
Fakultät Informatik, Institut Künstliche Intelligenz, Professur Computational Logic 

Deduction Systems 
 
Sebastian Rudolph 
Computational Logic 
sebastian.rudolph@tu-dresden.de�
 



Chair for Computational Logic 
Institute for Artificial Intelligence 

2 Sebastian Rudolph  Foundations of Description Logics 
  Lecture: Deduction Systems 

About this Lecture 

§  Wednesdays, 16:40 – 18:10, INF E005  
(exceptions will be announced) 

§  content: algorithmic aspects of practically deployed deduction 
systems 
§  tableau and hypertableau systems for reasoning in description logics 

§  reasoning algorithms in answer set programming 

§  lecture and tutorial sessions (will be announced) 

§  webpage with material, schedule, and announcements: 
 https://ddll.inf.tu-dresden.de/web/Deduction_Systems_%28SS2017%29
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About the Lecturer 

Sebastian Rudolph 

 

from 04/2013  Full Professor for Computational Logic 
  Computer Science Department, TU Dresden 

2006 – 2013  Research Assistant à Project Leader à Privatdozent 
  Chair of Knowledge Management, Institute AIFB 
  University of Karlsruhe à Karlsruhe Institute of Technology 

2003 – 2005  Research Assistant 
  Chair of Psychology of Teaching and Learning, TU Dresden 

2000 – 2003  PhD Scholarship Holder Graduate School, TU Dresden 

1995 – 2000  Studies for high-school teaching (Math, Physics, CS), TU Dresden 
 
scientific interests: 
semantic technologies – logic-based knowledge representation – decidability and 
complexity analysis of logic formalisms – ontological modeling – formal concept 
analysis – theory of databases – computational linguistics 
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Outline 

Introduction: about DLs and the Semantic Web 

  Syntax of Description Logics 

Semantics of Description Logics 

Description Logic Nomenclature 

Equivalences, Normalization, Emulation 

Modeling Power of DLs 

  DL Reasoning Tasks 



Chair for Computational Logic 
Institute for Artificial Intelligence 

6 Sebastian Rudolph  Foundations of Description Logics 
  Lecture: Deduction Systems 

Introduction 

Come join the DL vaudeville show! 

It's variable-free, although 

With quantiers, not, and, or 

Quite deeply rooted in FOLklore. 

Still, curing the first-order ailment 

We sport decidable entailment! 
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Description Logics 

Description Logics (DLs) one of today‘s main 
KR paradigms 

influenced standardization of Semantic Web 
languages, in particular the web ontology 
language OWL 

 

comprehensive tool support available 
 

Fact++ 
   Pellet 
  HermiT 
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Description Logics 

origin of DLs: semantic networks and frame-based 
systems 

downside of the former: only intuitive semantics – diverging 
interpretations 

DLs provide a formal semantics on logical grounds 

can be seen as decidable fragments of first-order logic 
(FOL), closely related to modal logics 

significant portion of DL-related research devoted to 
clarifying the computational effort of reasoning tasks in terms 
of their worst-case complexity 

despite high complexities, even for expressive DLs exist 
optimized reasoning algorithms with good average case 
behaviour 
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Syntax of Description Logics 

 

Deluxe DL delivery 

Will come in boxes (number: three), 

Precisely marked with A, T, R. 

The first exhibits solid grounding, 

The next allows for simple counting, 

The third one's strictly regular. 
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DL Building Blocks 

individual names: markus, rhine, sun, excalibur
aka: constants (FOL), resources (RDF) 

concept names: Female, Mammal, Country
aka: unary predicates (FOL), classes (RDFS) 

role names: married, fatherOf, locatedIn
aka: binary predicates (FOL), properties (RDFS) 

 

The set of all individual, concept  
      and role names is commonly  
           referred to as signature or  
               vocabulary. 
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Constituents of a DL Knowledge Base 

RBox R 

TBox T 

ABox A 

information about roles and their 
dependencies 
  

 

information about concepts  
and their taxonomic 
dependencies 
 

information about individuals and 
their concept and role 
memberships 
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Roles and Role Inclusion Axioms 

  A role can be 

  a role name r or 

  an inverted role name r- or 

the universal role u. 

 

  A role inclusion axiom (RIA) is a statement of the form 
 

       r1 ± ... ± rn v r 
 
where r1,...,rn,r are roles. 
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Role Simplicity 

Given a set of RIAs, roles are divided into simple and non-
simple roles. 

Roughly, roles are non-simple if they may occur on the rhs 
of a complex RIA. 

