Foundations of Logic Programming Tutorial 1 (on October 21th)

Lukas Schweizer

WS 2016

Exercise 1.1:

Using the Prolog program from Slide 3-6 (Lecture 1), give the answer for the following queries:

- ?-connection(frankfurt,X).
- ?-connection(X, maui).

Exercise 1.2:

Define in Prolog a predicate for multiplication. (You may want to use the predicate add defined on Slide 10, Lecture 1.) Give the output for the following queries:

- ?-mul(s(s(0)),s(s(s(0))),Z).
- ?-mul(s(s(0)), $\mathrm{s}(\mathrm{s}(0)), \mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(0))))))$.

Exercise 1.3:

Now use your definition from Exercise 1.2 to define the factorial function.

- Example: ? - fact $(\mathrm{s}(\mathrm{s}(\mathrm{s}(0))), \mathrm{F})$ has the result $\mathrm{F}=\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(0))))))$.

Exercise 1.4:

Define a predicate palindrome (L) which checks if the list L is a palindrome, i.e. the reverse of L is identical to L.

- Example: ? - palindrome([a,b,c,b,a]) has result yes.

Exercise 1.5:

Compute the substitution composition θ, η, τ, where w, x, y, z are variables and

$$
\theta=\{y / a(x, z), z / y\} \quad \eta=\{y / x, x / f(w)\} \quad \tau=\{w / g(a), x / z, z / b\}
$$

