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CONNECTING MANY-SORTED THEORIES

FRANZ BAADER AND SILVIO GHILARDI

Abstract. Basically, the connection of two many-sorted theories is obtained by taking

their disjoint union, and then connecting the two parts through connection functions that

must behave like homomorphisms on the shared signature. We determine conditions under

which decidability of the validity of universal formulae in the component theories transfers

to their connection. In addition, we consider variants of the basic connection scheme. Our

results can be seen as a generalization of the so-called E-connection approach for combining

modal logics to an algebraic setting.

§1. Introduction. The combination of decision procedures for logical theo-
ries arises in many areas of logic in computer science, such as constraint solving,
automated deduction, term rewriting, modal logics, and description logics. In
general, one has two first-order theories T1 and T2 over signatures Σ1 and Σ2, for
which validity of a certain type of formulae (e.g., universal, existential positive,
etc.) is decidable. These theories are then combined into a new theory T over a
combination Σ of the signatures Σ1 and Σ2. The question is whether decidability
transfers from T1, T2 to their combination T .

One way of combining the theories T1, T2 is to build their union T1 ∪T2. Both
the Nelson-Oppen combination procedure [23, 22] and combination procedures
for the word problem [26, 28, 24, 7] address this type of combination, but for
different types of formulae to be decided. Whereas the original combination
procedures were restricted to the case of theories over disjoint signatures, there
are now also solutions for the non-disjoint case [12, 31, 8, 13, 16, 4, 5], but they
always require some additional restrictions since it is easy to see that in the
unrestricted case decidability does not transfer. Similar combination problems
have also been investigated in modal logic, where one asks whether decidability of
(relativized) validity transfers from two modal logics to their fusion [19, 29, 32, 6].
The approaches in [16, 4, 5] actually generalize these results from equational
theories induced by modal logics to more general first-order theories satisfying
certain model-theoretic restrictions: the theories T1, T2 must be compatible with
their shared theory T0, and this shared theory must be locally finite (a condition
ensuring that finitely generated models are finite). The theory Ti is compatible
with the shared theory T0 iff (i) T0 ⊆ Ti; (ii) T0 has a model completion T ∗0 ; and
(iii) every model of Ti embeds into a model of Ti ∪ T ∗0 .
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In [20], a new combination scheme for modal logics, called E-connection, was
introduced, for which decidability transfer is much simpler to show than in the
case of the fusion. Intuitively, the difference between fusion and E-connection
can be explained as follows. A model of the fusion is obtained from two models
of the component logics by identifying their domains. In contrast, a model
of the E-connection consists of two separate models of the component logics
together with certain connecting relations between their domains. There are
also differences in the syntax of the combined logic. In the case of the fusion,
the Boolean operators are shared, and all operators can be applied to each other
without restrictions. In the case of the E-connection, there are two copies of the
Boolean operators, and operators of the different logics cannot be mixed; the
only connection between the two logics are new (diamond) modal operators that
are induced by the connecting relations.

If we want to adapt this approach to the more general setting of combining
first-order theories, then we must consider many-sorted theories since only the
sorts allow us to keep the domains separate and to restrict the way function
symbols can be applied to each other. Let T1, T2 be two many-sorted theories that
may share some sorts as well as function and relation symbols. We first build the
disjoint union T1]T2 of these two theories (by using disjoint copies of the shared
parts), and then connect them by introducing connection functions between the
shared sorts. These connection functions must behave like homomorphisms for
the shared function and predicate symbols, i.e., the axioms stating this are added
to T1 ] T2. This corresponds to the fact that the new diamond operators in the
E-connection approach distribute over disjunction and do not change the false
formula ⊥. We call the combined theory obtained this way the connection of T1

and T2.
This kind of connection between theories has also been considered in auto-

mated deduction (see, e.g., [1, 33]), but only in very restricted cases where both
T1 and T2 are fixed theories (e.g., the theory of sets and the theory of integers in
[33]) and the connection functions have a fixed meaning (like yielding the length
of a list). In categorical logic, this type of connection can be seen as an instance
of a more general co-comma construction, see for instance [34]. However, in this
general setting, computational properties of the combined theories have not been
considered yet.

This paper is a first step towards providing general results on the transfer of
decidability from component theories to their connection. We start by consid-
ering the simplest case where there is just one connection function, and show
that decidability transfers whenever certain model-theoretic conditions are sat-
isfied. These conditions are weaker than the ones required in [4, 5] for the case
of the union of theories. In general, these conditions are not weaker than the
ones in [16], although all the theories satisfying the conditions in [16] that we
have considered until now also satisfy our new conditions. Another advantage of
the connection approach over the fusion approach for combining theories is that
both the combination procedure and its proof of correctness are much simpler
than the ones in [16, 4, 5].
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The approach easily extends to the case of several connection functions. We
will also consider variants of the general combination scheme where the connec-
tion function must satisfy additional properties (like being surjective, an em-
bedding, an isomorphism), or where a theory is connected with itself. The first
variant is, for example, interesting since the combination result for the union of
theories shown in [16] can be obtained from the variant where one has an isomor-
phism as connection function. The second case is interesting since it can be used
to reduce the global consequence problem in the modal logic K to propositional
satisfiability, which is a surprising result.

This article is structured as follows. The next section introduces the notation
and gives some important definitions, in particular the formal definition of the
connection of two many-sorted theories. In addition, this section contains an
example that demonstrates that decidability does not transfer in general from
the component theories to their connection. §3 then introduces restrictions that
ensure such a decidability transfer. §4 shows the main decidability transfer result
for the case of one connection function and its extension to the case of several
connection functions, possibly going in both directions. This section also pro-
vides examples of several (classes of) theories to which these results apply. §5
treats the variant of the connection scheme where a theory is connected with
itself, and §6 the variants that impose additional restrictions on the connection
functions. §7 compares our algebraic approach for connecting many-sorted the-
ories with the notion of an E-connection, as introduced in [20]. §8 investigates
the algebraic restrictions required for our decidability transfer results in more
detail, and §9 uses the results of this section to provide alternative proofs for
these transfer results.

§2. Notation and definitions. In this section, we fix the notation and give
some important definitions, in particular a formal definition of the connection of
two theories.

2.1. Many-sorted first-order logic. We use standard many-sorted first-
order logic (see, e.g., [14]), but try to avoid the notational overhead caused by
the presence of sorts as much as possible. Thus, a signature Ω consists of a
non-empty set of sorts S together with a set of function symbols F and a set
of predicate symbols P. The function and predicate symbols are equipped with
arities from S∗ in the usual way. For example, if the arity of f ∈ F is S1S2S3,
then this means that the function f takes tuples consisting of an element of
sort S1 and an element of sort S2 as input, and produces an element of sort
S3. We consider logic with equality, i.e., the set of predicate symbols contains
a symbol ≈S for equality in every sort S. Usually, we will just use ≈ without
explicitly specifying the sort. In this paper we usually assume that signatures
are countable.

Terms and first-order formulae over Ω are defined in the usual way, i.e., they
must respect the arities of function and predicate symbols, and the variables
occurring in them are also equipped with sorts. An Ω-atom is a predicate symbol
applied to (sort-conforming) terms, and an Ω-literal is an atom or a negated
atom. A ground literal is a literal that does not contain variables. We use the
notation φ(x) to express that φ is a formula whose free variables are among the
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ones in the tuple of variables x. An Ω-sentence is a formula over Ω without free
variables. An Ω-theory T is a set of Ω-sentences (called the axioms of T ). If
T, T ′ are Ω-theories, then we write (by a slight abuse of notation) T ⊆ T ′ to
express that all the axioms of T are logical consequences of the axioms of T ′.

