
Answer Set Programming: Basics

Sebastian Rudolph

Computational Logic Group
Technische Universität Dresden

Slides based on a lecture by Martin Gebser and Torsten Schaub.

Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0

Unported License.

Sebastian Rudolph (TUD) Answer Set Programming: Basics 1 / 32



Answer Set Programming – Basics:
Overview

1 Motivation: ASP vs. Prolog and SAT

2 ASP Syntax

3 Semantics

4 Examples

5 Variables

6 Reasoning modes

Sebastian Rudolph (TUD) Answer Set Programming: Basics 2 / 32



Motivation: ASP vs. Prolog and SAT

Outline

1 Motivation: ASP vs. Prolog and SAT

2 ASP Syntax

3 Semantics

4 Examples

5 Variables

6 Reasoning modes

Sebastian Rudolph (TUD) Answer Set Programming: Basics 3 / 32



Motivation: ASP vs. Prolog and SAT

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Sebastian Rudolph (TUD) Answer Set Programming: Basics 4 / 32



Motivation: ASP vs. Prolog and SAT

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Sebastian Rudolph (TUD) Answer Set Programming: Basics 4 / 32



Motivation: ASP vs. Prolog and SAT

LP-style playing with blocks

Prolog program

on(a,b). on(b,c).

above(X,Y) :- on(X,Y). above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries

?- above(a,c). true. ?- above(c,a). no.

Sebastian Rudolph (TUD) Answer Set Programming: Basics 5 / 32



Motivation: ASP vs. Prolog and SAT

LP-style playing with blocks

Prolog program

on(a,b). on(b,c).

above(X,Y) :- on(X,Y). above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries

?- above(a,c). true. ?- above(c,a). no.

Sebastian Rudolph (TUD) Answer Set Programming: Basics 5 / 32



Motivation: ASP vs. Prolog and SAT

LP-style playing with blocks

Prolog program

on(a,b). on(b,c).

above(X,Y) :- on(X,Y). above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries

?- above(a,c). true. ?- above(c,a). no.

Sebastian Rudolph (TUD) Answer Set Programming: Basics 5 / 32



Motivation: ASP vs. Prolog and SAT

LP-style playing with blocks

Prolog program

on(a,b). on(b,c).

above(X,Y) :- on(X,Y). above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries (testing entailment)

?- above(a,c). true. ?- above(c,a). no.

Sebastian Rudolph (TUD) Answer Set Programming: Basics 5 / 32



Motivation: ASP vs. Prolog and SAT

LP-style playing with blocks

Shuffled Prolog program

on(a,b). on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y). above(X,Y) :- on(X,Y).

Prolog queries

?- above(a,c). Fatal Error: local stack overflow.

Sebastian Rudolph (TUD) Answer Set Programming: Basics 6 / 32



Motivation: ASP vs. Prolog and SAT

LP-style playing with blocks

Shuffled Prolog program

on(a,b). on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y). above(X,Y) :- on(X,Y).

Prolog queries

?- above(a,c). Fatal Error: local stack overflow.

Sebastian Rudolph (TUD) Answer Set Programming: Basics 6 / 32



Motivation: ASP vs. Prolog and SAT

LP-style playing with blocks

Shuffled Prolog program

on(a,b). on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y). above(X,Y) :- on(X,Y).

Prolog queries (answered via fixed execution)

?- above(a,c). Fatal Error: local stack overflow.

Sebastian Rudolph (TUD) Answer Set Programming: Basics 6 / 32



Motivation: ASP vs. Prolog and SAT

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Sebastian Rudolph (TUD) Answer Set Programming: Basics 7 / 32



Motivation: ASP vs. Prolog and SAT

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Sebastian Rudolph (TUD) Answer Set Programming: Basics 7 / 32



Motivation: ASP vs. Prolog and SAT

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y )→ above(X ,Y ))
∧ (on(X ,Z ) ∧ above(Z ,Y )→ above(X ,Y ))

Herbrand model{
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}

Sebastian Rudolph (TUD) Answer Set Programming: Basics 8 / 32



Motivation: ASP vs. Prolog and SAT

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y )→ above(X ,Y ))
∧ (on(X ,Z ) ∧ above(Z ,Y )→ above(X ,Y ))

