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Abstract. We investigate the possibility of incorporating Boolean role construc-
tors on simple roles into some of today’s most popular description logics, fo-
cussing on cases where those extensions do not increase complexity of reasoning.
We show that the expressive DLs SHOIQ and SROIQ, serving as the logical
underpinning of OWL and the forthcoming OWL 2, can accommodate arbitrary
Boolean expressions. The prominent OWL-fragment SHIQ can be safely ex-
tended by safe role expressions, and the tractable fragments EL++ and DLP re-
tain tractability if extended by conjunction on roles, where in the case of DLP the
restriction on role simplicity can even be discarded.

1 Introduction

Research on description logics (DLs) is directed by two main goals: increasing expres-
sivity while preserving desirable computational properties such as decidability (as a
factual conditio sine qua non) and efficiency of reasoning, the latter qualitatively esti-
mated in terms of worst-case complexities. These antagonistic dimensions gave rise to
a great variety of logics: SROIQ and SHOIQ being of high expressiveness and com-
plexity represent one side of the spectrum, whereas the so called tractable fragments like
EL++ and DLP provide lower expressivity yet allow for polynomial time reasoning.

In DL history, Boolean constructors (negation, conjunction, disjunction) on roles
have occurred and have been investigated sporadically in many places, but have never
been integrated into the mainstream of researched languages nor influenced standardis-
ation efforts. In this paper, we argue that those constructors can – sometimes with appro-
priate restrictions – be incorporated into several of the most prominent DL languages,
thereby significantly enhancing expressivity without increasing reasoning complexity.

To illustrate this gain in expressivity, we give some examples on the modelling
capabilities of Boolean role constructors:

Universal role. A role U that connects all individuals of the described domain can e.g.
be defined via U ≡ ¬N as the complement of the empty role N, which in turn can be
axiomatized by the GCI > v ∀N.⊥.

Role conjunction. This modelling feature comes in handy if certain non-tree-like prop-
erties (namely cases where two individuals are interconnected by more than one role)
have to be described. The fact that somebody testifying against a relative is not put un-
der oath can e.g. be formalised by ∃(testifiesAgainst u relativeOf ).> v ¬UnderOath.



Likewise, role conjunction allows for specifying disjointness of roles, as Dis(R, S ) can
be paraphrased as > v ∀(R u S ).⊥.

Concept products. Thoroughly treated in [1], the concept product statement C ×D v R
expresses that any instance of C is connected with any instance of D via role R. As
an example, the fact that alkaline solutions neutralise acid solutions, which could ex-
pressed by the concept product axiom AlkalineSolution × AcidSolution v neutralises,
can equivalently be stated by AlkalineSolution v ∀(¬neutralises).¬AcidSolution by us-
ing role negation.

Qualified role inclusion. Likewise, the specialisation of roles due to concept mem-
berships of the involved individuals can be expressed. The rule-like FOL statement
C(x) ∧ R(x, y) ∧ D(y) → S (x, y) (expressing that any C-instance and D-instance that
are interconnected by R are also interconnected by S ) can be cast into the GCI C v
∀(R u ¬S ).¬D. For example, the fact that any person of age having signed a contract
which is legal is bound to that contract can be expressed by OfAge v ∀(hasSigned u
¬boundTo).¬(Contract u Legal).

The latter two types of statements have recently gained increased interest in the
context of identifying rule-like fragments of DLs [2].

The rest of the paper is organised as follows. After providing the necessary defini-
tions, we review existing work on Boolean role constructors. Then, we deal with the
extension of SROIQ and SHOIQ by full Boolean role expressions on simple roles.
Thereafter, we provide an according result for integrating safe Boolean role expressions
into the description logic SHIQ. The subsequent two sections settle the case for the
tractable fragments EL++ and DLP, respectively, extending them by role conjunction.
Finally, we conclude and elaborate on future work. Due to lack of space, some proofs
had to be omitted. Those can be found in [3].