More precisely,  

for any RIA r1 ± r2 ± ... ± rn v r with n>1, r is non-simple, 

for any RIA s v r with s non-simple, r is non-simple, and 

  all other properties are simple. 

Example: 
q ± p v r        r ± p v r        r v s       p v r        q v s  

 non-simple: r, s  simple: p, q 
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  For technical reasons, the set of all RIAs of a knowledge base is required 
to be regular.  

regularity restriction: 

there must be a strict linear order ≺ on the roles such that 

every RIA has one of the following forms with si ≺ r for all i=1,2,...,n: 

r ± r v r     r- v r         s1 ± s2 ± ... ± sn v r 

r ± s1 ± s2 ± ... ± sn v r    s1 ± s2 ± ... ± sn ± r v r 
 

Example 1:  r ± s v r  s ± s v s  r ± s ± r v t 
regular with order s ≺ r ≺ t 

Example 2:  r ± t ± s v t 
not regular because form not admissible 

Example 3:  r ± s v s  s ± r v r 
not regular because no adequate order exists 

The Regularity Condition on RIA sets 
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RBox 

  A role disjointness statement has the form 
 

             Dis(s1,s2) 
 

where s1 and s2 are simple roles. 

  An RBox consists of regular set of RIAs and a set of role 
disjointness statements. 

RBox R 
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Concept Expressions 

We define concept expressions inductively as follows: 
every concept name is a concept expression, 

  > and ? are concept expressions, 

for a1,...,an individual names, {a1,...,an} is a concept expression, 

for C and D concept expressions, ¬C and C uD and C tD are 
concept expressions, 

for r a role and C a concept expression, 9r.C and 8r.C are concept 
expressions, 

for s a simple role, C a concept expression and n a natural number, 
9s.Self and ≤ns.C and ≥ns.C are concept expressions. 
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TBox 

  A general concept inclusion (GCI) has the form 
 

             C v D 
 

where C and D are concept expressions. 

  A TBox consists of a set of GCIs. 

  
N.B.: Definition of TBox  
presumes already known 
RBox due to role simplicity 
constraints. 

TBox T 



Chair for Computational Logic 
Institute for Artificial Intelligence 

18 Sebastian Rudolph  Foundations of Description Logics 
  Lecture: Deduction Systems 

ABox 

  An individual assertion can have any of the following forms 

  C (a), called concept assertion, 

  r (a,b), called role assertion, 

  ¬r (a,b), called negated role assertion, 

  a ≈ b, called equality statement, or 

  a 6≈ b, called inequality statement.  

  An ABox consists of a set of  
individual assertions. 

  
 ABox A 
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An Example Knowledge Base Example 12. As an example consider the following knowledge base KB:

RBox R
owns ⇧ caresFor

“If somebody owns something, they care for it.”

TBox T
Healthy ⇧ ¬Dead

“Healthy beings are not dead.”

Cat ⇧ Dead ⇤ Alive

“Every cat is dead or alive.”

HappyCatOwner ⇧ ⇥owns.Cat ⌅ �caresFor.Healthy
“A happy cat owner owns a cat and all beings
he cares for are healthy.”

ABox A
HappyCatOwner (schrödinger)

“Schrödinger is a happy cat owner.”

3 Semantics
Semantics has wide applications
To relationship-based altercations,
For semantics unveils
What a statement entails
Depending on interpretations.

Like for any other logic, the definition of a formal semantics for DLs boils
down to providing a consequence relation that determines whether an
axiom logically follows from (also: is entailed by) a given set of axioms.
The semantics of description logics is defined in a model-theoretic way.
Thereby, one central notion is that of an interpretation. Interpretations
might be conceived as potential “realities” or “worlds.” In particular,
interpretations need in no way comply with the actual reality.

3.1 Interpretations

In the case of DLs, an interpretation, normally denoted with I, provides

• a nonempty set �I , called the domain or also universe of discourse
which can be understood as the entirety of individuals or things ex-
isting in the “world” that I represents, and

• a function ·I , called interpretation function which connects the vocab-
ulary elements (i.e., the individual, concept, and role names) to �I ,
by providing

16
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Semantics of Description Logics 

 

 

 

Semantics has wide applications 

To relationship-based altercations, 

For semantics unveils 

What a statement entails 

Depending on interpretations. 
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!"#$%&%$#'()" 

!I  

aI CI 

rI 

individual names NI role names NR class names NC 

...a... ...C... ...r... 

!I 

*)+',-.'%/ 
Interpretations 

Semantics for DLs is defined in a model theoretic way, i.e. based on 
„abstract possible worlds“, called interpretations. 