From the semantic side, we have the standard notion of an Ω-structure A,
which consists of non-empty and pairwise disjoint domains AS for every sort
S, and interprets function symbols f and predicate symbols P by functions fA

and predicates PA according to their arities. By A (or sometimes by |A|) we
denote the union of all domains AS . Validity of a formula φ in an Ω-structure
A (A |= φ), satisfiability, and logical consequence are defined in the usual way.
The Ω-structure A is a model of the Ω-theory T iff all axioms of T are valid in
A. If φ(x) is a formula with free variables x = x1, . . . , xn and a = a1, . . . , an is
a (sort-conforming) tuple of elements of A, then we write A |= φ(a) to express
that φ(x) is valid in A under the assignment {x1 7→ a1, . . . , xn 7→ an}. Note
that φ(x) is valid in A iff it is valid under all assignments iff its universal closure
is valid in A.

An Ω-homomorphism between two Ω-structures A and B is a mapping µ :
A → B that is sort-conforming (i.e., maps elements of sort S in A to elements
of sort S in B), and satisfies the condition

A |= α(a1, . . . , an) implies B |= α(µ(a1), . . . , µ(an)) (1)

for all Ω-atoms α(x1, . . . , xn) and (sort-conforming) elements a1, . . . , an of A.
In case the converse of (1) holds too, µ is called an embedding. Note that an
embedding is something more than just an injective homomorphism since the
stronger condition must hold not only for the equality predicate, but for all
predicate symbols. If the embedding µ is the identity on A, then we say that
A is a substructure of B. In case (1) holds for all first order formulae, then µ
is said to be an elementary embedding. If the elementary embedding µ is the
identity on A, then we say that A is an elementary substructure of B or that
B is an elementary extension of A. An isomorphism is a surjective embedding,
where the homomorphism µ : A → B is surjective iff the restriction of µ to AS

and BS is surjective for every sort S.
We say that Σ is a subsignature of Ω (written Σ ⊆ Ω) iff Σ is a signature that

can be obtained from Ω by removing some of its sorts and function and predicate
symbols. If Σ ⊆ Ω and A is an Ω-structure, then the Σ-reduct of A is the Σ-
structure A|Σ obtained from A by forgetting the interpretations of sorts, function
and predicate symbols from Ω that do not belong to Σ. Conversely, A is called an
expansion of the Σ-structure A|Σ to the larger signature Ω. If µ : A → B is an Ω-
homomorphism, then the Σ-reduct of µ is the Σ-homomorphism µ|Σ : A|Σ → B|Σ
obtained by restricting µ to the sorts that belong to Σ, i.e., by restricting the
mapping to the domain of A|Σ.

Given a set X of constant symbols not belonging to the signature Ω, but each
equipped with a sort from Ω, we denote by ΩX the extension of Ω by these new
constants. If A is an Ω-structure, then we can view the elements of A as a set of
new constants, where a ∈ AS has sort S. By interpreting each a ∈ A by itself,
A can also be viewed as an ΩA-structure. The positive diagram ∆+

Ω(A) of A is
the set of all ground ΩA-atoms that are true in A, the diagram ∆Ω(A) of A is
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the set of all ground ΩA-literals that are true in A, and the elementary diagram
∆e

Ω(A) of A is the set of all ΩA-sentences that are true in A. The subscript
Ω in ∆+

Ω(A), ∆Ω(A) and ∆e
Ω(A) is sometimes omitted if there is no danger of

confusion.
Robinson’s diagram theorem [11] shows that there is a strong connection be-

tween diagrams and homomorphisms.

Theorem 2.1 (Robinson). There is a homomorphism (embedding, elemen-
tary embedding) between the Ω-structures A and B iff it is possible to expand
B to an ΩA-structure in such a way that it becomes a model of the positive dia-
gram (diagram, elementary diagram) of A.

2.2. Basic connections. In the remainder of this section, we introduce our
basic scheme for connecting many-sorted theories, and illustrate it with the ex-
ample of E-connections of modal logics. Let T1, T2 be theories over the respective
signatures Ω1,Ω2, and let Ω0 be a common subsignature of Ω1 and Ω2. We call Ω0

the connecting signature. In addition, let T0 be an Ω0-theory1 that is contained
in both T1 and T2. We define the new theory T1>T0 T2 (called the connection of
T1 and T2 over T0) as follows.

The signature Ω of T1>T0 T2 contains the disjoint union Ω1 ]Ω2 of the signa-
tures Ω1 and Ω2, where the shared sorts and the shared function and predicate
symbols are appropriately renamed, e.g., by attaching labels 1 and 2. Thus, if
S (f , P ) is a sort (function symbol, predicate symbol) contained in both Ω1

and Ω2, then Si (f i, P i) for i = 1, 2 are its renamed variants in the disjoint
union, where the arities are accordingly renamed. In addition, Ω contains a new
function symbol hS of arity S1S2 for every sort S of Ω0.

The axioms of T1>T0 T2 are obtained as follows. Given an Ωi-formula φ, its
renamed variant φi is obtained by replacing all shared symbols by their renamed
variants with label i. The axioms of T1>T0 T2 consist of

{φ1 | φ ∈ T1} ∪ {φ2 | φ ∈ T2},

together with the universal closures of the formulae

hS(f1(x1, . . . , xn)) ≈ f2(hS1(x1), . . . , hSn
(xn)),

P 1(x1, . . . , xn) → P 2(hS1(x1), . . . , hSn(xn)),

for every function (predicate) symbol f (P ) in Ω0 of arity S1 . . . SnS (S1 . . . Sn).
Since the signatures Ω1 and Ω2 have been made disjoint, and since the addi-

tional axioms state that the family of mappings hS behaves like an Ω0-homo-
morphism, it is easy to see that the models of T1>T0 T2 are formed by triples of
the form (M1,M2, hM), where M1 is a model of T1, M2 is a model of T2 and
hM is an Ω0-homomorphism

hM : M1
|Ω0

→M2
|Ω0

between the respective Ω0-reducts.

1When defining the connection of T1, T2, the theory T0 is actually irrelevant; all we need

is its signature Ω0. However, for our decidability transfer results to hold, T0 and the Ti must
satisfy certain model-theoretic properties.
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Example 2.2. The most basic variant of an E-connection of modal logics [20]
is an instance of our approach if one translates it into the algebraic setting. As
shown in [4, 5], the large class of classical modal logics, which covers most of the
usual modal logics, corresponds to the class of Boolean-based equational theories
introduced in [4, 5]. The theory E is called Boolean-based equational theory iff
its signature Σ has just one sort, equality is the only predicate symbol, the set
of function symbols contains the Boolean operators u,t,¬,>,⊥, and its set of
axioms consists of identities (i.e., the universal closures of atoms s ≈ t) and
contains the Boolean algebra axioms.

For example, consider the basic modal logic K, where we use only the modal
operator 3 (since 2 can then be defined). The Boolean-based equational theory
EK corresponding to K is obtained from the theory of Boolean algebras by
adding the identities 3(x t y) ≈ 3(x) t3(y) and 3(⊥) ≈ ⊥.

We illustrate the notion of an E-connection on this simple example (see §7 for
a more general description of E-connections and their relationship to the notion
of a connection introduced in this article). To build the E-connection of K with
itself, one takes two disjoint copies of K, obtained by renaming the Boolean
operators and the diamonds, e.g., into ui,ti,¬i,>i,⊥i,3i for i = 1, 2. The
signature of the E-connection contains all these renamed symbols together with
a new symbol 3. However, it is now a two-sorted signature, where symbols with
index i are applied to elements of sort Si and yield as results an element of this
sort. The new symbol has arity S1S2.2 The semantics of this E-connection can
be given in terms of Kripke structures. A Kripke structure for the E-connection
consists of two Kripke structures K1,K2 for K over disjoint domains W1 and
W2, together with an additional connecting relation E ⊆W2×W1. The symbols
with index i are interpreted in Ki, and the new symbol 3 is interpreted as the
diamond operator induced by E, i.e., for every X ⊆W1 we have

3(X) := {x ∈W2 | ∃y ∈W1. (x, y) ∈ E ∧ y ∈ X}.