2 Preliminaries

In this section, we give the definition of the expressive description logic SROIQBs
which is obtained from the well-known description logic SROIQ [4] by allowing arbi-
trary Boolean constructors on simple roles. We assume that the reader is familiar with
description logics [5].

The DLs considered in this paper are based on four disjoint sets of individual names
NI , concept names NC , and simple role names Ns

R (containing the universal role U ∈ NR)
as well as non-simple role names Nn

R. Furthermore, we let NR B Ns
R ∪ Nn

R.

Definition 1. A SROIQBs Rbox for NR is based on a set R of atomic roles defined
as R B NR ∪ {R− | R ∈ NR}, where we set Inv(R) B R− and Inv(R−) B R to simplify
notation. In turn, we distinguish simple atomic roles Rs B Ns

R∪Inv(Ns
R) and non-simple

atomic roles Rn B Nn
R ∪ Inv(Nn

R).
In the sequel, we will use the symbols R, S , possibly with subscripts, to denote

atomic roles.



The set of Boolean role expressions B is defined as follows:

BF R | ¬B | B u B | B t B.

The set Bs of simple role expressions comprises all those role expressions contain-
ing only simple role names. In the sequel, V and W will denote simple role expressions if
not stated otherwise. Moreover, a role expression will be called safe, if in its disjunctive
normal form, every disjunct contains at least one non-negated role name.

A generalised role inclusion axiom (RIA) is a statement of the form V v W with
simple role expressions V and W, or of the form

S 1 ◦ . . . ◦ S n v R

where each S i is a simple role expression or a non-simple atomic role, and where R is a
non-simple atomic role. A set of such RIAs will be called a generalised role hierarchy.
A role hierarchy is regular if there is a strict partial order ≺ on the non-simple roles Rn

such that

– S ≺ R iff Inv(S ) ≺ R, and
– every RIA is of one of the forms
• R ◦ R v R,
• R− v R,
• S 1 ◦ . . . ◦ S n v R,
• R ◦ S 1 ◦ . . . ◦ S n v R,
• S 1 ◦ . . . ◦ S n ◦ R v R,

such that R ∈ NR is a (non-inverse) role name, and S i ≺ R for i = 1, . . . , n whenever
S i is non-simple.

A role assertion is a statement of the form Ref(R) (reflexivity), Asy(V) (asymmetry),
or Dis(V,W) (role disjointness), where V and W are simple role expressions, and R is a
simple role expression or a non-simple role. A SROIQBs Rbox is the union of a set of
role assertions together with a role hierarchy. A SROIQBs Rbox is regular if its role
hierarchy is regular.

Definition 2. Given a SROIQBs Rbox R, the set of concept expressions C is defined
as follows:

– NC ⊆ C, > ∈ C, ⊥ ∈ C,
– if C,D ∈ C, R ∈ Bs ∪ Rn a simple role expression or non-simple role, V ∈ Bs a

simple role expression, a ∈ NI , and n a non-negative integer, then ¬C, CuD, CtD,
{a}, ∀R.C, ∃R.C, ∃V.Self, ≤n V.C, and ≥n V.C are also concept expressions.

Throughout this paper, the symbols C, D will be used to denote concept expressions.
A SROIQBs Tbox is a set of general concept inclusion axioms (GCIs) of the form
C v D.

An individual assertion can have any of the following forms: C(a), R(a, b), ¬V(a, b),
a 0 b, with a, b ∈ NI individual names, C ∈ C a concept expression, and R, S ∈ R roles
with S simple. A SROIQBs Abox is a set of individual assertions.

A SROIQBs knowledge base KB is the union of a regular Rbox R, and an Abox
A and Tbox T for R. We use the term axiom to uniformly refer to any single statement
contained in R,A, or T .