  A DL interpretation I fixes a domain set ΔI and a mapping .I 
associating a „semantic counterpart“ to every name. 

 

 

 

  

  

 

 N.B.: Different names can 
be mapped to the same 
semantic counterpart: no 
unique name assumption. 

 N.B.: ΔI can be infinite. 
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Interpretations: an Example 



Chair for Computational Logic 
Institute for Artificial Intelligence 

23 Sebastian Rudolph  Foundations of Description Logics 
  Lecture: Deduction Systems 

Interpretation of Concept Expressions 

Given an interpretation, we can determine the semantic 
counterparts for concept expressions along the following 
inductive definitions:  

mapping is extended to complex class expressions: 

   >I = ∆I                            

   ?I = {} 

{a1,...,an}
I = {a1

I,...,an
I} 

    (¬C)I = ∆I \ CI 

  (C u D)I = CI \ DI  

  (C t D)I = CI [ DI 

    9r.C = { x | 9y. (x,y) 2 rI ^ y 2 CI } 

    8r.C = { x | 8y. (x,y) 2 rI → y 2 CI } 

9s.Self  = { x | (x,x) 2 sI } 

  ≥ns.C = { x | #{ y | (x,y) 2 sI ^ y 2 CI } ≥ n } 

  ≤ns.C = { x | #{ y | (x,y) 2 sI ^ y 2 CI } ≤ n } 
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Boolean Concept Expressions 

I 

Actor t Politician

I I 

Actor u Politician

I I I 

¬Politician

I I 
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Existential Role Restrictions 

9parentOf.Male

I I I 
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Universal Role Restrictions 

8parentOf.Male

I I I 
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Qualified Number Restrictions 

¸2parentOf.Male

I I I 
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Self-Restrictions 

9killed.Self 

I I 
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Semantics of Axioms 

Given a way to determine a semantic counterpart for all 
expressions, we now define the criteria for checking if an 
interpretation I satisfies an axiom alpha α (written: I ⊨ α). 

  I ⊨ r1 ± ... ± rn v r    if  r1
I ± ... ± rn

I µ rI  

  I ⊨ Dis(s1,s2)     if  s1
I \ s2

I   = {}  
  I ⊨ C v D       if  C  I µ D  I 

  I ⊨ C (a)      if  a I 2 C  I 

  I ⊨ r (a,b)      if (a I,b I) 2 r 
I 

  I ⊨ ¬r (a,b)     if (a I,b I) 62 r 
I 

  I ⊨ a ≈ b   if  a I = b I 

  I ⊨ a 6≈ b   if  a I 6= b I 
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Concept and Role Membership 

Male(nicolas)
I I 

married(carla,nicolas)

I 
I I 
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General Inclusion Axioms 

President v Politician
I I 
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Role Inclusion Axioms 

hasParent ± hasChild v siblingOf

I 

I 
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  A KB is satisfiable (also: consistent) if there exists an 
interpretation that satisfies all its axioms (a model of the 
KB). Otherwise it is unsatisfiable (also: inconsistent or 
contradictory). 

Is the following KB satisfiable? 

(Un)Satisfiability of Knowledge Bases 
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Entailment of Axioms 

  A KB entails an axiom α if the axiom α is satisfied by every 
model of the knowledge base. 

!"#$%&%$#'()" 

!I  

aI CI 

rI 

individual names NI role names NR class names NC 

...a... ...C... ...r... 

!I 

*)+',-.'%/ 

Models of the KB 

Interpretations satisfying α 
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Decidability of DLs 

DLs are decidable, i.e. there exists an 
algorithm that  

takes a knowledge base and an 
axiom as input, 

terminates after finite time, 

provides as output the correct 
answer to the question whether 
the KB entails the axiom. 

 

 

   YES/NO 

KB α 
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Semantics via Translation into FOL  

Since DLs can be seen as fragments of FOL, we can 
alternatively define the semantics by providing a translation 
of DL axioms into FOL formulae.  
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Semantics via Translation into FOL (ctd.)  

Concept/role expressions are translated into formulae with 
one/two free variable(s).  
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Description Logics Nomenclature 

 

What's in a name? That which we call, say, SHIQ, 
By any other name would do the trick. 

While DL names might leave the novice SHOQed, 

Some principles of ALCHemy unlocked 

Enable understanding in a minute: 

Though it be madness, yet there's method in it. 
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Naming Scheme for Expressive DLs 

  S subsumes ALC 

  SR subsumes S, SH, ALC and ALCH 

  N makes F obsolete 

  Q makes N (and F) obsolete 

 

We treat here the very expressive description logic SROIQ 
which subsumes all the other ones in this scheme. 



