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Review: PSpace-complete problems

We have encountered some PSpace-complete problems so far:

• The word problem for polynomially space bounded (N)TMs

• True QBF

• FOL Model Checking (and SQL query answering)

Several typical PSpace problems are related to the existence of winning strategies in
2-player games:

• Formula Game

• Geography
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Review: Geography is PSpace-hard

We consider the formula ∃X.∀Y.∃Z.(X ∨ Z ∨ Y) ∧ (¬Y ∨ Z) ∧ (¬Z ∨ Y)
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More Games
The characteristic of PSpace is quantifier alternation

This is closely related to taking turns in 2-player games.

Are many games PSpace-complete?

• Issue 1: many games are finite – that is: computationally trivial
{ generalise games to arbitrarily large boards

– generalised Tic-Tac-Toe is PSpace-complete
– generalised Reversi (Othello) is PSpace-complete
– it is not always clear how to generalise a game (Generalised Backgammon?)

• Issue 2: (generalised) games where moves can be reversed may require very long
matches
{ such games often are even harder

– generalised Go with Japanese ko rule is ExpTime-complete
– generalised Draughts (Checkers) is ExpTime-complete
– generalised Chess (without 50-move no-capture draw rule) is

ExpTime-complete
Surprisingly, some of these games, e.g. Chess, are known to become even harder – namely ExpSpace-complete – if the exact same
board position is not allowed to re-occur in a match. For Go, this case is open.
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Logarithmic Space
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Logarithmic Space

Polynomial space
As we have seen, polynomial space is already quite powerful.

We therefore consider more restricted space complexity classes.

Linear space
Even linear space is enough to solve Sat.

Sub-linear space
To get sub-linear space complexity, we consider Turing-machines with separate input
tape and only count working space.

Recall:
L = LogSpace = DSpace(log n)

NL = NLogSpace = NSpace(log n)
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Problems in L and NL

What sort of problems are in L and NL?

In logarithmic space we can store

• a fixed number of counters (up to length of input)

• a fixed number of pointers to positions in the input string

Hence,

• L contains all problems requiring only a constant number of counters/pointers for
solving.

• NL contains all problems requiring only a constant number of counters/pointers for
verifying solutions.
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Examples: Problems in L

Example 11.1: The language {0n1n | n ≥ 0} is in L.

Algorithm:

• Check that no 1 is ever followed by a 0
Requires no working space (only movements of the read head)

• Count the number of 0’s and 1’s

• Compare the two counters
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Examples: Problems in L

Palindromes

Input: Word w on some input alphabet Σ

Problem: Does w read the same forward and back-
ward?

Example 11.2: Palindromes ∈ L.

Algorithm:

• Use two pointers, one to the beginning and one to the end of the input.

• At each step, compare the two symbols pointed to.

• Move the pointers one step inwards.
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Example: A Problem in NL

Reachability a.k.a. STCON a.k.a. Path

Input: Directed graph G, vertices s, t ∈ V(G)

Problem: Does G contain a path from s to t?

Example 11.3: Reachability ∈ NL.

Algorithm:

• Use a pointer to the current vertex, starting in s

• Iteratively move pointer from current vertex to some neighbour vertex
nondeterministically

• Accept when finding t; reject when searching for too long
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An Algorithm for Reachability

More formally:

01 CanReach(G,s,t) :
02 c := |V(G)| // counter
03 p := s // pointer

04 while c > 0 :
05 if p = t :
06 return TRUE

07 else :

08 nondeterministically select G-successor p′ of p
09 p := p′

10 c := c − 1
11 // eventually, if no success:

12 return FALSE
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Defining Reductions in Logarithmic Space

To compare the difficulty of problems in P or NL, polynomial-time reductions are useless.
Recall the respective result from Lecture 5:

Theorem 5.22: If B is any language in P, B , ∅, and B , Σ∗, then A ≤p B for any
A ∈ P.

This also applies to languages in NL ( ⊆ P).

Definition 11.4: A log-space transducer M is a logarithmic space bounded Tur-
ing machine with a read-only input tape and a write-only, write-once output tape,
and that halts on all inputs.

A log-space transducerM computes a function f : Σ∗ → Σ∗, where f (w) is the content of
the output tape ofM running on input w whenM halts.