This interpretation of the new operator implies that it satisfies the usual iden-
tities of a diamond operator, i.e., 3(x t1 y) ≈ 3(x) t2 3(y) and 3(⊥1) ≈ ⊥2,
and that these identities are sufficient to characterize its semantics. Thus, the
equational theory corresponding to the E-connection of K with itself consists of
these two axioms, together with the axioms of EK1 and EK2 .

Obviously, this theory is also obtained as the connection of the theory EK

with itself, if the connecting signature Ω0 consists of the single sort of EK,
the predicate symbol ≈, and the function symbols t,⊥. As theory T0 we can
take the theory of semilattices, i.e., the axioms that say that t is associative,
commutative, and idempotent, and that ⊥ is a unit for t.

Example 2.3. The previous example can be varied by additionally including
u in the connecting signature, and taking as theory T0 the theory of distributive
lattices with a least element ⊥. It is easy to see that this corresponds to the case
of an E-connection where the connecting relation E is required to be a partial

2In the general E-connection scheme, there is also an inverse diamond operator 3− with

arity S2S1, but the algebraic approach presented in this article cannot yet treat this case (see
the conclusion for a discussion).
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function (we call such an E-connection deterministic). Finally, if we addition-
ally include both u and > in the connecting signature, and take T0 to be the
theory of bounded distributive lattices (i.e., distributive lattices with a least and
a greatest element), then the equational theory obtained through our connec-
tion corresponds to the case of an E-connection where the connecting relation
E is a (total) function (we call such an E-connection functional). More details
regarding the relationship between deterministic (functional) E-connections and
connections with the theory of (bounded) distributive lattices as connecting the-
ory can be found in §7.

2.3. The decidability transfer problem. In this paper, we are interested
in deciding the universal fragments of our theories, i.e., validity of universal for-
mulae (or, equivalently open formulae) in a theory T . Usually, in mathematical
logic, when a first-order theory T is said to be decidable, this means that one can
decide whether a given elementary sentence is true in all models of T . However,
in computer science applications, more attention is often paid to fragments of
the whole elementary language: such fragments may be better behaved or more
tractable, while still offering sufficient expressive power. This is, for instance,
one of the main reasons of the success of Description Logics and Modal Logics in
Computer Science and Artificial Intelligence applications. When using an alge-
braic approach, as in the present paper, the inference problems that are relevant
in these applications (such as the subsumption problem in Description Logics)
are well within the universal fragments of the first-order theories corresponding
to these logics.

The main problem this article is concerned with is the following:

Under what conditions does decidability of the universal fragments of
T1, T2 imply decidability of the universal fragment of the connection
T1>T0 T2?

In this section we show that some condition is indeed needed since there are
theories whose universal fragment is decidable, but whose connection has an
undecidable universal fragment.

First note that it is well-known that the problem of deciding the universal
fragments of T is equivalent to the problem of deciding whether a set of literals
is satisfiable in some model of T . We call such a set of literals a constraint. By
introducing new free constants (i.e., constants not occurring in the axioms of
the theory), we can assume without loss of generality that such constraints are
ground. In addition, we can transform any ground constraint into an equisatis-
fiable set of ground flat literals, i.e., literals of the form

a ≈ f(a1, . . . , an), P (a1, . . . , an), or ¬P (a1, . . . , an),

where a, a1, . . . , an are (sort-conforming) free constants, f is a function symbol,
and P is a predicate symbol (possibly also equality).

For a one-sorted first-order theory T , let us denote with T∞ the theory T
augmented with axioms saying that the domain of models is infinite. Obviously,
T∞ is again a one-sorted first-order theory. The following lemma and its proof,
which we give here for the sake of completeness, are taken from [10]:
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Lemma 2.4. There exists a (universal, one-sorted) first-order theory T such
that the universal fragment of T is decidable, but the universal fragment of T∞

is undecidable.

Proof. Let Ω be the signature containing (in addition to the equality pred-
icate) an infinite set3 of propositional letters {P(e,n) | e, n ∈ N}. We denote by
k : N× N → N ∪ {∞} the function associating with each pair (e, n) the number
k(e, n) of computation steps of the Turing Machine with index e on the input n
(where k(e, n) := ∞ if the computation does not halt). Notice that the function
k(e, n) is not computable, but the ternary predicate Rk := {(e, n,m) | k(e, n) <
m} is decidable (because we can run the machine e on input n for the first m
steps and check whether it halts or not). The infinite (but recursive) set of
axioms for T is given by

{P(e,n) → ∀x1 · · · ∀xm.
∨

1≤i<j≤m

xi ≈ xj | e, n,m ∈ N ∧ k(e, n) < m}. (2)

These axioms say that, if the Turing Machine e halts in less than m steps on
input n, then the cardinality of the domains of models of T in which P(e,n) is
true is smaller than m.

To show that the universal fragment of T is decidable, consider a constraint Γ
consisting of ground flat literals over a suitably expanded signature Ωa, where a
is a finite set of free constant symbols. First, guess a set of literals Γ0 containing,
for every a, a′ ∈ a, either a ≈ a′ or a 6≈ a′. Clearly, Γ is satisfiable in a model
of T iff there is such a set Γ0 such that Γ ∪ Γ0 is satisfiable in a model of T .
Then, check the set of equations and inequations from Γ ∪ Γ0 for satisfiability
in the pure theory of equality, which is known to be decidable. Suppose the
satisfiability check succeeds; let m be the number of equivalence classes for the
equivalence relation ≡ over a induced by the equations in Γ0, i.e., a ≡ a′ iff
a ≈ a′ ∈ Γ0. Note that this is indeed an equivalence relation since we have
a 6≈ a′ ∈ Γ0 whenever a ≈ a′ 6∈ Γ0, and the satisfiability test succeeded. Then
m is the minimal cardinality of a candidate model for Γ ∪ Γ0. Clearly, Γ ∪ Γ0

is unsatisfiable if it contains both P(e,n) and ¬P(e,n) for some e, n ∈ N. Assume
that this is not the case. We claim that

Γ ∪ Γ0 is satisfiable iff P(e,n) ∈ Γ implies m ≤ k(e, n).

Note that the condition on the right-hand side of the iff-statement is decidable
since the predicate Rk is decidable. Thus, to show that the universal fragment
of T is decidable, it remains to prove the claim.

First, assume that Γ ∪ Γ0 is satisfiable and that P(e,n) ∈ Γ. The cardinality
of the model of T satisfying Γ ∪ Γ0 is at least m, and thus the definition of T
implies that we cannot have k(e, n) < m. Conversely, assume that P(e,n) ∈ Γ
implies m ≤ k(e, n). We consider the structure M of cardinality m that has
the equivalence classes of ≡ as elements, interprets the constants from a by
their respective class, and makes the predicates P(e,n) true if they belong to Γ.
Obviously, M satisfies the equations and inequations from Γ ∪ Γ0, and it also

3Thus, Ω is an infinite signature. By modifying the definition of the theory T given in (2),
it is also possible to prove the lemma for a theory over a finite signature (see [10]).
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satisfies all the literals in Γ involving the predicates P(e,n). It remains to show
that it is a model of T . Thus, consider an axiom of the form

P(e,n) → ∀x1 · · · ∀xµ.
∨

1≤i<j≤µ

xi ≈ xj where k(e, n) < µ,

and assume that P(e,n) is true in M. By the definition of M, this implies that
P(e,n) ∈ Γ, and thus our assumption yields m ≤ k(e, n) < µ. Since M has
cardinality m, this shows that the above axiom is true in M.