Herbrand model{
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}

Sebastian Rudolph (TUD) Answer Set Programming: Basics 8 / 32



Motivation: ASP vs. Prolog and SAT

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y )→ above(X ,Y ))
∧ (on(X ,Z ) ∧ above(Z ,Y )→ above(X ,Y ))

Herbrand model (among 426!){
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}

Sebastian Rudolph (TUD) Answer Set Programming: Basics 8 / 32



Motivation: ASP vs. Prolog and SAT

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y )→ above(X ,Y ))
∧ (on(X ,Z ) ∧ above(Z ,Y )→ above(X ,Y ))

Herbrand model (among 426!){
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}

Sebastian Rudolph (TUD) Answer Set Programming: Basics 8 / 32



Motivation: ASP vs. Prolog and SAT

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y )→ above(X ,Y ))
∧ (on(X ,Z ) ∧ above(Z ,Y )→ above(X ,Y ))

Herbrand model (among 426!){
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}

Sebastian Rudolph (TUD) Answer Set Programming: Basics 8 / 32



Motivation: ASP vs. Prolog and SAT

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Sebastian Rudolph (TUD) Answer Set Programming: Basics 9 / 32



Motivation: ASP vs. Prolog and SAT

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

å Answer Set Programming (ASP)

Sebastian Rudolph (TUD) Answer Set Programming: Basics 9 / 32



Motivation: ASP vs. Prolog and SAT

ASP-style playing with blocks

Logic program

on(a,b). on(b,c).

above(X,Y) :- on(X,Y). above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }

Sebastian Rudolph (TUD) Answer Set Programming: Basics 10 / 32



Motivation: ASP vs. Prolog and SAT

ASP-style playing with blocks

Logic program

on(a,b). on(b,c).

above(X,Y) :- on(X,Y). above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }

Sebastian Rudolph (TUD) Answer Set Programming: Basics 10 / 32



Motivation: ASP vs. Prolog and SAT

ASP-style playing with blocks

Logic program

on(a,b). on(b,c).

above(X,Y) :- on(X,Y). above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model (and no others)

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }

Sebastian Rudolph (TUD) Answer Set Programming: Basics 10 / 32



Motivation: ASP vs. Prolog and SAT

ASP-style playing with blocks

Logic program

on(a,b). on(b,c).

above(X,Y) :- above(Z,Y), on(X,Z). above(X,Y) :- on(X,Y).

Stable Herbrand model (and no others)

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }

Sebastian Rudolph (TUD) Answer Set Programming: Basics 10 / 32



Motivation: ASP vs. Prolog and SAT

ASP versus LP

ASP Prolog

Model generation Query orientation

Bottom-up Top-down

Modeling language Programming language

Rule-based format

Instantiation Unification
Flat terms Nested terms

(Turing +) NP(NP) Turing

Sebastian Rudolph (TUD) Answer Set Programming: Basics 11 / 32



Motivation: ASP vs. Prolog and SAT

ASP versus SAT

ASP SAT

Model generation

Bottom-up

Constructive Logic Classical Logic

Closed (and open) Open world reasoning
world reasoning

Modeling language —

Complex reasoning modes Satisfiability testing

Satisfiability Satisfiability
Enumeration/Projection —
Intersection/Union —
Optimization —

(Turing +) NP(NP) NP

Sebastian Rudolph (TUD) Answer Set Programming: Basics 12 / 32



Motivation: ASP vs. Prolog and SAT

What is ASP good for?

Combinatorial search problems in the realm of P, NP, and NPNP

(some with substantial amount of data), like

Automated Planning
Code Optimization
Composition of Renaissance Music
Database Integration
Decision Support for NASA shuttle controllers
Model Checking
Product Configuration
Robotics
Systems Biology
System Synthesis
(industrial) Team-building
and many many more

Sebastian Rudolph (TUD) Answer Set Programming: Basics 13 / 32



Motivation: ASP vs. Prolog and SAT

What is ASP good for?

