (POLICY’07). pp. 173-177 (2007)

14. Hitzler, P., Krotzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman
& Hall/CRC (2009)

w

http://creativecommons.org/projects/ccREL
http://creativecommons.org/projects/ccREL
http://www.w3.org/2005/Incubator/prov/wiki/User_Requirements

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

. Horrocks, 1., Sattler, U.: Decidability of SHIQ with complex role inclusion axioms. Artifi-

cial Intelligence 160(1), 79-104 (2004)

. Iannella, R.: Open Digital Rights Language (ODRL) Version 1.1. W3C Note (19 September

2002), available at http://www.w3.org/TR/odrl/

. Kagal, L., Finin, T., Joshi, A.: A policy language for a pervasive computing environment. In:

4th IEEE Int. Workshop on Policies for Distributed Systems and Networks (POLICY’03).
pp- 63-74 (2003)

. Kagal, L., Hanson, C., Weitzner, D.: Using dependency tracking to provide explanations for

policy management. In: 9th IEEE Int. Workshop on Policies for Distributed Systems and
Networks (POLICY’08). pp. 54-61 (2008)

Kephart, J.O., Walsh, W.E.: An artificial intelligence perspective on autonomic computing
policies. In: 5th IEEE Int. Workshop on Policies for Distributed Systems and Networks
(POLICY’04). pp. 3—12 (2004)

Krotzsch, M., Speiser, S.: Expressing self-referential usage policies for the Semantic Web.
Tech. Rep. 3014, Institute AIFB, Karlsruhe Institute of Technology (2011), available online
at http://www.aifb kit.edu/web/Techreport3014

Lessig, L.: CC in Review: Lawrence Lessig on Compatibility. Available at http://
creativecommons.org/weblog/entry/5709 (accessed 1st July 2011) (2005)

Lifshitz, V.: Circumscriptive theories: A logic-based framework for knowledge representa-
tion. Journal of Philosophical Logic 17, 391-441 (1988)

Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska, N., Miles,
S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E., Van den Bussche, J.: The
Open Provenance Model core specification (v1.1). Future Generation Computer Systems 27,
743-756 (2011)

Motik, B.: On the properties of metamodeling in OWL. J. of Logic and Computation 17(4),
617-637 (2007)

Nebel, B.: Terminological cycles: Semantics and computational properties. In: Sowa, J.F.
(ed.) Principles of Semantic Networks: Explorations in the Representation of Knowledge,
pp. 331-361. Kaufmann (1991)

Patel-Schneider, P.F., Pan, Y., Glimm, B., Hitzler, P., Mika, P., Pan, J., Horrocks, I. (eds.):
Proc. 9th Int. Semantic Web Conf. (ISWC’10), LNCS, vol. 6496. Springer (2010)
Ringelstein, C., Staab, S.: PAPEL: A language and model for provenance-aware policy def-
inition and execution. In: Proc. 8th Int. Conf. on Business Process Management (BPM’10).
LNCS, vol. 6336, pp. 195-210. Springer (2010)

Ross, K.A.: Relations with relation names as arguments: algebra and calculus. In: Proc. 11th
ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems (PODS’92).
pp. 346-353. ACM (1992)

Seneviratne, O., Kagal, L., Berners-Lee, T.: Policy aware content reuse on the Web. In: Bern-
stein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan,
K. (eds.) Proc. 8th Int. Semantic Web Conf. ISWC’09). LNCS, vol. 5823, pp. 553-568.
Springer (2009)

Seneviratne, O.W.: Framework for Policy Aware Reuse of Content on the WWW. Master
thesis, Massachusetts Institute of Technology (2009)

Speiser, S., Studer, R.: A self-policing policy language. In: Patel-Schneider et al. [26], pp.
730-746

W3C OWL Working Group: OWL 2 Web Ontology Language: Document Overview. W3C
Recommendation (27 October 2009), available at http://www.w3.org/TR/owl2-overview/
Weitzner, D.J., Hendler, J., Berners-Lee, T., Connolly, D.: Creating a policy-aware Web:
Discretionary, rule-based access for the World Wide Web. In: Web and Information Security,
chap. I, pp. 1-31. IRM Press (2006)

http://www.w3.org/TR/odrl/
http://www.aifb.kit.edu/web/Techreport3014
http://creativecommons.org/weblog/entry/5709
http://creativecommons.org/weblog/entry/5709
http://www.w3.org/TR/owl2-overview/