To see that T∞ does not have a decidable universal fragment, notice that
the atom P(e,n) is satisfiable in a model of T∞ iff k(e, n) = ∞, i.e. iff the
Turing Machine with index e does not halt on input n. The latter is obviously
undecidable since it is the complement of the Halting problem. a

To show that decidability need not transfer to the connection, we use a con-
struction that will turn out to be useful also later on. Let T be a theory over the
signature Ω. We build the signature Ω¬ and the theory T¬ as follows: for every
n-ary predicate symbol P of Ω, the signature Ω¬ extends Ω by the additional
new n-ary predicate symbol P¬, and the theory T¬ contains in addition to the
axioms of T the axioms

¬P (x1, . . . , xn) ↔ P¬(x1, . . . , xn),

which define each P¬ as the negation of P .
The difference between T and T¬ is not relevant at the level of models: every

model of T can be expanded in a unique way to a model of T¬. It is also not
relevant w.r.t. the decidability of the universal theory: every Ω¬-constraint can
obviously be transformed into an equi-satisfiable Ω-constraint by replacing P¬ by
¬P , and every Ω-constraint is satisfiable in T iff it is satisfiable in T¬. However,
there is a remarkable difference at the level of homomorphisms: a homomorphism
between models of T¬ is just an embedding between the corresponding models
of T . This difference is exploited in the proof of the main result of this section.

Theorem 2.5. There exists theories T0, T1, T2 such that T0 is contained in T1

and T2 and the universal fragments of T0, T1, T2 are decidable, but the universal
fragment of T1>T0 T2 is undecidable.

Proof. Let T ′0 be the (one-sorted) theory of pure equality, i.e., the theory
whose signature contains no function symbols and equality as the only predicate
symbol, and which is axiomatized by the empty set. It is well known that the
universal fragment of T ′0 is decidable. Let T ′1 be a theory having only infinite
models and a decidable universal fragment,4 and let T ′2 be a theory satisfying the
conditions of Lemma 2.4, i.e., T ′2 is one sorted, the universal fragment of T ′2 is
decidable, but the universal fragment of T ′2

∞ is not decidable. Let us consider the
theories T0 := T ′0

¬, T1 := T ′1
¬, and T2 := T ′2

¬. Clearly, the universal fragments
of these theories are also decidable, and T0 is contained in T1 and T2. Models
of T1>T0 T2 are now formed by triples of the form (M1,M2, h), where M1 is a
model of T1, M2 is a model of T2, and

h : M1 →M2

4There are many theories satisfying this requirement, e.g., Presburger Arithmetic [27] or
the theory of acyclic lists [25].
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is an injective function. Consider now a T1>T0 T2-constraint Γ that consists of
Σ2-literals: such a constraints is T1 >T0 T2-satisfiable iff it is satisfiable in an
infinite model of T2, and thus in an infinite model of T ′2. The latter problem is
undecidable by our choice of T ′2. a

We shall comment on the peculiarities of the theories introduced in the proof
of Theorem 2.5 in more detail in Example 4.10 below.

§3. Positive-existential model completions and compatibility. In or-
der to transfer decidability results from the component theories T1, T2 to their
connection T1>T0 T2 over T0, the theories T0, T1, T2 must satisfy certain model-
theoretic conditions, which we introduce below. The most important one is
that T0 has a positive-existential model completion.5 Before we can define this
concept, we must introduce some notions from model theory.

The formula φ is called open iff it does not contain quantifiers; it is called
universal iff it is obtained from an open formula by adding a prefix of universal
quantifiers; and it is called geometric iff it is built from atoms by using con-
junction, disjunction, and existential quantifiers. The latter formulae are called
“geometric” in categorical logic [21] since they are preserved under inverse image
geometric morphisms among toposes.

The main property of geometric formulae is that they are preserved under
homomorphisms in the following sense: if µ : A → B is a homomorphism between
Ω-structures and φ(x1, . . . , xn) is a geometric formula over Ω, then

A |= φ(a1, . . . , an) implies B |= φ(µ(a1), . . . , µ(an))

for all (sort-conforming) a1, . . . , an ∈ A.
Open formulae are related to embeddings in various way. First, they are

preserved under building sub- and superstructures, i.e., if A is a substructure of
B, φ(x1, . . . , xn) is an open formula, and a1, . . . , an ∈ A are sort-conforming,
then A |= φ(a1, . . . , an) iff B |= φ(a1, . . . , an). The following lemma is well-
known [11]:

Lemma 3.1. Two Ω-theories T, T ′ entail the same set of open formulae iff
every model of T can be embedded into a model of T ′ and vice versa.

Since a theory entails an open formula iff it entails its universal closure, the
lemma also says that two theories T, T ′ entail the same universal sentences iff
every model of T can be embedded into a model of T ′ and vice versa.

The theory T is a universal theory iff its axioms are universal sentences; it
is a geometric theory iff it can be axiomatized by using universal closures of
geometric sequents, where a geometric sequent is an implication between two
geometric formulae. Note that any universal theory is geometric since open
formulae are conjunctions of clauses and clauses can be rewritten as geometric
sequents.

5In the conference version of this article [3], we used the name “positive algebraic com-

pletion.” However, when preparing the present extended version, we changed this and other
names (e.g., the “positive co-algebraic completions” of [3] are now called “positive-universal

model completions”). We think that these new names are more intuitive.
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Definition 3.2. Let T be a universal and T ∗ a geometric theory over Ω. We
say that T ∗ is a positive-existential model completion of T iff the following
properties hold:

1. T ⊆ T ∗;
2. every model of T embeds into a model of T ∗;6

3. for every geometric formula φ(x) there is an open geometric formula φ∗(x)
such that T ∗ |= φ↔ φ∗.

It can be shown that the models of T ∗ are exactly the positive-existentially
closed models of T .7 In particular, this means that the positive-existential model
completion of T is unique, provided that it exists.

When trying to show that Property 3 of Definition 3.2 holds for given theo-
ries T, T ∗, then it is sufficient to consider simple existential formulae φ(x), i.e.,
formulae that are obtained from conjunctions of atoms by adding an existential
quantifier prefix. In fact, any geometric formula φ can be normalized to a dis-
junction φ1 ∨ . . . ∨ φn of simple existential formulae φi by using distributivity
of conjunction and existential quantification over disjunction. In addition, if
T ∗ |= φi ↔ φ∗i for geometric open formulae φ∗i (i = 1, . . . , n), then φ∗1 ∨ . . . ∨ φ∗n
is also a geometric open formula and T ∗ |= (φ1 ∨ . . . ∨ φn) ↔ (φ∗1 ∨ . . . ∨ φ∗n).

The following lemma will turn out to be useful later on.

Lemma 3.3. Assume that T, T ∗ satisfy Property 1 and 2 of Definition 3.2. If
φ(x) is a simple existential formula and φ∗(x) is an open formula, then T ∗ |=
φ→ φ∗ iff T |= φ→ φ∗.

This is an immediate consequence of the fact that φ → φ∗ is then equivalent
to an open formula, and hence Lemma 3.1 applies.

The first ingredient of our combinability condition is the following notion of
compatibility, which is a variant of analogous compatibility conditions introduced
in [16, 4, 5] for the case of the union of theories.

Definition 3.4. Let T0 ⊆ T be theories over the respective signatures Ω0 ⊆
Ω1. We say that T is T0-positive-existentially compatible iff T0 is universal, has
a positive-existential model completion T ∗0 , and every model of T embeds into a
model of T ∪ T ∗0 .

The second ingredient ensures that all finitely generated models of T0 are
finite. We adopt the following effective variant of a condition known as local
finiteness (see e.g. [16, 4, 5]).

Definition 3.5. Let T0 be a universal theory over the finite signature Ω0.
Then T0 is called effectively locally finite iff Ω0 is finite and, for every tuple of
variables x, one can effectively determine terms t1(x), . . . , tk(x) such that, for
every further term u(x), we have that T0 |= u ≈ ti for some i = 1, . . . , k.