Combinatorial search problems in the realm of P, NP, and NPNP

(some with substantial amount of data), like

Automated Planning
Code Optimization
Composition of Renaissance Music
Database Integration
Decision Support for NASA shuttle controllers
Model Checking
Product Configuration
Robotics
Systems Biology
System Synthesis
(industrial) Team-building
and many many more

Sebastian Rudolph (TUD) Answer Set Programming: Basics 13 / 32



ASP Syntax

Outline

1 Motivation: ASP vs. Prolog and SAT

2 ASP Syntax

3 Semantics

4 Examples

5 Variables

6 Reasoning modes

Sebastian Rudolph (TUD) Answer Set Programming: Basics 14 / 32



ASP Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A (normal) rule, r , is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Notation

head(r) = a0

body(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
body(r)+ = {a1, . . . , am}
body(r)− = {am+1, . . . , an}
atom(P) =

⋃
r∈P

(
{head(r)} ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

A program P is positive if body(r)− = ∅ for all r ∈ P

Sebastian Rudolph (TUD) Answer Set Programming: Basics 15 / 32



ASP Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A (normal) rule, r , is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Notation

head(r) = a0

body(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
body(r)+ = {a1, . . . , am}
body(r)− = {am+1, . . . , an}
atom(P) =

⋃
r∈P

(
{head(r)} ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

A program P is positive if body(r)− = ∅ for all r ∈ P

Sebastian Rudolph (TUD) Answer Set Programming: Basics 15 / 32



ASP Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A (normal) rule, r , is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Notation

head(r) = a0

body(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
body(r)+ = {a1, . . . , am}
body(r)− = {am+1, . . . , an}
atom(P) =

⋃
r∈P

(
{head(r)} ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

A program P is positive if body(r)− = ∅ for all r ∈ P

Sebastian Rudolph (TUD) Answer Set Programming: Basics 15 / 32



ASP Syntax

Rough notational convention

We sometimes use the following notation interchangeably
in order to stress the respective view:

default classical
true, false if and or iff negation negation

source code :- , | not -

logic program ← , ; ∼ ¬
formula >,⊥ → ∧ ∨ ↔ ∼ ¬

Sebastian Rudolph (TUD) Answer Set Programming: Basics 16 / 32



Semantics

Outline

1 Motivation: ASP vs. Prolog and SAT

2 ASP Syntax

3 Semantics

4 Examples

5 Variables

6 Reasoning modes

Sebastian Rudolph (TUD) Answer Set Programming: Basics 17 / 32



Semantics

Formal Definition
Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r ∈ P, head(r) ∈ X whenever body(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the ⊆-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P

Sebastian Rudolph (TUD) Answer Set Programming: Basics 18 / 32



Semantics

Formal Definition
Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r ∈ P, head(r) ∈ X whenever body(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the ⊆-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P

Sebastian Rudolph (TUD) Answer Set Programming: Basics 18 / 32



Semantics

Formal Definition
Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r ∈ P, head(r) ∈ X whenever body(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the ⊆-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P

Sebastian Rudolph (TUD) Answer Set Programming: Basics 18 / 32



Semantics

Formal Definition
Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r ∈ P, head(r) ∈ X whenever body(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the ⊆-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P

Sebastian Rudolph (TUD) Answer Set Programming: Basics 18 / 32



Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHjp 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Sebastian Rudolph (TUD) Answer Set Programming: Basics 19 / 32



Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHjp 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Sebastian Rudolph (TUD) Answer Set Programming: Basics 19 / 32



Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHjp 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Sebastian Rudolph (TUD) Answer Set Programming: Basics 19 / 32



Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHjp 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Sebastian Rudolph (TUD) Answer Set Programming: Basics 19 / 32



Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHjp 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Sebastian Rudolph (TUD) Answer Set Programming: Basics 19 / 32



Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHjp 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Sebastian Rudolph (TUD) Answer Set Programming: Basics 19 / 32



Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHjp 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Sebastian Rudolph (TUD) Answer Set Programming: Basics 19 / 32



Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHjp 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Sebastian Rudolph (TUD) Answer Set Programming: Basics 19 / 32



Semantics

Formal Definition
Stable model of normal programs

The reduct, PX , of a program P relative to a set X of atoms is
defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