Name Syntax Semantics
inverse role R− {(x, y) ∈ ∆I × ∆I | (y, x) ∈ RI}
universal role U ∆I × ∆I

role negation ¬V {(x, y) ∈ ∆I × ∆I | (x, y) < RI}
role conjunction V uW VI ∩WI

role disjunction V tW VI ∪WI

top > ∆I

bottom ⊥ ∅

negation ¬C ∆I \CI

conjunction C u D CI ∩ DI

disjunction C t D CI ∪ DI

nominals {a} {aI}
univ. restriction ∀R.C {x ∈ ∆I | (x, y) ∈ RI implies y ∈ CI}
exist. restriction ∃R.C {x ∈ ∆I | for some y ∈ ∆I , (x, y) ∈ RI and y ∈ CI}
Self concept ∃V.Self {x ∈ ∆I | (x, x) ∈ VI}
qualified number ≤n V.C {x ∈ ∆I | #{y ∈ ∆I | (x, y) ∈ VI and y ∈ CI} ≤ n}
restriction ≥n V.C {x ∈ ∆I | #{y ∈ ∆I | (x, y) ∈ VI and y ∈ CI} ≥ n}

Fig. 1. Semantics of concept and role constructors in SROIQBs for an interpretation I with
domain ∆I.

We further give the semantics of SROIQBs knowledge bases.

Definition 3. An interpretation I consists of a set ∆I called domain together with a
function ·I mapping individual names to elements of ∆I, concept names to subsets of
∆I, and role expressions to subsets of ∆I × ∆I.

The function ·I is inductively extended to role and concept expressions as shown in
Fig. 1. An interpretation I satisfies an axiom ϕ if we find that I |= ϕ:

– I |= V v W if VI ⊆ WI,
– I |= V1 ◦ . . . ◦ Vn v R if VI1 ◦ . . . ◦ VIn v RI (◦ being overloaded to denote the

standard composition of binary relations here),
– I |= Ref(R) if RI is a reflexive relation,
– I |= Asy(V) if VI is antisymmetric and irreflexive,
– I |= Dis(V,W) if VI and WI are disjoint,
– I |= C v D if CI ⊆ DI,
– I |= C(a) if aI ∈ CI,
– I |= R(a, b) if (aI, bI) ∈ RI,
– I |= ¬V(a, b) if (aI, bI) < VI,
– I |= a 0 b if aI , bI.

An interpretation I satisfies a knowledge base KB (we then also say that I is a
model of KB and write I |= KB) if it satisfies all axioms of KB. A knowledge base KB
is satisfiable if it has a model. Two knowledge bases are equivalent if they have exactly
the same models, and they are equisatisfiable if either both are unsatisfiable or both are
satisfiable.



We obtain SROIQ from SROIQBs by disallowing all junctors in role expressions.
Further details on SROIQ can be found in [4]. We have omitted here several syntac-
tic constructs that can be expressed indirectly, especially role assertions for transitivity,
reflexivity of simple roles, and symmetry. Moreover, the DL SHOIQ is obtained from
SROIQ by discarding the universal role as well as reflexivity, asymmetry, role disjoint-
ness statements and allowing only RIAs of the form R v S or R ◦ R v R.

3 Related Work

Boolean constructors on roles have been investigated in the context of both description
and modal logics. [6] used them extensively for the definition of a DL that is equivalent
to the two-variable fragment of FOL.

As a classical result on complexities, it was shown in [7], that augmenting ALC
with full Boolean role constructors (ALCB) leads to NExpTime-completeness of the
standard reasoning tasks (while restricting to role negation [7] or role conjunction [8]
only retains ExpTime-completeness). This complexity does not further increase when
allowing for inverses, qualified number restrictions, and nominals as was shown in [8]
by a polynomial translation ofALCIQB into C2, the two variable fragment of first or-
der logic with counting quantifiers, which in turn was proven to be NExpTime-complete
in [9]. Also the recently considered description logic ALBO [10] falls in that range of
NExpTime-complete DLs.