6Equivalently, T and T ∗ entail the same universal sentences.
7See §8 for a definition of positive-existentially closed models, and proofs of this and other

model-theoretic properties of positive-existential model completions.
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§4. The main combination results. Recall that we are interested in de-
ciding the universal fragments of our theories, i.e., validity of universal formulae
(or, equivalently open formulae) in a theory T .8 As shown in Section 2.3, we
can restrict the attention to deciding the satisfiability of constraints consisting
of ground flat literals, i.e., literals of the form

a ≈ f(a1, . . . , an), P (a1, . . . , an), or ¬P (a1, . . . , an),

where a, a1, . . . , an are (sort-conforming) free constants, f is a function symbol,
and P is a predicate symbol (possibly also equality).

In the following, we first treat the case of a basic connection, as introduced in
§2. Then, we show that the combination result can be extended to connections
with several connection functions, possibly going in both directions. Finally, we
give examples of theories satisfying our combinability conditions.

4.1. Basic connections. In this subsection, we provide sufficient conditions
under which decidability of the universal fragments of T1, T2 transfers to their
connection T1>T0 T2.

Theorem 4.1. Let T0, T1, and T2 be theories over the respective signatures
Ω0, Ω1, and Ω2, where Ω0 is a common subsignature of Ω1 and Ω2. Assume that
T0 ⊆ T1 and T0 ⊆ T2, that T0 is universal and locally finite, and that T2 is T0-
positive-existentially compatible. Then the decidability of the universal fragments
of T1 and T2 entails the decidability of the universal fragment of T1>T0 T2.

To prove the theorem, we consider a finite set Γ of ground flat literals over the
signature Ω of T1>T0 T2 (with additional free constants), and show how it can
be tested for satisfiability in T1 >T0 T2. Since all literals in Γ are flat, we can
divide Γ into three disjoint sets Γ = Γ0 ∪ Γ1 ∪ Γ2, where Γi (i = 1, 2) is a set of
literals in the signature Ωi (expanded with free constants), and Γ0 is of the form

Γ0 = {h(a1) ≈ b1, . . . , h(an) ≈ bn}
for free constants a1, b1, . . . , an, bn.

The next proposition will allow us to specify the decision procedure for T1>T0

T2 required by Theorem 4.1.

Proposition 4.2. The constraint Γ = Γ0 ∪ Γ1 ∪ Γ2 is satisfiable in T1>T0 T2

iff there exists a triple (A,B, ν) such that
1. A is an Ω0-model of T0, which is generated by {aA1 , . . . , aAn };
2. B is an Ω0-model of T0, which is generated by {bB1 , . . . , bBn};
3. ν : A → B is an Ω0-homomorphism such that ν(aAj ) = bBj for j = 1, . . . , n;
4. Γ1 ∪∆Ω0(A) is satisfiable in T1;
5. Γ2 ∪∆Ω0(B) is satisfiable in T2.

Proof. The only-if direction is simple. In fact, as noted in §2, a model M of
T1>T0 T2 is given by a triple (M1,M2, hM), where M1 is a model of T1, M2

is a model of T2 and hM : M1
|Ω0

→M2
|Ω0

is an Ω0-homomorphism between the
respective Ω0-reducts. Assume that this model M satisfies Γ. We can take as
A the substructure of M1

|Ω0
generated by (the interpretations of) a1, . . . , an, as

8This is the decision problem also treated by the Nelson-Oppen combination method, albeit
for the union of theories.
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B the substructure of M2
|Ω0

generated by (the interpretations of) b1, . . . , bn, and
as homomorphism ν the restriction of hM to A. It is easy to see that the triple
(A,B, ν) obtained this way satisfies 1.–5. of the proposition.

Conversely, assume that (A,B, ν) is a triple satisfying 1.–5. of the proposition.
Because of 4. and 5., there is an Ω1-model N ′ of T1 satisfying Γ1∪∆Ω0(A) and an
Ω2-model N ′′ of T2 satisfying Γ2∪∆Ω0(B). By Robinson’s diagram theorem, N ′

has A as an Ω0-substructure and N ′′ has B as an Ω0-substructure. We assume
without loss of generality that N ′ is at most countable and that N ′′ is a model
of T2 ∪ T ∗0 . The latter assumption is by T0-positive-existential compatibility of
T2, and the former assumption is by the Löwenheim-Skolem theorem since our
signatures are at most countable. Let us enumerate the elements of N ′ as

c1, c2, . . . , cn, cn+1, . . .

where we assume that ci = aAi (i = 1, . . . , n), i.e., c1, . . . , cn are generators of A.
We define an increasing sequence of sort-conforming functions νk : {c1, . . . ck} →
N ′′ (for k ≥ n) such that, for every ground Ω{c1,...,ck}

0 -atom α we have

N ′
|Ω0

|= α(c1, . . . , ck) implies N ′′
|Ω0

|= α(νk(c1), . . . , νk(ck)).

We first take νn to be ν. To define νk+1 (for k ≥ n), let us consider the conjunc-
tion ψ(c1, . . . , cn, cn+1) of the Ω{c1,...,cn+1}

0 -atoms that are true in N ′
|Ω0

: this con-
junction is finite (modulo taking representative terms, thanks to local finiteness
of T0). Let φ(x1, . . . , xn) be ∃xn+1.ψ(x1, . . . , xn, xn+1) and let φ∗(x1, . . . , xn) be
a geometric open formula such that T ∗0 |= φ↔ φ∗.

By Lemma 3.3, T0 |= φ → φ∗, and thus we have N ′
|Ω0

|= φ∗(c1, . . . , ck) and
also N ′′

|Ω0
|= φ∗(νk(c1), . . . , νk(ck)) by the induction hypothesis. Since N ′′

|Ω0
is a

model of T ∗0 , there is a b such that N ′′
|Ω0

|= ψ(νk(c1), . . . , νk(ck), b) for some b. We
now obtain the desired extension νk+1 of νk by setting νk+1(ck+1) := b. Taking
ν∞ =

⋃
k≥n νk, we finally obtain a homomorphism ν∞ : N ′

|Ω0
→ N ′′

|Ω0
such that

the triple (N ′,N ′′, ν∞) is a model of T1>T0 T2 that satisfies Γ0 ∪ Γ1 ∪ Γ2. a
The above proof uses the assumption that T0 is locally finite. By using heavier

model-theoretic machinery, one can also prove the proposition without using
local finiteness of T0 (see §9). However, since the proof of Theorem 4.1 needs
this assumption anyway (see below), we gave the above proof since it is simpler.

We can now conclude the proof of Theorem 4.1:

Proof. Let us describe a non-deterministic decision procedure that effectively
guesses an appropriate triple (A,B, ν) and then checks whether it satisfies 1.–5.
of Proposition 4.2. To guess an Ω0-model of T0 that is generated by a finite set
X, one uses effective local finiteness of T0 to obtain an effective bound on the
size of such a model and guesses an Ω0-structure that satisfies this size bound.

Once the Ω0-structures A,B are given, one can build their diagrams, and use
the decision procedures for T1 and T2 to check whether 4. and 5. of Proposi-
tion 4.2 are satisfied. If the answer is yes, then A,B are also models of T0: in
fact, if for instance Γ1 ∪ ∆Ω0(A) is satisfiable in the model M of T1, then M
has A as a substructure, and this implies A |= T0 because T0 is universal and
T0 ⊆ T1.
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Finally, one can guess a mapping ν : A → B that satisfies ν(aAj ) = bBj , and
then use the diagrams of A,B to check whether ν satisfies the homomorphism
condition (1). a

4.2. Two-side connections. The proof of Proposition 4.2 basically shows
that our decidability transfer result can easily be extended to the case of sev-
eral connection functions, possibly going in both directions. For simplicity, we
examine only the case of two connection functions, going in the two opposite
directions.