A set X of atoms is a stable model of a program P, if Cn(PX ) = X

Note Cn(PX ) is the ⊆–smallest (classical) model of PX

Note Every atom in X is justified by an “applying rule from P”

Sebastian Rudolph (TUD) Answer Set Programming: Basics 20 / 32



Semantics

Formal Definition
Stable model of normal programs

The reduct, PX , of a program P relative to a set X of atoms is
defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

A set X of atoms is a stable model of a program P, if Cn(PX ) = X

Note Cn(PX ) is the ⊆–smallest (classical) model of PX

Note Every atom in X is justified by an “applying rule from P”

Sebastian Rudolph (TUD) Answer Set Programming: Basics 20 / 32



Semantics

Formal Definition
Stable model of normal programs

The reduct, PX , of a program P relative to a set X of atoms is
defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

A set X of atoms is a stable model of a program P, if Cn(PX ) = X

Note Cn(PX ) is the ⊆–smallest (classical) model of PX

Note Every atom in X is justified by an “applying rule from P”

Sebastian Rudolph (TUD) Answer Set Programming: Basics 20 / 32



Semantics

A closer look at PX

In other words, given a set X of atoms from P,

PX is obtained from P by deleting

1 each rule having ∼a in its body with a ∈ X
and then

2 all negative atoms of the form ∼a
in the bodies of the remaining rules

Note Only negative body literals are evaluated wrt X

Sebastian Rudolph (TUD) Answer Set Programming: Basics 21 / 32



Semantics

A closer look at PX

In other words, given a set X of atoms from P,

PX is obtained from P by deleting

1 each rule having ∼a in its body with a ∈ X
and then

2 all negative atoms of the form ∼a
in the bodies of the remaining rules

Note Only negative body literals are evaluated wrt X

Sebastian Rudolph (TUD) Answer Set Programming: Basics 21 / 32



Examples

Outline

1 Motivation: ASP vs. Prolog and SAT

2 ASP Syntax

3 Semantics

4 Examples

5 Variables

6 Reasoning modes

Sebastian Rudolph (TUD) Answer Set Programming: Basics 22 / 32



Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX )

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Sebastian Rudolph (TUD) Answer Set Programming: Basics 23 / 32



Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX )

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Sebastian Rudolph (TUD) Answer Set Programming: Basics 23 / 32



Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX )

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Sebastian Rudolph (TUD) Answer Set Programming: Basics 23 / 32



Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX )

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Sebastian Rudolph (TUD) Answer Set Programming: Basics 23 / 32



Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX )

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Sebastian Rudolph (TUD) Answer Set Programming: Basics 23 / 32



Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX )

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Sebastian Rudolph (TUD) Answer Set Programming: Basics 23 / 32



Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX )

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Sebastian Rudolph (TUD) Answer Set Programming: Basics 23 / 32



Examples

A second example

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX )

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

Sebastian Rudolph (TUD) Answer Set Programming: Basics 24 / 32



Examples

A second example

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX )

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

Sebastian Rudolph (TUD) Answer Set Programming: Basics 24 / 32



Examples

A second example

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX )

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

Sebastian Rudolph (TUD) Answer Set Programming: Basics 24 / 32



Examples

A second example

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX )

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

Sebastian Rudolph (TUD) Answer Set Programming: Basics 24 / 32



Examples

A second example

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX )

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

Sebastian Rudolph (TUD) Answer Set Programming: Basics 24 / 32



Examples

A second example

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX )

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅ 8

Sebastian Rudolph (TUD) Answer Set Programming: Basics 24 / 32



Examples

A third example

P = {p ← ∼p}

X PX Cn(PX )

{ } p ← {p} 8

{p} ∅

Sebastian Rudolph (TUD) Answer Set Programming: Basics 25 / 32



Examples

A third example

P = {p ← ∼p}

X PX Cn(PX )

{ } p ← {p} 8

{p} ∅

Sebastian Rudolph (TUD) Answer Set Programming: Basics 25 / 32



Examples

A third example

P = {p ← ∼p}

X PX Cn(PX )

{ } p ← {p} 8

{p} ∅

Sebastian Rudolph (TUD) Answer Set Programming: Basics 25 / 32



Examples

A third example

P = {p ← ∼p}

X PX Cn(PX )

{ } p ← {p} 8

{p} ∅ 8

Sebastian Rudolph (TUD) Answer Set Programming: Basics 25 / 32



Examples

Some properties

A logic program may have zero, one, or multiple stable models!