On the contrary, it was also shown in [8] that restricting to safe Boolean role con-
structors keeps ALC’s reasoning complexity in ExpTime, even when adding inverses
and qualified number restrictions (ALCIQb).

For logics including modelling constructs that deal with role concatenation like tran-
sitivity or – more general – complex role inclusion axioms, results on complexities in
the presence of Boolean role constructors are more sparse. [11] shows thatALC can be
extended by negation and regular expressions on roles while keeping reasoning within
ExpTime. Furthermore, [12] provided ExpTime complexity for a similar logic that in-
cludes inverses and qualified number restriction but reverts to safe negation on roles.

An extension of SHIQ with role conjunction (denoted SHIQu) is presented in
[13] in the context of conjunctive query answering, the results implying an upper bound
of 2ExpTime.

4 SROIQBs and SHOIQBs

In this section, we show that adding arbitrary (i.e. also unsafe) Boolean role expres-
sions to the widely known description logics SROIQ and SHOIQ does not harm
their reasoning complexities – N2ExpTime [14] and NExpTime [8], respectively – if this
extension is restricted to simple roles.

Note that in the sequel, SHOIQ (resp. SHOIQBs) will be treated as a special case
of SROIQ (resp. SROIQBs), as most considerations hold for both cases.

As shown in [14], any SROIQ (SHOIQ) knowledge base can be transformed into
an equisatisfiable knowledge base containing only axioms of the form:



Table 1. Additional transformation for SROIQBs and SHOIQBs. A, B are concept names. V ,
W are simple role expressions. Vi are simple role expressions or non-simple roles. V̂ is a simple
role expression that is not just a role. R is a non-simple role name. S is a new simple role name.

A v ∀V̂ .B 7→ {A v ∀S .B, V̂ v S }
A v ≥n V̂ .B 7→ {A v ≥n S .B, S v V̂}
A v ≤n V̂ .B 7→ {A v ≤n S .B, V̂ v S }
A v ∃V̂ .Self 7→ {A v ∃S .Self, S v V̂}

Dis(V,W) 7→ {V uW v S ,> v ∀S .⊥}
V1 ◦ . . . ◦ V̂ ◦ . . . ◦ Vn v R 7→

{V1 ◦ . . . ◦ S ◦ . . . ◦ Vn v R, V̂ v S }

A v ∀R.B
A v ≥n S .B
A v ≤n S .B

�
Ai v
⊔

B j

A ≡ {a}
A ≡ ∃S .Self

S 1 v S 2
S 1 v S −2
Dis(S 1, S 2)

R1 ◦ . . . ◦ Rn v R.

Trivially, this normalization can be applied to SROIQBs (SHOIQBs) as well,
yielding the same types of axioms whereas simple role expressions may occur in the
place of simple roles. A second transformation carried out by exhaustively applying
the transformation steps depicted in Table 1 yields an equisatisfiable knowledge base
containing only the original axiom types depicted above (i.e. again only simple role
names in places of S (i) and role names in places of Ri) and just one additional axiom
type W v V with W,V simple role expressions. As shown in [14], any of these original
axiom types except the one containing role concatenation can be translated into C2, the
two-variable fragment of first order logic with counting quantifiers. The additionally
introduced type of axiom can clearly also be transformed into C2 statements namely
into the proposition ∀xy(Φ(W)→ Φ(V)) where Φ is inductively defined by:

Φ(S ) = S (x, y)
Φ(S −) = S (y, x)
Φ(¬V) = ¬Φ(V)

Φ(V uW) = Φ(V) ∧Φ(W)
Φ(V tW) = Φ(V) ∨Φ(W)

Further following the argumentation from [14], the remaining complex role inclu-
sions not directly convertible into C2 can be taken into account by cautiously material-
izing the consequences resulting from their interplay with axioms of the type A v ∀R.B
through automata encoding techniques – see also [15]. This way, one obtains a C2 the-
ory that is satisfiable exactly if the original knowledge base is. In the case of SROIQ
(and hence SROIQBs), this can result in an exponential blowup of the knowledge
base while for SHOIQBs (and hence SHOIQ) the transformation is time polyno-
mial. Thus we see that the upper complexity bounds for SROIQ and SHOIQ carry
over to SROIQBs and SHOIQBs by just a slight extension of the according proofs
from [14] while the lower bounds follow directly from those of SROIQ and SHOIQ.
Hence, we can establish the following theorem.



