Lecture 2

CP in a Nutshell

Foundations of Constraint Programming CP in a Nutshell

Outline

Introduce notion of equivalence of CSP's

Provide intuitive introduction to general methods of Constraint Programming
Introduce basic framework for Constraint Programming

lllustrate this framework by 2 examples

"I I N

Foundations of Constraint Programming CP in a Nutshell

Projection

@ Given: variables X := x4, ..., x, with domains D,, ..., D,

Consider

-d:=(dy,....,d)eD, X .. XD,

- subsequence Y :=X;, ..., X; of X

Denote (d,-1, d,l) by d[Y]: ofdonY

In particular: d[x] = d,
@ Note: For a CSP
P:=C;x,€Dy, ..., x,€D,)
(dy, ...,d,) € D, X ... X D,is a solution to iff for each

constraint C of # on a sequence of variables Y
dlY]e C

Foundations of Constraint Programming CP in a Nutshell

Equivalence of CSP's

@ P, and P, are if they have the same set of solutions

@ CSP's#,and P, are X iff
{d[X] | d is a solution to #,} = {d[X] | d is a solution to #,}

@ Unionof #,, .., %, is Xto Py if
{d[X] | d is a solution to P} = g {d[X] | d is a solution to P}

Foundations of Constraint Programming CP in a Nutshell

Solved and Failed CSP's

@ C aconstraint on variables y,, ..., y, with
domains D,, ..., D, (so C = D, X ... X D,):
Cis ifC=D, X .. XD,

@ CSPis if
- all its constraints are solved, and
- no domain of it is empty

@ CSPis if

- it contains the false constraint L, or
- some of its domains is empty

Foundations of Constraint Programming CP in a Nutshell

CP: Basic Framework

procedure solve
var continue := true
begin
while continue and not happy do
Preprocess;
Constraint Propagation;
if not happy then
if Atomic then continue = false
else
Split; Proceed by Cases
end-if
end-while
end

Foundations of Constraint Programming CP in a Nutshell

Preprocess

Bring to desired syntactic form

@ Example: Constraints on reals
Desired syntactic form: no repeated occurrences of a variable

ax" + bx’y +cy®=0

»ax +z+cy'®=0, bxX°’y =z

Foundations of Constraint Programming CP in a Nutshell

Happy

Found a solution

Found all solutions

Found a solved form from which one can generate all solutions
Determined that no solution exists (inconsistency)

Found best solution

Found all best solutions

& & ¢ ¢ @ ®

[]

Reduced all interval domains to sizes < ¢

Foundations of Constraint Programming CP in a Nutshell

Atomic and Split

@ Check whether CSP is amenable for splitting, or
@ whether search ‘under’ this CSP is still needed

Split a domain:
@ D finite ()
xeD
xe{a} | xeD—{a}

@ D finite () xefa,, ... a,)
xe{a,} | ... | x€{a,}
@ D interval of reals ()
X€la..b|
xe a..[izbj | xe [%bm..b]

Foundations of Constraint Programming CP in a Nutshell

Split, ctd

Split a constraint:

-

@

Foundations of Constraint Programming

Disjunctive constraints
C,vC,
C, | G

Constraints in “compound” form
Example:

lp(x)|=a
a |

p(x)=a | p(x)=-a

CP in a Nutshell

10

@

r

Effect of Split

Each Split replaces current CSP # by CSP's #,, ..., £, such that the union of

P4, ..., P, is equivalent to P.

Example:
Enumeration replaces

(C; D&, x € D)
by
(C'; DE, x € {a})
and
C"; DE, xe D—{a})
where C' and C" are restrictions of the constraints from C to the new domains.

Foundations of Constraint Programming CP in a Nutshell

11

Heuristics

Which
@ variable to choose
@ value to choose

@

constraint to split

Examples:

@

-

Select a variable that appears in the largest number of constraints

()

For a domain being an integer interval: select the middle value

Foundations of Constraint Programming CP in a Nutshell

12

Proceed by Cases

Various search techniques

d

@
o
@

Foundations of Constraint Programming

Backtracking

Branch and bound

Can be combined with Constraint Propagation
Intelligent backtracking

CP in a Nutshell

13

@
@

@

Foundations of Constraint Programming

Backtracking

Nodes generated “on the fly”
Nodes are CSP's
Leaves are CSP's that are solved or failed

CP in a Nutshell

14

Branch and Bound

@ Modification of backtracking aiming at finding the optimal solution

@ Takes into account objective function

@ Maintain currently best value of the objective function in variable bound
@ bound initialized to —o and updated each time a better solution found

@ Used in combination with heuristic function

@ Conditions on heuristic function h:
- If ¢ is a direct descendant of ¢, then

h(y) = h(¢)
- If @ is solved CSP with singleton set domains, then

obj(w) = h(y)
@ h allows us to prune the search tree

Foundations of Constraint Programming CP in a Nutshell

15

Foundations of Constraint Programming

lllustration

1 h(y) <bound

CP in a Nutshell

W .'