In this case, f is called a log-space computable function.
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Log-Space Reductions and NL-Completeness

Definition 11.5: A log-space reduction from L ⊆ Σ∗ to L′ ⊆ Σ∗ is a log-space com-
putable function f : Σ∗ → Σ∗ such that for all w ∈ Σ∗:

w ∈ L ⇐⇒ f (w) ∈ L′

We write L ≤L L′ in this case.

Definition 11.6: A problem L ∈ NL is complete for NL if every other language in
NL is log-space reducible to L.
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Detour: P-completeness

Log-space reductions are also used to define P-complete problems:

Definition 11.7: A problem L ∈ P is complete for P if every other language in P is
log-space reducible to L.

We will see some examples in later lectures . . .
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Remark: Log-space Reductions for Larger Classes?

Could we use log-space reductions instead of polynomial reductions for defining
hardness for other classes, e.g., for NP?

• Some authors do this (prominently Papadimitriou)

• All concrete polynomial reductions we have seen can be computed in logarithmic
space

Obvious question: Are the classes “NP-complete problems under polynomial time
reductions” and “NP-complete problems under log-space reductions” different?

Today’s answer: Nobody knows (YCTBF)

(at least we have not seen any example of such differences, so it might not matter much in practice)
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An NL-Complete Problem

Theorem 11.8: Reachability is NL-complete.

Proof idea: We already showed membership. What remains is hardness.

LetM be a non-deterministic log-space TM deciding L.

On input w:

(1) modify Turing machine to have a unique accepting configuration (easy)

(2) construct the configuration graph (graph whose nodes are configurations ofM and
edges represent possible computational steps ofM on w)

(3) find a path from the start configuration to the accepting configuration
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NL-Completeness

Proof sketch: We construct 〈G, s, t〉 fromM and w using a log-space transducer:

(1) A configuration (q, w2, (p1, p2)) ofM can be described in c log n space for some
constant c and n = |w|.

(2) List the nodes of G by going through all strings of length c log n and outputting
those that correspond to legal configurations.

(3) List the edges of G by going through all pairs of strings (C1, C2) of length c log n
and outputting those pairs where C1 `M C2.

(4) s is the starting configuration of G.

(5) Assume w.l.o.g. thatM has a single accepting configuration t.

w ∈ L iff 〈G, s, t〉 ∈ Reachability

(see also Sipser, Theorem 8.25) �
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coNL

As for time, we consider complement classes for space.

Recall Definition 9.6:
For a complexity class C, we define coC := {L | L ∈ C}.

Complement classes for space:

• coNL := {L | L ∈ NL}

• coNPSpace := {L | L ∈ NPSpace}

From Savitch’s theorem:

PSpace = NPSpace and hence coNPSpace = PSpace,
but merely NL ⊆ DSpace (log2 n) and hence coNL ⊆ DSpace (log2 n)
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The NL vs. coNL Problem

Another famous problem in complexity theory: is NL = coNL?

• First stated in 1964 [Kuroda]

• Related question: are complements of context-sensitive languages also
context-sensitive?
(such languages are recognized by linear-space bounded TMs)

• Open for decades, although most experts believe NL , coNL
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The Immerman-Szelepcsényi Theorem

Surprisingly, two independent people resolve the NL vs. coNL problem
simutaneously in 1987

More surprisingly, they show the opposite of what everyone expected:

Theorem 11.9 (Immerman 1987/Szelepcsényi 1987): NL = coNL.

Proof: Show that Reachability is in NL. (Why does this suffice?)

Remark: alternative explanations provided by

• Sipser (Theorem 8.27)

• Dick Lipton’s blog entry We All Guessed Wrong (link)

• Wikipedia Immerman–Szelepcsényi theorem
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Towards Nondeterminsitic Nonreachability

How could we check in logarithmic space that t is not reachable from s?

Initial idea: iterate through all reachable nodes looking for t

01 NaiveNonReach(G, s, t) :
02 for each vertex v of G :
03 if CanReach(G, s, v) and v = t :
04 return FALSE

05 // eventually, if FALSE was not returned above:

06 return TRUE

Does this work?