The theory T1 >T0< T2 is defined as the union of T1 >T0 T2 and T2 >T0 T1.
Thus, a model of T1 >T0<T2 is a 4-tuple given by a model M1 of T1, a model
M2 of T2 and two homomorphisms

hM : M1
|Ω0

→M2
|Ω0

and gM : M2
|Ω0

→M1
|Ω0

among the respective Ω0-reducts.

Theorem 4.3. Let T0, T1, and T2 be theories over the respective signatures
Ω0, Ω1, and Ω2, where Ω0 is a common subsignature of Ω1 and Ω2. Assume
that T0 ⊆ T1 and T0 ⊆ T2, that T0 is universal and locally finite, and that
T1, T2 are both T0-positive-existentially compatible. Then the decidability of the
universal fragments of T1 and T2 entails the decidability of the universal fragment
of T1>T0<T2.

To prove the theorem, notice that any finite set of ground flat literals (with
free constants) Γ to be tested for T1>T0<T2-consistency can be divided into four
disjoint sets

Γ = Θ1 ∪Θ2 ∪ Γ1 ∪ Γ2,

where Γi (i = 1, 2) are sets of literals in the signature Ωi (expanded with free
constants), and

Θ1 = {h(a1) ≈ b1, . . . , h(an) ≈ bn} and Θ2 = {g(b′1) ≈ a′1, . . . , g(b
′
m) ≈ a′m}.

Theorem 4.3 is an easy consequence of the following proposition.

Proposition 4.4. The constraint Γ = Θ1 ∪ Θ2 ∪ Γ1 ∪ Γ2 is satisfiable in
T1>T0<T2 iff there exist two triples (A,B, ν) and (A′,B′, ν′) such that

1. A is a Ω0-model of T0 that is generated by {aA1 , . . . , aAn }, B is a Ω0-model of
T0 which is generated by {bB1 , . . . , bBn} and ν : A → B is a Ω0-homomorphism
such that ν(aAj ) = bBj for all j = 1, . . . , n;

2. A′ is a Ω0-model of T0 that is generated by {a′1
A′
, . . . , a′m

A′
}, B′ is a Ω0-

model of T0 that is generated by {b′1
B′
, . . . , b′m

B′} and µ : B′ → A′ is a
Ω0-homomorphism such that ν′(b′j

B′) = a′j
A′

for all j = 1, . . . ,m;
3. Γ1 ∪∆Ω0(A) ∪∆Ω0(A′) is satisfiable in T1, and

Γ2 ∪∆Ω0(B) ∪∆Ω0(B′) is satisfiable in T2.

Proof. The only-if direction is again simple. To prove the if direction, assume
that for some ν : A → B and µ : B′ → A′, the set of literals Γ1∪∆Ω0(A)∪∆Ω0(A′)
is satisfiable in an Ω1-modelN ′ of T1, and the set of literals Γ2∪∆Ω0(B)∪∆Ω0(B′)
is satisfiable in an Ω2-model N ′′ of T2. By Robinson’s diagram theorem, N ′ has
A and A′ as Ω0-substructures, and N ′′ has B and B′ as Ω0-substructures. We
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assume without loss of generality that N ′ and N ′′ are at most countable models
of T1 ∪ T ∗0 and T1 ∪ T ∗0 , respectively.

Now, an argument identical to the one used in the proof of Proposition 4.2
yields the homomorphisms

ν∞ : N ′
|Ω0

→ N ′′
|Ω0

and ν′∞ : N ′′
|Ω0

→ N ′
|Ω0
,

which are needed in order to obtain a full model of T1>T0<T2. a
It should be clear how to adapt this proof to the case of more than one con-

nection function going in each direction.
4.3. Examples. When trying to axiomatize the positive-existential model

completion T ∗0 of a given universal theory T0, it is sufficient to produce for
every simple existential formula φ(x) an appropriate geometric and open formula
φ∗(x). Take as theory T ∗0 the one axiomatized by T0 together with the formulae
φ↔ φ∗ for every simple existential formula φ. In order to complete the job, it is
sufficient to show that every model of T0 embeds into a model of T ∗0 . It should
also be noted that one can without loss of generality restrict the attention to
simple existential formulae with just one existential quantifier since more than
one quantifier can then be treated by iterated elimination of single quantifiers.

In the next example we encounter a special case where the formulae φ ↔ φ∗

are already valid in T0. In this case, we have T0 = T ∗0 , and thus the model-
embedding condition is trivially satisfied. In addition, any theory T with T0 ⊆ T
is T0-positive-existentially compatible.

Example 4.5. Recall from [4, 5] the definition of a Gaussian theory. Let us
call a conjunction of atoms an e-formula. The universal theory T0 is Gaussian
iff for every e-formula φ(x, y) it is possible to compute an e-formula ψ(x) and a
term s(x, z) with fresh variables z such that

T0 |= φ(x, y) ↔ (ψ(x) ∧ ∃z.(y ≈ s(x, z))). (3)

Any Gaussian theory T0 is its own positive-existential model completion. In fact,
it is easy to see that (3) implies T0 |= (∃y.φ(x, y)) ↔ ψ(x), and thus T0 = T ∗0 .

As a consequence, our combination result applies to all the examples of ef-
fectively locally finite Gaussian theories given in [4, 5] (e.g., Boolean algebras,
vector spaces over a finite field, empty theory over a signature whose sets of
predicates consists of ≈ and whose set of function symbols is empty): if the uni-
versal theory T0 is effectively locally finite and Gaussian, and T1, T2 are arbitrary
theories containing T0 and with decidable universal fragment, then the universal
fragment of T1>T0 T2 is also decidable.

Example 4.6. Let T0 be the theory of semilattices (see Example 2.2). This
theory is obviously effectively locally finite. In the following, we use the disequa-
tion s v t as an abbreviation for the equation st t ≈ t. Obviously, any equation
s ≈ t can be expressed by the disequations s v t ∧ t v s.

The theory T0 has a positive-existential model completion, which can be ax-
iomatized as follows. Let φ(x) be a simple existential formula with just one
existential quantifier. Using the fact that z1 t . . . t zn v z is equivalent to
z1 v z ∧ . . .∧ zn v z, it is easy to see that φ(x) is equivalent to a formula of the
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form

∃y.((y v t1) ∧ · · · ∧ (y v tn) ∧ (u1 v s1 t y) ∧ · · · ∧ (um v sm t y)), (4)

where ti, sj , uk are terms not involving y. Let φ∗(x) be the formula
n∧

i=1

m∧
j=1

(uj v sj t ti), (5)

and let T ∗0 be obtained from T0 by adding to it the universal closures of all
formulae φ↔ φ∗.

We prove that T ∗0 is contained in the theory of Boolean algebras. In fact, the
system of disequations (4) is equivalent, in the theory of Boolean algebras, to

∃y.((y v t1) ∧ · · · ∧ (y v tn) ∧ (u1 u ¬s1 v y) ∧ · · · ∧ (um u ¬sm v y), (6)

and hence to

(u1 u ¬s1 v t1 u . . . u tn) ∧ · · · ∧ (um u ¬sm v t1 u . . . u tn). (7)

Finally, it is easy to see that (7) and (5) are equivalent.
It is well-known that every semilattice embeds into a Boolean algebra. This

can, for example, be shown as follows. Given a semilattice S = (S,t,⊥), just
consider the Boolean algebra B = (2S ,∩, S,∪, ∅, (·)) given by the dual of the
usual Boolean algebra formed by the powerset of S: this means that as join in B
we take the intersection of sets, as the least element S, as the meet the union of
sets, as the greatest element ∅, and as the negation operation the set complement.
It is easy to see that the map associating with s ∈ S the set {s′ | s v s′} is a
semilattice embedding from S into B.