16

Constraint Propagation

Replace a CSP by an equivalent one that is “simpler”

Constraint propagation performed by repeatedly reducing
@ domains

and/or

@ constraints

while maintaining equivalence

Foundations of Constraint Programming CP in a Nutshell

17

Reduce a Domain: Examples

@ Projection rule:
Take a constraint C and choose a variable x of it with domain D.
Remove from D all values for x that do not participate in a solution to C.

@ Linear inequalities on integers:

\x<y;x€[50..200], y€[0..100],
\x<y;x€[50..99], y€[51..100],

Foundations of Constraint Programming CP in a Nutshell

18

Repeated Domain Reduction: Example

Consider
(x<y,y<z;xe[50.200], y € [0..100], z € [0..100])

Apply above rule to x < y:
(x<y,y<z;xe[50.99], y €[51..100], z € [0..100])

Apply it now to y < z:
(x<y,y<z;xel[50.99],ye[51.99], z€ [52..100])

Apply it again to x < y:
(x<y,y<z;xe[50.98], y € [61..99], z € [52..100])

Foundations of Constraint Programming CP in a Nutshell

19

Reduce Constraints

Usually by introducing new constraints!

@ Transitivity of <:
<X<y,y<z;Z)8>

<x<y,y<z,x<z;1)8>
This rule introduces new constraint x < z

@ Resolution rule:
C,VL,C,VL; D8,
<C1\/L,C2\/[,C1\/C2;1)8>

This rule introduces new constraint C, v C,

Foundations of Constraint Programming CP in a Nutshell

20

Constraint Propagation Algorithms

@ Deal with scheduling of atomic reduction steps
@ Try to avoid useless applications of atomic reduction steps

@ Stopping criterion for general CSP's: a notion
Example:
Local consistency criterion corresponding to the projection rule
IS :

For every constraint C aﬁd every variable x with domain D,
each value for x from D participates in a solution to C.

Foundations of Constraint Programming CP in a Nutshell

21

Example: Boolean Constraints

Happy: found all solutions

Desired syntactic form (for preprocessing):
@ X=y

@ x=y

@ XAy=Zz

@ XVy=z

@ Preprocessing:

XAS=2Z
XAYy=2Z,8=Yy

@ Constraint propagation:
\xAy=z;xeD,,yeD,, ze{1},
;xeD,N{1},yeD,n{1},ze{1}

(writeasx Ay=z,z=1>»x=1,y=1)

Foundations of Constraint Programming CP in a Nutshell

Boolean Constraints, ctd

@ x=y,x=1»y=1

@ x=y,y=1»x=1

@ x=y,x=0>»y=0

@ x=y,y=0>»x=0

@ xAy=z,x=1,y=1»z=1
@ xANy=z,x=1,z=0»y=0
@ xAy=z,y=1,z=0»x=0
@ xXANy=z,x=0»z=0

@ xXANy=z,y=0»2z=0

@ xXANy=z,z=1»x=1,y=1

Foundations of Constraint Programming

A S T %

"N I N " "

CP in a Nutshell

X=y,x=1>»y=0
X=y,x=0>»y=1
X=y,y=1»x=0
X=y,y=0>»x=1

XVy=zx=1»z=1
xVy=zx=0,y=0»2z=0
xVy=zx=0,z=1»y=1
xVy=z,y=0,z=1»x=1
XVy=zy=1»z=1
xVy=z,z=0»x=0,y=0

23

Boolean Constraints, ctd

Split:
@ Choose the most constrained variable
@ Apply the labeling rule:
x€{0,1}
xe{0} | xe{1}

Proceed by cases: backtrack

Foundations of Constraint Programming CP in a Nutshell

24

Example: Polynomial Constraints on Integer Intervals

Domains: integer intervals [a..b]
[a.b]={xe€Z|a<x<b}

Constraints:

s=0
s is a polynomial (possibly in several variables) with integer coefficients
Example:

2 X PP HB XXy 2 +10=0

Objective function: a polynomial

Foundations of Constraint Programming CP in a Nutshell

25

Foundations of Constraint Programming

Example

Find a solution to

X+y—-2°=0
in [1..1000] such that
2:Xy—2
is maximal.