Theorem 1. Knowledge base satisfiability checking, instance retrieval, and comput-
ing class subsumptions for SROIQBs (SHOIQBs) knowledge bases is N2ExpTime-
complete (NExpTime-complete).

While the results established in this section are rather straightforward consequences
of known results, their implications for practice might be more significant: they show
that the DLs underlying OWL and OWL 2 can be extended by arbitrary Boolean con-
structors on simple roles without increasing the worst case complexity of reasoning.

5 SHIQbs

SHIQ is a rather expressive fragment obtained from SHOIQ by disallowing nomi-
nals, where (in contrast to the NExpTime-complete SHOIQ) reasoning is known to be
ExpTime-complete [8].

In this section we will introduce the extension of SHIQ by safe role expressions
on simple roles. Thereafter, we will present a technique for removing transitivity state-
ments from SHIQbs knowledge bases in a satisfiability preserving way. This yields
two results: on the one hand, we provide a way how existing reasoning procedures for
ALCHIQb like e.g. those described in [8, 12, 16] can be used to solve SHIQbs rea-
soning tasks. On the other hand, as the transformation procedure can be done in poly-
nomial time, the known upper bound for the complexity of reasoning inALCHIQb –
namely ExpTime – carries over to SHIQbs.

Definition 4. A SHIQbs knowledge base is a SHOIQBs knowledge base that con-
tains no nominals and only safe role expressions.

Based on a fixed knowledge base KB, we define v∗ as the smallest binary relation
on the non-simple atomic roles Rn such that:

– R v∗ R for every atomic role R,
– R v∗ S and Inv(R) v∗ Inv(S ) for every Rbox axiom R v S , and
– R v∗ T whenever R v∗ S and S v∗ T.

Given an atomic non-simple role R, we write Trans(R) ∈ KB as an abbreviation for:
R ◦ R v R ∈ KB or Inv(R) ◦ Inv(R) v Inv(R) ∈ KB.

Slightly generalising according results from [8, 17] (as we allow safe boolean ex-
pressions – in GCIs and role inclusion axioms – already for the original logic), we
now show that any SHIQbs knowledge base can be transformed into an equisatisfiable
knowledge base not containing transitivity statements.

Definition 5. Given a SHIQbs knowledge base KB, let clos(KB) denote the smallest
set of concept expressions where

– NNF(¬C t D) ∈ clos(KB) for any Tbox axiom C v D,
– D ∈ clos(KB) for every subexpression D of some concept C ∈ clos(KB),
– NNF(¬C) ∈ clos(KB) for any ≤n R.C ∈ clos(KB),
– ∀S .C ∈ clos(KB) whenever Trans(S ) ∈ KB and S v∗ R for a role R with ∀R.C ∈

clos(KB).



Moreover, let Ω(KB) denote the knowledge base obtained from KB by

– removing all transitivity axioms R ◦ R v R and
– adding the axiom ∀R.C v ∀S .(∀S .C) for every ∀R.C ∈ clos(KB) with Trans(S ) ∈

KB and S v∗ R.

Proposition 1. Let KB ba a SHIQbs knowledge base. Then, KB and Ω(KB) are equi-
satisfiable.

Taking into account that the presented transformation is time polynomial, this result
can now be employed to determine the complexity of SHIQbs.

Theorem 2. Knowledge base satisfiability checking, instance retrieval, and computing
class subsumptions for SHIQbs knowledge bases is ExpTime-complete.

Proof. Clearly, all standard reasoning problems can be reduced to knowledge base sat-
isfiability checking as usual.