No: the check CanReach(G, s, v) may fail even if v is reachable from s
Hence there are many (nondeterministic) runs where the algorithm accepts, although t
is reachable from s.

Markus Krötzsch, 19th Nov 2019 Complexity Theory slide 22 of 27



Towards Nondeterminsitic Nonreachability

How could we check in logarithmic space that t is not reachable from s?

Initial idea: iterate through all reachable nodes looking for t

01 NaiveNonReach(G, s, t) :
02 for each vertex v of G :
03 if CanReach(G, s, v) and v = t :
04 return FALSE

05 // eventually, if FALSE was not returned above:

06 return TRUE

Does this work?

No: the check CanReach(G, s, v) may fail even if v is reachable from s
Hence there are many (nondeterministic) runs where the algorithm accepts, although t
is reachable from s.

Markus Krötzsch, 19th Nov 2019 Complexity Theory slide 22 of 27



Towards Nondeterminsitic Nonreachability

How could we check in logarithmic space that t is not reachable from s?

Initial idea: iterate through all reachable nodes looking for t

01 NaiveNonReach(G, s, t) :
02 for each vertex v of G :
03 if CanReach(G, s, v) and v = t :
04 return FALSE

05 // eventually, if FALSE was not returned above:

06 return TRUE

Does this work?

No: the check CanReach(G, s, v) may fail even if v is reachable from s
Hence there are many (nondeterministic) runs where the algorithm accepts, although t
is reachable from s.

Markus Krötzsch, 19th Nov 2019 Complexity Theory slide 22 of 27



Towards Nondeterminsitic Nonreachability

Things would be different if we knew
the number count of vertices reachable from s:

01 CountingNonReach(G, s, t, count) :
02 reached := 0
03 for each vertex v of G :
04 if CanReach(G, s, v) :
05 reached := reached + 1
06 if v = t :
07 return FALSE

08 // eventually, if FALSE was not returned above:

09 return (count = reached)

Problem: how can we know count?
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Counting Reachable Vertices – Intuition

Idea:
• Count number of vertices reachable in at most length steps

– we call this number countlength

– then the number we are looking for is count = count|V(G)|−1

• Use a limited-length reachability test:
CanReach(G, s, v, length): “t reachable from s in G in ≤ length steps”
(we actually implemented CanReach(G, s, v) as CanReach(G, s, v, |V(G)| − 1))

• Compute the count iteratively, starting with length = 0 steps:

– for length > 0, go through all vertices u of G and check if they are reachable
– to do this, for each such u, go through all v reachable by a shorter path, and

check if you can directly reach u from them
– use the counting trick to make sure you don’t miss any v

(the required number countlength was computed before)
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Counting Reachable Vertices – Algorithm

The count for length = 0 is 1. For length > 0, we compute as follows:

01 CountReachable(G, s, length, countlength−1) :
02 count := 1 // we always count s
03 for each vertex u of G such that u , s :
04 reached := 0
05 for each vertex v of G :
06 if CanReach(G, s, v, length − 1) :
07 reached := reached + 1
08 if G has an edge v→ u :
09 count := count + 1
10 GOTO 03 // continue with next u
11 if reached < countlength−1 :

12 REJECT // whole algorithm fails

13 return count
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Completing the Proof of NL = coNL

Putting the ingredients together:

01 NonReachable(G, s, t) :
02 count := 1 // number of nodes reachable in 0 steps
03 for ` := 1 to |V(G)| − 1 :
04 countprev := count
05 count := CountReachable(G, s, `, countprev)
06 return CountingNonReach(G, s, t, count)

It is not hard to see that this procedure runs in logarithmic space, since we use a fixed
number of counters and pointers. �
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Summary and Outlook
Winning board games that don’t allow moves to be undone is often PSpace-complete

L is the class of problems solvable using only a fixed number of linearly bound counters
and pointers to the input

NL is the corresponding non-deterministic class, but we do not know if L = NL

Summary:

L ⊆ NL ⊆ PTime ⊆ NP ⊆ PSpace = NPSpace

= = = ? = =

coL ⊆ coNL ⊆ coP ⊆ coNP ⊆ coPSpace = coNPSpace

What’s next?

• So many ⊆! Will we ever get a strict ⊂?

• More generally: can more resources solve more problems?
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