This shows that T ∗0 is the positive-existential model completion of T0. In ad-
dition, this implies that any Boolean-based theory T is T0-positive-existentially
compatible since T ∗0 is contained in T . Consequently, Theorem 4.1 covers the
case of a basic E-connection, as introduced in Example 2.2 (see §7 for details).

Example 4.7. Let us now turn to Example 2.3, i.e., to connections over the
theory T0 of distributive lattices with a least element ⊥. This theory is obviously
effectively locally finite, and it has a positive-existential model completion, which
can be obtained as follows. Every term is equivalent modulo T0 both to (i) a term
that is a (possibly empty) finite join of (non-empty) finite meets of variables, and
to (ii) a term that is a (non-empty) finite meet of (possibly empty) finite joins of
variables. A simple existential formula with just one existential quantifier φ(x)
is then easily seen to be equivalent to a formula of the form

∃y.(
∧
i

(y v ui) ∧
∧
j

(tj u y v zj) ∧
∧
k

(vk v y t wk)), (8)

where ui, tj , vk, wk are terms not involving y. Let φ∗(x) be the formula∧
i,k

(vk v ui t wk) ∧
∧
j,k

(vk u tj v wk t zj), (9)

and let T ∗0 be obtained from T0 by adding to it the universal closures of all
formulae φ↔ φ∗.
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We prove that T ∗0 is contained in the theory of Boolean algebras. In fact, the
system of disequations (8) is equivalent, in the theory of Boolean algebras, to

∃y.(
∧
i

(y v ui) ∧
∧
j

(y v ¬tj t zj) ∧
∧
k

(vk u ¬wk v y)), (10)

and hence to ∧
i,k

(vk u ¬wk v ui) ∧
∧
j,k

(vk u ¬wk v ¬tj t zj). (11)

Finally, it is easy to see that (11) and (9) are equivalent.
Since every distributive lattice with least element embeds into a Boolean al-

gebra,9 this shows that T ∗0 is the positive-existential model completion of T0. In
addition, this implies that any Boolean-based equational theory T is T0-positive-
existentially compatible since T ∗0 is contained in T . Consequently, Theorem 4.1
covers the case of a basic deterministic E-connection, as introduced in Exam-
ple 2.3 (see §7 details).

Example 4.8. The previous example can be slightly varied, by considering
the theory T0 of bounded distributive lattices (i.e., distributive lattices with a
least and a greatest element). Let us prove that its positive-existential model
completion is the theory T ∗0 axiomatized by T0 together with the (universal
closure of the) formula

∃y.((x u y ≈ 0) ∧ (x t y ≈ 1)).

Thus, T ∗0 is simply the theory of Boolean algebras, formulated in a complement-
free signature. Since every bounded distributive lattice embeds into a Boolean
algebra, and since the theory of Boolean algebras coincides with its own positive-
existential model completion because it is Gaussian (see Example 4.5), it is
sufficient to show that every e-formula φ in the signature of Boolean algebras is
equivalent to an e-formula in the complement-free subsignature. In fact, we can
assume that φ is a conjunction of identities of the form

1 ≈ ¬x1 t · · · t ¬xn t y1 t · · · t ym;

these identities are in turn trivially equivalent to the inequations

x1 u · · · u xn v y1 t · · · t ym,

which can obviously be transformed into identities between term in the complement-
free subsignature.

Again this implies that every Boolean-based equational theory is T0-compatible
and that Theorem 4.1 covers the case of a basic functional E-connection, as in-
troduced in Example 2.3 (see again §7 for details).

Example 4.9. Here we give an example with a non-functional signature. Let
T0 be the (obviously locally finite) theory of partial orders (posets). The positive-
existential model completion T ∗0 of T0 is the theory axiomatized by T0 together

9It is well-known that distributive lattices with least and greatest elements embed into

Boolean algebras, and it is easy to embed a distributive lattice with least element into one
with least and greatest elements by just adding a greatest element.



18 FRANZ BAADER AND SILVIO GHILARDI

with the axioms

∃x.(
∧
i

(x v ai) ∧
∧
j

(bj v x)) ↔
∧
i,j

(bj v ai),

where i, j range over a finite index set and ai, bj are variables.
To embed a model (P,v) of T0 into a model of T ∗0 , just take the poset of

downward closet subsets of (P,v). A downward closed subset of P is a set
X ⊆ P such that x ∈ X and y v x imply y ∈ X. These sets are ordered by set
inclusion. It is easy to see that this yields a model of T ∗0 . In fact, it is enough
to show that, given downward closed sets Ai, Bj satisfying

∧
i,j(Bj v Ai), there

is a downward closed set X such that
∧

i(X v Ai) ∧
∧

j(Bj v X). Since the
union of downward closed sets is again downward closed, we can take the union
of the Bj as the set X. The embedding of (P,v) into downward closed sets is
obtained by associating with a ∈ P the cone a↓ := {b | b v a}. It is easy to see
that a v a′ iff a↓ ⊆ a′↓.

In order to obtain a T0-positive-existentially compatible theory, we consider
again the theory T of semilattices, but now we assume that the symbol v belongs
to the signature, and satisfies the axiom x v y ↔ x ∧ y ≈ y. The theory T is
T0-positive-existentially compatible since every model of T is a model of T ∗0 : in
fact

∃x.(
∧
i

(x v ai) ∧
∧
j

(bj v x))

is equivalent (in the theory T ) to

∃x.(
∧
i

(x v ai) ∧ (
⊔
j

bj v x)),

i.e., to ∧
i

(
⊔
j

bj v ai)

and thus to
∧

i,j(bj v ai).
Other theories that extend T ∗0 (and are hence T0-positive-existentially com-

patible) are theories that extend the theory of total orders, as is easily seen.

Example 4.10. Here we go back to the theories introduced in the proof of
Theorem 2.5 (which gives an example of theories T0, T1, T2 for which decidability
of the universal fragment does not transfer to their connection), and analyze
which of our conditions are violated by them. Let T ′0 be the one-sorted theory
of pure equality and let T0 := T ′0

¬ be as in the proof of Theorem 2.5. It is easily
seen that T0 has a positive-existential model completion T ∗0 , which is axiomatized
by using infinitely many sentences jointly saying that the domain is infinite. It
follows that a (one-sorted) theory T ⊇ T0 is T0-positive-existentially compatible
iff every model of T embeds into an infinite model of T . This condition (in an
equivalent formulation) is known as stable infiniteness: it is the standard Nelson-
Oppen combinability requirement [23, 22] for disjoint signatures. Most theories
considered in Computer Science applications are stably infinite. However, notice
that, in a stably infinite theory, there is no difference between satisfiability of
a constraint in a model of T and satisfiability in an infinite model of T . Thus,
theories satisfying the statement of Lemma 2.4 cannot be stably infinite. This
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shows that it is precisely the T0-positive-existential compatibility requirement
for T2 that is violated in the example provided in the proof of Theorem 2.5.

§5. A variant of the connection scheme. Here we consider a slightly
different combination scheme where a theory T is connected with itself w.r.t. a
subtheory T0. Let T0 ⊆ T be theories over the respective signatures Ω0 ⊆ Ω. We
use T>T0 to denote the theory whose models are models M of T endowed with
a homomorphism h : M|Ω0 →M|Ω0 . Thus, the signature Ω′ of T>T0 is obtained
from the signature Ω of T by adding a new function symbol hS of arity SS for
every sort S of Ω0. The axioms of T>T0 are obtained from the axioms of T by
adding

hS(f(x1, . . . , xn)) ≈ f(hS1(x1), . . . , hSn(xn)),
P (x1, . . . , xn) → P (hS1(x1), . . . , hSn

(xn)),

for every function (predicate) symbol f (P ) in Ω0 of arity S1 . . . SnS (S1 . . . Sn).