Now, by Proposition 1, any given SHIQbs knowledge base KB can be transformed
into an ALCHIQb knowledge base Ω(KB) in polynomial time. Furthermore, all role
inclusion axioms can be removed fromΩ(KB) as follows. First, all role names contained
in Ω(KB) can be declared to be simple without violating the syntactic constraints. Sec-
ond, every role inclusion axiom V v W (with V,W being safe by definition) can be
equivalently transformed into the GCI > v ∀(V u ¬W).⊥. Note that then V u ¬W is
safe as well and therefore admissible. Moreover the transformation is obviously time
linear. So we end up with an ALCIQb knowledge base whose satisfiability checking
is ExpTime-complete due to [8]. ut

So we have shown that allowing safe Boolean expressions on simple roles does not
increase the ExpTime reasoning complexity of SHIQ. On the other hand, the recent re-
sults on SHIQu [13] seem to indicate that the role simplicity condition is essential for
staying within ExpTime even though no definite hardness result for generalSHIQu was
provided. The safety condition on role expressions, in turn, is clearly needed: dropping
it would lead to a DL comprising ALCB which is known to be NExpTime-complete
[7].

6 EL
++(us)

In this section, we investigate role conjunction for the DL EL++ [18], for which many
typical inference problems can be solved in polynomial time. We simplify our presenta-
tion by omitting concrete domains from EL++ – they are not affected by our extension
and can be treated as shown in [18].

Definition 6. An atomic role of EL++(us) is a (non-inverse) role name. An EL++(us)
role expression is a simple role expression that contains only role conjunctions. An
EL++(us) Rbox is a set of generalised role inclusion axioms (using EL++(us) role ex-
pressions and non-simple atomic roles). An EL++(us) Tbox is a SROIQBs Tbox that
contains only the concept constructors: u, ∃, >, ⊥ and only EL++(us) role expressions.



Note that we do not have any requirement for regularity of roles but we have to
introduce the notion of role simplicity in the context of EL++. In a first step, we observe
that any EL++(us) knowledge base can be converted into a normal form.

Definition 7. An EL++(us) knowledge base KB is in normal form if it contains only
axioms of one of the following forms:

A v C A u B v C R v T
∃R.A v B A v ∃R.B R ◦ S v T

R u S v T

where A, B ∈ NC ∪ {{a} | a ∈ NI} ∪ {>}, C ∈ NC ∪ {{a} | a ∈ NI} ∪ {⊥}, and R, S ,T ∈ NR.

Proposition 2. Any EL++(us) knowledge base can be transformed into an equisatis-
fiable EL++(us) knowledge base in normal form. The transformation can be done in
linear time.

Subsequently, we show that the only axiom type of this normal form not covered by
EL++ can be removed from an EL++(us) knowledge base while preserving satisfiability
if the relevant consequences are materialized before.

Definition 8. Given an EL++(us) knowledge base KB in normal form, let Θu(KB) de-
note the knowledge base obtained from KB by

– adding R1 v R2 for all R2 ∈ Rv1 where S v ⊆ NR denotes the smallest set of role
names containing S and satisfying
• T ∈ S v, whenever R ∈ S v and R v T ∈ KB as well as
• T ∈ S v, whenever R1,R2 ∈ S v and R1 u R2 v T ∈ KB,

– removing every axiom of the form S 1 u S 2 v R and instead adding the axioms
∃S 1.{o} u ∃S 2.{o} v ∃R.{o} for every individual name {o}.

Note that Θu(KB) can be computed in polynomial time. In particular, finding the
closed sets Rv can be done in linear time w.r.t. the size of KB, e.g. using the linclosure
algorithm from [19].

Proposition 3. Let KB be an EL++(us) knowledge base. Then, KB and Θu(KB) are
equisatisfiable.

The shown reduction – besides providing a way of using existing EL++ reasoning
algorithms for reasoning in EL++(us) – now gives rise to the complexity result for
EL++(us).