If X is a stable model of a logic program P,
then X is a model of P (seen as a formula)

If X and Y are stable models of a normal program P,
then X 6⊂ Y

Sebastian Rudolph (TUD) Answer Set Programming: Basics 26 / 32



Examples

Some properties

A logic program may have zero, one, or multiple stable models!

If X is a stable model of a logic program P,
then X is a model of P (seen as a formula)

If X and Y are stable models of a normal program P,
then X 6⊂ Y

Sebastian Rudolph (TUD) Answer Set Programming: Basics 26 / 32



Variables

Outline

1 Motivation: ASP vs. Prolog and SAT

2 ASP Syntax

3 Semantics

4 Examples

5 Variables

6 Reasoning modes

Sebastian Rudolph (TUD) Answer Set Programming: Basics 27 / 32



Variables

Programs with Variables

Let P be a logic program

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)

Ground Instances of r ∈ P: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground Instantiation of P: ground(P) =
⋃

r∈P ground(r)

Sebastian Rudolph (TUD) Answer Set Programming: Basics 28 / 32



Variables

Programs with Variables

Let P be a logic program

Let T be a set of

(

variable-free

)

terms (also called Herbrand universe)

Let A be a set of (variable-free) atoms constructable from T
(also called alphabet or Herbrand base)

Ground Instances of r ∈ P: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground Instantiation of P: ground(P) =
⋃

r∈P ground(r)

Sebastian Rudolph (TUD) Answer Set Programming: Basics 28 / 32



Variables

Programs with Variables

Let P be a logic program

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)

Ground Instances of r ∈ P: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground Instantiation of P: ground(P) =
⋃

r∈P ground(r)

Sebastian Rudolph (TUD) Answer Set Programming: Basics 28 / 32



Variables

Programs with Variables

Let P be a logic program

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)

Ground Instances of r ∈ P: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground Instantiation of P: ground(P) =
⋃

r∈P ground(r)

Sebastian Rudolph (TUD) Answer Set Programming: Basics 28 / 32



Variables

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y )← r(X ,Y ) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


Intelligent Grounding aims at reducing the ground instantiation

Sebastian Rudolph (TUD) Answer Set Programming: Basics 29 / 32



Variables

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y )← r(X ,Y ) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


Intelligent Grounding aims at reducing the ground instantiation

Sebastian Rudolph (TUD) Answer Set Programming: Basics 29 / 32



Variables

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y )← r(X ,Y ) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


Intelligent Grounding aims at reducing the ground instantiation

Sebastian Rudolph (TUD) Answer Set Programming: Basics 29 / 32



Variables

Stable models of programs with Variables

Let P be a normal logic program with variables

A set X of (ground) atoms is a stable model of P,

if Cn(ground(P)X ) = X

Sebastian Rudolph (TUD) Answer Set Programming: Basics 30 / 32



Variables

Stable models of programs with Variables

Let P be a normal logic program with variables

A set X of (ground) atoms is a stable model of P,

if Cn(ground(P)X ) = X

Sebastian Rudolph (TUD) Answer Set Programming: Basics 30 / 32



Reasoning modes

Outline

1 Motivation: ASP vs. Prolog and SAT

2 ASP Syntax

3 Semantics

4 Examples

5 Variables

6 Reasoning modes

Sebastian Rudolph (TUD) Answer Set Programming: Basics 31 / 32



Reasoning modes

Reasoning Modes

Satisfiability

Enumeration†

Projection†

Intersection‡

Union‡

Optimization

and combinations of them

† without solution recording
‡ without solution enumeration

Sebastian Rudolph (TUD) Answer Set Programming: Basics 32 / 32


	Answer Set Programming – Basics
	Motivation: ASP vs. Prolog and SAT
	ASP Syntax
	Semantics
	Examples
	Variables
	Reasoning modes


