Bounded Degree

\mathcal{D}_{k}-the class of structures \mathbb{A} in which every element has at most k neighbours in $G \mathbb{A}$.
Theorem (Seese)

For every sentence φ of FO and every k there is a linear time algorithm which, given a structure $\mathbb{A} \in \mathcal{D}_{k}$ determines whether $\mathbb{A} \models \varphi$.

Note: this is not true for MSO unless $P=N P$.
The proof is based on locality of first-order logic. Specifically, Hanf's theorem.

Hanf Types

For an element a in a structure \mathbb{A}, define $N_{r}^{\mathbb{A}}(a)$-the substructure of \mathbb{A} generated by the elemestof whose distance from a (in $G \mathbb{A}$) is at most r.

We say \mathbb{A} and \mathbb{B} are Hanf equivalent with radius r and threshold q $\left(\mathbb{A} \simeq_{r, q} \mathbb{B}\right)$ if, for every $a \in A$ the two sets

$$
\left\{a^{\prime} \in A \mid N_{r}^{\mathbb{A}}(a) \cong N_{r}^{\mathbb{A}}\left(a^{\prime}\right)\right\} \quad \text { and } \quad\left\{b \in B \mid N_{r}^{\mathbb{A}}(a) \cong N_{r}^{\mathbb{B}}(b)\right\}
$$

either have the same size or both have size greater than q; and, similarly for every $b \in B$.

Hand Locality Theorem

Theorem (Hand)

For every vocabulary σ and every p there gre r and q such that for any σ-structures \mathbb{A} and \mathbb{B} : if $\mathbb{A} \simeq_{r, q} \mathbb{B}$ then $\mathbb{A} \equiv_{p} \mathbb{B}$.

For $\mathbb{A} \in \mathcal{D}_{k}$:
$N_{r}^{\mathbb{A}}(a)$ has at most $k^{r}+1$ elements each $\simeq_{r, q}$ has finite index.

Each $\simeq_{r, q^{-}}$-class t can be characterised by a finite table, I_{t}, giving isomorphism types of neighbourhoods and numbers of their occurrences up to threshold q.

Satisfaction on \mathcal{D}_{k}

For a sentence φ of FO, we can compute a set of tables $\left\{I_{1}, \ldots, I_{s}\right\}$ describing $\simeq_{r, q}$-classes consistent with it.
This computation is independent of any structure \mathbb{A}.
Given a structure $\mathbb{A} \in \mathcal{D}_{k}$,
for each a, determine the isomorphism type of $N_{r}^{\mathbb{A}}(a)$
construct the table describing the $\simeq_{r, q}$-class of \mathbb{A}.
compare against $\left\{I_{1}, \ldots, I_{s}\right\}$ to determine whether $\mathbb{A} \models \varphi$.
For fixed k, r, q, this requires time linear in the size of \mathbb{A}.
Note: evaluation for FO is in $O(f(l, k) n)$ |A|

FO ${ }^{1}$ over purely relational signatures
$N P$ - comp

Example: $\forall x(R(x) \rightarrow(\exists x B(x)))=\varphi$

$$
\begin{array}{r}
\xi A=0^{R, \neg B} \overbrace{}^{\neg R, B} \neq \varphi \\
\psi=\exists x B(x) \wedge \quad \forall x \neg B(x)
\end{array}
$$

$$
\begin{aligned}
& C^{1}=F O^{1}+\text { counting }
\end{aligned}
$$

$$
\begin{aligned}
& \text { otements in our. }
\end{aligned}
$$

$$
\begin{aligned}
& \exists x \varphi \equiv \exists_{x}^{\geqslant 1} \varphi \\
& \forall x \varphi \equiv \neg \exists x \neg \varphi \equiv \neg \exists^{2} \frac{1}{x} \neg \varphi \equiv \exists^{\leqslant} \times \neg \varphi \\
& \exists_{x}^{32^{n}} A(x) \\
& \stackrel{4}{\varphi} \\
& \theta^{A} \hat{\theta}^{A} \ldots \theta^{A} \\
& \text { MODELS } \\
& \text { CAN } \\
& \text { move } \\
& \text { EXP } \\
& \text { SIzE }
\end{aligned}
$$

Def: A C^{1} formula φ is in normal form if it looks like

Lemma: There is a procedure that works in NP and from φ produces φ^{\prime} in normal form s.l. φ is sat eff φ^{\prime} is sat and $\left|\varphi^{\prime}\right|=O(|\varphi|)$.

Tale the most nested quantifier from φ.

$$
\left.\varphi=\left(\ldots\left(\exists_{x}^{\infty c} \psi\right) \ldots\right) \ldots\right)
$$

Guess whether is satisfied. If yes, replace with T.
Return $\varphi\left[\exists x^{\infty} \psi / T / \perp\right] \wedge \pm\left(\exists x^{\infty} \psi\right)$.
formula \sim negation if replaced by \perp.