Theorem 3. Knowledge base satisfiability checking, instance retrieval, and computing
class subsumptions for EL++(us) knowledge bases is P-complete w.r.t. the size of the
knowledge base.

Proof. Given an arbitrary EL++(us) knowledge base KB, Proposition 2 ensures that it
can be transformed in polynomial time into an equisatisfiable knowledge base KB′ in
normal form. Again in polynomial time, we can compute the knowledge base Θu(KB′)



that – by Proposition 3 – is equisatisfiable with KB′ (and hence also with KB). Finally,
as ΘuKB′ is an EL++ knowledge base, we can check satisfiability in polynomial time.

P-hardness for EL++(us) follows from the well known P-hardness of EL (also being
a straightforward consequence of the P-completeness of Horn satisfiability). ut

We finish this section with some general remarks. On the one hand, note that con-
junction on roles enhances expressivity of EL++ significantly. For example, it allows
for the following modelling features:

– Disjointness of two simple roles S ,R. This feature, also provided by SROIQ as
Dis(S ,R), can be modelled in EL++(us) by the axiom ∃(S u R).> v ⊥.

– Atleast cardinality constraints on the right hand side of a GCI. The axiom A v
≥n R.B can be modelled by the axiom set {Ri v R, A v ∃Ri.B | 1 ≤ i ≤ n} ∪ {∃(Ri u

R j).> v ⊥ | 1 ≤ i < j ≤ n} where R1, . . . ,Rn are new simple role names.

On the other hand, it is easy to see that incorporating more than just conjunction
on simple roles into EL++ would render the respective fragment intractable at best:
Allowing conjunction on non-simple roles would even lead to undecidability as stated
in Theorem 1 of [20]. Allowing disjunction or negation on simple roles would allow to
model disjunction on concepts: for instance, the GCI A v B t C can be expressed by
the axiom set {A v ∃(R t S ).>,∃R.> v B,∃S .> v C} or the axiom set {A u ∃R.{o} v
C, A u ∃¬R.{o} v B} for new roles R, S and a new individual name o. Hence, any
extension of EL++ into this direction would be ExpTime-hard [18].

7 DLP(u)

Description Logic Programs (DLP) constitutes a tractable knowledge representation
formalism in the spirit of (Horn) logic programming [21]. Essentially, it consists of
those SHOIQ axioms which can be naively translated into (non-disjunctive) Datalog,
such that the original knowledge base and its translation are semantically equivalent.
As such it represents the fragment of SHOIQ that can entail neither disjunctive infor-
mation nor the existence of anonymous individuals as extensively studied in the context
of Horn description logics [22]. Though rather complex syntactic definitions can be
given to characterise all admissible axioms of such logics, we use a simpler definition
comprising all essential expressive features of DLP without including all their syntactic
varieties.

Definition 9. Atomic roles of DLP are defined as in SROIQ, including inverse roles. A
DLP body concept is anySROIQ concept expression that includes only concept names,
nominals, u, ∃, >, and ⊥. A DLP head concept is any SROIQ concept expression that
includes only concept names, nominals, u, ∀, >, ⊥, and expressions of the form ≤1.C
where C is a DLP body concept.

A DLP knowledge base is a set of Rbox axioms of the form R v S and R ◦ R v R,
Tbox axioms of the form C v D, and Abox axioms of the form D(a) and R(a, b), where
C ∈ C is a body concept, D ∈ C is a head concept, and a, b ∈ NI are individual names.

DLP(u) knowledge bases are defined just as DLP knowledge bases, with the addi-
tion that conjunctions of roles may occur in DLP(u) in all places where roles occur in
DLP.



Note that we do not have to distinguish between simple and non-simple roles for
DLP.

