Bounded Degree

 $\begin{array}{c} \mathcal{D}_{k} & \text{--the class of structures } \mathbb{A} \text{ in which every element has at most } k \\ \text{neighbours in } G\mathbb{A}. \\ \textbf{Theorem (Seese)} \\ \text{For every sentence } \varphi \text{ of FO and every } k \text{ there is a linear time algorithm} \\ \text{which, given a structure } \mathbb{A} \in \mathcal{D}_{k} \text{ determines whether } \mathbb{A} \models \varphi. \end{array}$

Note: this is not true for MSO unless P = NP.

The proof is based on *locality* of first-order logic. Specifically, *Hanf's theorem*.

Hanf Types

For an element a in a structure \mathbb{A} , define

 $N_r^{\mathbb{A}}(a)$ —the substructure of \mathbb{A} generated by the elements whose distance from a (in $G\mathbb{A}$) is at most r.

We say \mathbb{A} and \mathbb{B} are *Hanf equivalent* with radius r and threshold q $(\mathbb{A} \simeq_{r,q} \mathbb{B})$ if, for every $a \in A$ the two sets

 $\{a' \in A \mid N_r^{\mathbb{A}}(a) \cong N_r^{\mathbb{A}}(a')\} \quad \text{and} \quad \{b \in B \mid N_r^{\mathbb{A}}(a) \cong N_r^{\mathbb{B}}(b)\}$

either have the same size or both have size greater than q; and, similarly for every $b \in B$.

Hanf Locality Theorem

Theorem (Hanf)

For every vocabulary σ and every p there qre r and q such that for any σ -structures \mathbb{A} and \mathbb{B} : if $\mathbb{A} \simeq_{r,q} \mathbb{B}$ then $\mathbb{A} \equiv_p \mathbb{B}$.

For $\mathbb{A} \in \mathcal{D}_k$: $N_r^{\mathbb{A}}(a)$ has at most $k^r + 1$ elements each $\simeq_{r,a}$ has finite index.

Each $\simeq_{r,q}$ -class t can be characterised by a finite table, I_t , giving isomorphism types of neighbourhoods and numbers of their occurrences up to threshold q.

Satisfaction on \mathcal{D}_k

For a sentence φ of FO, we can compute a set of tables $\{I_1, \ldots, I_s\}$ describing $\simeq_{r,q}$ -classes consistent with it. This computation is independent of any structure A.

```
Given a structure \mathbb{A} \in \mathcal{D}_k,
```

for each a, determine the isomorphism type of $N_r^{\mathbb{A}}(a)$ construct the table describing the $\simeq_{r,q}$ -class of \mathbb{A} . compare against $\{I_1, \ldots, I_s\}$ to determine whether $\mathbb{A} \models \varphi$.

IAL

For fixed k, r, q, this requires time *linear* in the size of A.

Note: evaluation for FO is in O(f(l, k)n).

over purely relational signatures with symbols of srity ≤ 1 FO¹ NP-compl

Example: $\forall x (R(x) \rightarrow (\exists x B(x))) = \varphi$

 $\psi = \exists x B(x) \land \forall x \neg B(x)$

There is a procedure that works in NP Lemma : and from q produces q'in normal form s. I. φ is sat eff φ' is sat and $|\varphi'| = O(|\varphi|)$.

Take the most nested quantifier from p. $\varphi = \left(- - \left(- - \left(\varphi^{2} \times E \right) - - \right) - \varphi \right)$