Chair for Computational Logic 
Institute for Artificial Intelligence 

40 Sebastian Rudolph  Foundations of Description Logics 
  Lecture: Deduction Systems 

DL Syntax – Overview 

Ontology (=Knowledge Base) 
Atomic A, B 

Not ¬C 

And C u D 

Or C t D 

Exists 9 r.C 

For all 8 r.C 

At least ≥n r.C (≥n r) 

At most ≤n r.C (≤n r) 

Closed 
class 

{i1,…,in} 

Self 9 r.Self 

Concepts 

Roles 

Atomic r 

Inverse r- 

A
L

C
 

Q
 (

N
) 

I 

Concept Axioms (TBox) 

Subclass C v D 

Equivalent C ´ D 

Role Axioms (RBox) 

Assertional Axioms (ABox) 

Instance C(a) 

Role r(a,b) 

Same a ≈ b 
Different a 6≈ b 

H
 

O
 

S 

Subrole r v s 

Transitivity Trans(r) 

Role Chain r o r’ v s 

R. Disjointness Disj(s,r) 

S = ALC + Transitivity  OWL DL = SROIQ(D)  (D: concrete domain) 

R
 

SR
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Equivalences, Emulation, Normalization 

Don't give told consequences lip, 

Nor 'bout equivalences quip, 

'Cause often it's the formal norm 

That statements be in normal form. 
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Concept Equivalences 

 Two concept expressions C and D are called equivalent 
(written: C ´ D), if for every interpretation I holds  
C I   

 =
     D I. 

 



Chair for Computational Logic 
Institute for Artificial Intelligence 

43 Sebastian Rudolph  Foundations of Description Logics 
  Lecture: Deduction Systems 

Negation Normal Form 

Iterated rewriting of concept expressions along the 
mentioned equivalences allows to convert every concept 
expression into one with negation only in front of concept 
names, nominal concepts and Self-restrictions. 
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Axiom and KB Equivalences 

Lloyd-Topor equivalences 

 

turning GCIs into universally valid concept descriptions 

 

internalisation of ABox into TBox  
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Emulation 

Sometimes the knowledge base is required to be in some specific form 
which cannot be obtained by equivalent transformations alone. In that 
cases, one can try to obtain a KB that is equivalent “up to additional 
vocabulary“ (called fresh names). 

Example: 

ABox is extensionally reduced if all concept assertions contain concept 
names only. 

Any KB can be turned into one with extensionally reduced ABox by 
repeating the following procedure: 

  Pick a concept assertion C(a) where C is not a concept name 

remove C(a) from the Abox and add A(a) instead, where A is not used elsewhere in 
the KB 

add AvC to the TBox 
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Emulation 

A knowledge base KB´ emulates a knowledge base KB if two conditions are 
satisfied: 

Every model of KB´ is a model of KB, formally: given an interpretation 
I, we have that I ⊨ KB´ implies I ⊨ KB. 

  For every model I of KB there is a model I´ of KB´ that has the same 
domain as I, and coincides with I on the vocabulary used in KB. 

 

Using emulation allows to model many things that are not directly 
expressible in the used DL. 

Example: “AvB holds or CvD holds“ can be emulated by 

  > v 9r.{o}    {o} v 8r-.(¬AtB) t 8r-.(¬CtD) 

 where o is a fresh individual name and r a fresh role name.  
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Modeling with DLs 

While frowning on plurality, 

The pope likes cardinality: 

It can enforce infinity, 

And hence endorse divinity. 

But, theologically speaking, 

The papal theory needs tweaking 

For it demands divine assistance 

to prove "the three are one"-consistence. 
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Frequent Modeling Features 

domain:      9authorOf.> v Person
range:      > v 8authorOf.Publication
  or      9authorOf –.> v Publication

 

concept disjointness:  Male u Female v ?
          or      Male v ¬Female
 

role symmetry:    marriedWith– v marriedWith

role transitivity:    partOf ± partOf v partOf
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Number Restrictions 

allow for defining that a role is functional: 
> v ·1hasFather.> 

  ...or inverse functional: 
> v ·1fatherOf –.> 

allow for enforcing an infinite domain: 

Consequently, DLs with number restrictions and inverses do 
not have the finite model property. 
 