In [22] it is shown that DLP is of polynomial worst-case complexity. This can be
seen most easily by realising that DLP knowledge bases can be transformed in polyno-
mial time (in the size of the knowledge base) into an equisatisfiable set of function-free
first-order Horn rules (i.e. non-disjunctive Datalog rules) with at most three variables
per formula. On the basis of this result, it is easy to show that DLP(u) is also of poly-
nomial complexity. We give a brief account of the argument.

Consider a DLP(u) knowledge base K. We now perform the following transforma-
tion of K: For any role conjunction R1 u · · · u Rn occurring in the knowledge base,
replace the conjunction by a new role R, and add the axioms R1 u · · · u Rn v R and
R v Ri, for all i = 1, . . . , n, to the knowledge base.

The resulting knowledge base is obviously equisatisfiable with K. It consists of two
types of axioms: Axioms which are in DLP and axioms of the form R1 u · · · u Rn v

R. The latter axioms correspond to function-free Horn rules with only two variables.
Hence, any DLP(u) knowledge base can be transformed in polynomial time into an
equisatisfiable set of function-free Horn rules.

Theorem 4. Knowledge base satisfiability checking, instance retrieval, and computing
class subsumptions for DLP(u) knowledge bases is P-complete w.r.t. the size of the
knowledge base.

Proof. First note that instance retrieval and class subsumption can be reduced to sat-
isfiability checking: Retrieval of instances for a class C is done by checking for all
individuals a if they are in C – which in turn is reduced to satisfiability checking by
adding the axioms CuE v ⊥ and E(a) to the knowledge base, where E is a new atomic
class name. Class subsumption C v D is reduced by adding the axioms C(a), E(a) and
D u E v ⊥, for a new individual a and a new atomic class name E.

Now to check satisfiability of a DLP(u) knowledge base, it is first transformed into
an equisatisfiable set of function-free first-order Horn rules as mentioned above. The
satisfiability of such a set of formulae can be checked in polynomial time, since any
Horn logic program is semantically equivalent to its grounding (the set of all possible
ground instances of the given rules based on the occurring individual names). For a
program with a bounded number n of variables per rule, this grounding is bounded by
r × in, where i is the number of individual names and r is the number of rules in the
program. Finally, the evaluation of ground Horn logic programs is known to be in P.

P-hardness for DLP directly follows from the P-completeness of satisfiability check-
ing for sets of propositional Horn clauses. ut

8 Conclusion

In our work, we have thoroughly investigated the reasoning complexities of DLs al-
lowing for Boolean constructors on simple roles. We found that the expressive DLs
SROIQ (being the basis of the forthcoming OWL 2 standard) and SHOIQ (the log-
ical underpinning of OWL) can accommodate full Boolean role operators while keep-
ing their reasoning complexities N2ExpTime and NExpTime, respectively. Likewise, the



Fig. 2. Overview of complexities and expressivity relationships of DLs in the context of this
paper.

ExpTime-complete SHIQ can be safely extended by safe Boolean expressions. Finally,
both the tractable fragments EL++ and DLP retain polynomial time reasoning complex-
ity when adding just role conjunction, where in the case of DLP the role simplicity con-
dition is not necessary. Figure 2 shows our findings integrated with other well-known
complexity results relevant in this respect.

In particular, we want to draw the reader’s attention to the fact that – as opposed
to hitherto proposed ways – the modelling of concept products and qualified role in-
clusions as presented in Section 1 does not automatically render the inferred roles non-
simple. Moreover, due to the safety of the respective axiom, qualified role inclusions
can even be modelled in SHIQbs.

Future work on that topic includes the further integration of the established results
with our work on DL Rules [2], as well as the further investigation of the effects on
complexity and decidability when allowing for Boolean constructors on non-simple
roles.

Finally note that our results for SHIQbs, EL++(us), and DLP(u) provide direct
ways for adapting existing reasoning algorithms for SHIQ, EL++, and DLP, respec-
tively. For SROIQBs and SHOIQBs, however, setting up efficient algorithms seems
less straightforward and represents another interesting direction of future research.
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