Answer:

x=112, y=832,z=128

CP in a Nutshell

26

Polynomial Constraints on Integer Intervals, ctd

Desired syntactic form:

n
? Z,‘:1 aiXi:b
@ xX-y=2z

Preprocess:
Use appropriate transformation rules

Example: n
<Z,-=1 m=0,D&

n
<Zi:1 Vi:o’m1:V1,""mn:Vn;Z)S’ V1€Z’ ey VnEZ

where
@ some m;is not of the form ax;

@ v, .., V,do not appearin DE

Happy: found an optimal solution w.r.t. the objective function

Foundations of Constraint Programming CP in a Nutshell

27

Polynomial Constraints on Integer Intervals, ctd

Constraint propagation: uses interval arithmetic
X, Y sets of integers

@ addition:
X+Y={x+y|xeX yeY)

@ subtraction:
X=-Y={xx-y|lxeX yeY}

@ multiplication:
X Y={xy|xeX yeY)

@ division:
XIlY={ueZ|IxeXdye Yu-y=x}

Foundations of Constraint Programming CP in a Nutshell

28

Interval Arithmetic, ctd

Given: X, Y integer intervals, a an integer

@ XNY,X+Y,X-Yare integer intervals

@ X/{a} is an integer interval

@ X - Ydoes not have to be an integer interval, even if X ={a} or Y = {a}
@ X/Y does not have to be an integer interval

Examples:

[2..4] + [3..8] = [5..12]

[3..7] —[1..8] = [~ 5..6]

[3..3] - [1..2] = {3, 6}

[3..5]/[-1..2] = {-5, -4, -3, 2, 3, 4, 5}
[-3..5]/[-1..2] =Z

Foundations of Constraint Programming CP in a Nutshell

Turning Sets to Intervals

, __ [smallest int. interval=2 X" if X finite
nt(X) =1 z otherwise

Examples:

int([3..3] - [1..2]) = [3..6]
int([3..5]/[-1..2]) = [-5..5]
int([-3..5)/[-1..2]) = Z

Foundations of Constraint Programming CP in a Nutshell

30

Foundations of Constraint Programming

Rule for Linear Equality

D =D. N

n '
<Z,-:1 a,x;=b;..,x;€D;, >

where j € [1..n], and

b— Z/e lnt (a;-D;)

J J a

CP in a Nutshell

31

Multiplication Rules

Multiplication 1
\x-y=z;xeD,,yeD,, zeD,

\x-y=z;xeD,,yeD,, zeD,nint(D,-D,)|

Multiplication 2
\x-y=z;xeD,,yeD,,zeD,,

\x-y=z;xeD,nint(D,/D,),yeD,,z€D,|

Multiplication 3
\x-y=z;xeD,,yeD,,zeD,

\x-y=z;xeD,,yeD,nint(D,/D,),z€D,)

Foundations of Constraint Programming CP in a Nutshell

32

Effect of Multiplication Rules

Consider
(x-y=z;x€[1.20],y<€[9..11], z€ [155..161])
Using Multiplication Rules we can transform this to

(x-y=2z;x€[16..16], y € [10..10], z € [160..160])

Foundations of Constraint Programming CP in a Nutshell

33

Polynomial Constraints on Integer Intervals, ctd

Split:
@ Choose the variable with the smallest interval domain
@ Apply the bisection rule:

x€|a..b|
ibj
2

X€E [ibj+1..b]

2

a..| | xe

where a< b
@ Proceed by cases: branch and bound

Foundations of Constraint Programming CP in a Nutshell

More on Interval Arithmetic

Given objective function obyj.

obj™: extension of obj to function from sets of integers to sets of integers.

Example: objx,y) =x2-y—3x-y*+5
Then obj T (X,Y)=X-X-Y-3-X-Y-Y+5

Lemma
Consider integer intervals X, ..., X,
® obi"(X,, ...X)is afinite set of integers
@ Foralla,e X, i€ [1.n]

obj(a,, ...,a) € obj* (X,,X)
e ForallY,c X, ie€[1.n]

obj*(Yy,, ...Y,) € obj (X,,X)

Foundations of Constraint Programming CP in a Nutshell

35

Heuristic Function

Take
» P:=(C;x,€D,, .., x,€D,), with D, ..., D, integer intervals

@ obj: polynomial with variables x,, ..., x,

Define
h(P) == max(obj*(D,, ..., D,))

Thanks to the preceding lemma, h satisfies the conditions for the
heuristic function (cf. Slide 15).

Foundations of Constraint Programming CP in a Nutshell

36

Objectives

@ Introduce notion of equivalence of CSP's
@ Provide intuitive introduction to general methods of Constraint Programming
@ [ntroduce a basic framework for Constraint Programming

@ |[llustrate this framework by 2 examples

Foundations of Constraint Programming CP in a Nutshell

37