? 
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Nominal Concept and Universal Role 

allow to restrict the size of concepts: 

 AtMostTwo v {one,two}   > v ·2u.AtMostTwo 

 

even allow to restrict the size of the domain: 

 > v {one,two}     > v ·2u.> 
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Self-Restriction 

allows to define a role as reflexive 
> v 9knows.Self 
allows to define a role as irreflexive 
9betterThan.Self v ? 

together with number restrictions, we can even axiomatize 
equality: 

 > v 9equals.Self  > v ·1equals.> 
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Open vs. Closed World Assumption 

  CWA: Closed World Assumption 

 The knowledge base contains all information, non-derivable axioms are 
assumed to be false. 

  OWA: Open World Assumption 
The knowledge base may be incomplete. The truth of non-derivable 
axioms is simply unknown. 

With DLs, the OWA is applied (as for FOL in general), certain closed-
world information can be axiomatized via number restrictions and 
nominals 

 

 

? ² 8child.Man(Bill)
child(bill,bob)

Man(bob) don’t know yes 
DL answers Prolog 

Are all children of  
Bill male? 

No idea, since we do 
not know all children 
of Bill. 

If we assume that we 
know everything about 
Bill, then all of his 
children are male. 

·1child.>(Bill) ? ² 8child.Man(Bill) yes Now we know everything 
about Bill’s children. 
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Reasoning Tasks and Their Reducibility 

A knowledge base with statements in it 

Seeks a model sound and nice 

No matter, finite or infinite, 

It asks a hermit for advice. 

Yet, shattering is the reaction: 

“Inconsistency detection, 

You can't get no satisfaction.“ 
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Standard DL Inference Problems 

Given a knowledge base KB, we might want to know: 

whether the KB is consistent, 

whether the KB entails a certain axiom 

   ( such as Alive(schrödinger) ),  
whether a given concept is (un)satisfiable 

   ( such as Dead u Alive ), 

  all the individuals known to be instances a certain concept 

the subsumption hierarchy of all atomic concepts  
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Knowledge Base Consistency 

basic inferencing task 

directly needed in the process of KB engineering in order to 
detect severe modelling errors 

other tasks can be reduced to checking KB (in)consistency  
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Entailment Checking 

used in the KB modelling process to check, whether the 
specified knowledge has the intended consequences 

used for querying the KB if certain propositions are 
necessarily true 

can be reduced to checking KB inconsistency (along the idea 
of indirect proof) by 

negating the axiom the entailment of which is to be checked 

adding the negated axiom to the knowledge base 

checking for inconsistency of the KB 

if axiom cannot be negated directly, its negation can be 
emulated 
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Entailment Checking 
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Concept satisfiability 

  A concept expression C is called satisfiable with respect to a 
knowledge base, if there is a model of this KB where C  I is 
not empty. 

Unsatisfiable atomic concepts normally indicate modeling 
errors in the KB. 

Checking concept satisfiability can be reduced to checking 
(non-)entailment: C is satisfiable wrt. a KB if the KB does 
not entail the axiom C v ?. 
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Instance Retrieval 

Asking for all the named individuals known to be in a 
certain concept (role) is a typical querying or retrieval task. 

It can be reduced to checking entailment of as many 
individual assertions as there are named individuals in the 
knowledge base. 

Depending on the used system and inferencing algorithm, 
this can be done in a much more efficient way (e.g. by 
translation into a database query).  
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Classification 

Classification of a knowledge base aims at determining for 
any two concept names A, B, whether A v B is a 
consequence of the KB. 

This is useful at KB design time for checking the inferred 
concept hierarchy. Also, computing this hierarchy once and 
storing it can speed up further queries. 

Classification can be reduced to checking entailment of 
GCIs. 

While this requires quadratically many checks, one can often 
do much better in practice by applying optimizations and 
exploiting that subsumption is a preorder. 



Chair for Computational Logic 
Institute for Artificial Intelligence 

61 Sebastian Rudolph  Foundations of Description Logics 
  Lecture: Deduction Systems 

References – Textbooks 

  Pascal Hitzler, Markus Krötzsch,  
Sebastian Rudolph, York Sure,  
Semantic Web – Grundlagen.  
Springer, 2008. 
http://www.semantic-web-grundlagen.de/ 
(In German.) 

 
 

  Pascal Hitzler, Markus Krötzsch,  
Sebastian Rudolph, 
Foundations of Semantic Web Technologies. 
Chapman & Hall/CRC, 2009. 
http://www.semantic-web-book.org/ 
 



Chair for Computational Logic 
Institute for Artificial Intelligence 

62 Sebastian Rudolph  Foundations of Description Logics 
  Lecture: Deduction Systems 

Thank You! 