Example 5.1. An interesting example of a theory obtained as such a connec-
tion is the theory EK corresponding to the basic modal logic K. In fact, let T
be the theory of Boolean algebras, and T0 the theory of semilattices over the sig-
nature Ω0 as defined in Example 2.2. If we use the symbol 3 for the connection
function, then T>T0 is exactly the theory EK.

5.1. A non-deterministic combination procedure. In this subsection
we state the main decidability transfer result. The approach is analogous to the
one chosen in §4, and it leads to a non-deterministic combination procedure.
In the next subsection we show that, under certain additional restrictions, this
non-deterministic procedure can be replaced by a deterministic one.

Theorem 5.2. Let T0, T be theories over the respective signatures Ω0,Ω, where
Ω0 is a subsignature of Ω. Assume that T0 ⊆ T , that T0 is universal and locally
finite, and that T is T0-positive-existentially compatible. Then the decidability of
the universal fragment of T entails the decidability of the universal fragment of
T>T0 .

To prove the theorem, we consider a finite set Γ ∪ Γ0 of ground flat literals
over the signature Ω′ of T>T0 , where Γ is a set of literals in the signature Ω of T
(expanded with free constants), and Γ0 is of the form

Γ0 = {h(a1) ≈ b1, . . . , h(an) ≈ bn}.

The theorem is an easy consequence of the following proposition, whose proof is
similar to the one of Proposition 4.2.

Proposition 5.3. The constraint Γ ∪ Γ0 is satisfiable in T>T0 iff there exists
a triple (A,B, ν) such that

1. A is an Ω0-model of T0, which is generated by {aA1 , . . . , aAn };
2. B is an Ω0-model of T0, which is generated by {bB1 , . . . , bBn};
3. ν : A → B is an Ω0-homomorphism such that ν(aAj ) = bBj for j = 1, . . . , n;
4. Γ ∪∆Ω0(A) ∪∆Ω0(B) is satisfiable in T .
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Proof. The only-if direction is again simple. To prove the if direction, assume
that there is a triple (A,B, ν) satisfying 1.–4. of the proposition. In particular,
this means that Γ ∪ ∆Ω0(A) ∪ ∆Ω0(B) is satisfiable in a model N of T . We
can assume without loss of generality that N is an at most countable model
of T ∪ T ∗0 . By Robinson’s diagram theorem, A,B are Ω0-substructures of N .
Using the same argument as in the proof of Proposition 4.2, we can extend the
Ω0-homomorphism ν : A → B to an Ω0-endomorphism ν∞ : N|Ω0 → N|Ω0 . The
pair (N , ν∞) yields a model of T>T0 that satisfies Γ ∪ Γ0. a

Obviously, this proposition gives rise to a non-deterministic decision procedure
for the universal fragment of T>T0 , which is analogous to the one described in
the proof of Theorem 4.1

Applied to the connection of the theory BA of Boolean algebras with itself
w.r.t. the theory of semilattices considered in Example 5.1, the proof of The-
orem 5.2 shows that deciding the universal theory of EK can be reduced to
deciding the universal theory of BA. It is well-known that deciding the universal
theory of EK is equivalent to deciding global consequence in K, and that decid-
ing the universal theory of BA is equivalent to propositional reasoning. Thus, we
have shown the (rather surprising) result that the global consequence problem in
K can be reduced to purely propositional reasoning. However, if we directly ap-
ply the non-deterministic combination algorithm suggested by Proposition 5.3,
then the complexity of the obtained decision procedure is worse then the known
ExpTime-complexity [29] of the problem. The deterministic combination proce-
dure described below overcomes this problem.

5.2. A deterministic combination procedure. As pointed out in [25],
Nelson-Oppen style combination procedures can be made deterministic in the
presence of a certain convexity condition. Let T be a theory over the signature
Ω, and let Ω0 be a subsignature of Ω. Following [30], we say that T is Ω0-
convex iff every finite set of ground ΩX -literals (using additional free constants
from X) T -entailing a disjunction of n > 1 ΩX

0 -atoms, already T -entails one
of the disjuncts. Note that universal Horn Ω-theories are always Ω-convex. In
particular, this means that equational theories (like BA) are convex w.r.t. any
subsignature.

Let T0 ⊆ T be theories over the respective signatures Ω0,Ω, where Ω0 is a
subsignature of Ω. If T is Ω0-convex, then Theorem 5.2 can be shown with the
help of a deterministic combination procedure. (The same is actually also true
for Theorem 4.1 and Theorem 4.3, but this will not explicitly be shown here.)

Let Γ∪Γ0 be a finite set of ground literals (with free constants) in the signature
of T>T0 ; suppose also that Γ does not contain the symbol h and that Γ0 =
{h(a1) ≈ b1, . . . , h(an) ≈ bn}. We say that Γ is Γ0-saturated iff for every Ω0-
atom α(x1, . . . , xn), T ∪ Γ |= α(a1, . . . , an) implies α(b1, . . . , bn) ∈ Γ.

Theorem 5.4. Let T0, T be theories over the respective signatures Ω0,Ω, where
Ω0 is a subsignature of Ω. Assume that T0 ⊆ T , that T0 is universal and locally fi-
nite, and that T is Ω0-convex and T0-positive-existentially compatible. Then the
following deterministic procedure decides whether Γ ∪ Γ0 is satisfiable in T>T0

(where Γ,Γ0 are as in Proposition 5.3):
1. Γ0-saturate Γ;
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2. check whether the Γ0-saturated set Γ̂ obtained this way is satisfiable in T .

Proof. The saturation process (and thus the procedure) terminates because
T0 is locally finite (it should be clear that saturation is done modulo T0). In
addition, if Γ ∪ Γ0 is satisfied in a model M of T>T0 , then the reduct of M to
the signature Ω obviously satisfies Γ̂.

Conversely, if the Γ0-saturated set Γ̂ is satisfiable in T , then we use Γ̂ to
construct a triple (A,B, ν) satisfying 1.–4 of Proposition 5.3. Since Γ̂ is satisfiable
in T , and T is Ω0-convex, the following two finite10 sets of literals are both
satisfiable in T0 (where a abbreviate a1, . . . , an and let b abbreviate b1, . . . , bn):

Γa := {α(a) | T ∪ Γ̂ |= α(a)} ∪ {¬α(a) | T ∪ Γ̂ 6|= α(a)},
Γb := {α(b) | T ∪ Γ̂ |= α(b)} ∪ {¬α(b) | T ∪ Γ̂ 6|= α(b)},

where α(x) ranges over Ω0-atoms (modulo T0). In fact, assume (without loss of
generality) that Γa is not satisfiable in T0. This means that

T0 ∪ {α(a) | T ∪ Γ̂ |= α(a)} |=
∨

T∪bΓ 6|=α(a)

α(a),

Since T0 ⊆ T and T is Ω0-convex, this implies that T ∪{α(a) | T ∪ Γ̂ |= α(a)} |=
α′(a) for some Ω0-atom α′(x) such that T ∪ Γ̂ 6|= α′(a). However, T ∪ {α(a) |
T ∪ Γ̂ |= α(a)} |= α′(a) obviously implies T ∪ Γ̂ |= α′(a), which yields the desired
contradiction.

Pick a pair of models of T0 satisfying Γa and Γb, and let A, B be their Ω0-
substructures generated by (the interpretations of) a and b, respectively. Since T0

is universal, A and B are models of T0. Moreover, by construction, for every Ω0-
atom α(x) we have that T ∪Γ̂ |= α(a) iff A |= α(a) and, similarly, T ∪Γ̂ |= α(b) iff
B |= α(b). As a consequence, the Γ0-saturatedness of Γ̂ and Robinson’s diagram
theorem guarantee that the map associating bi with ai can be extended to a
homomorphism ν : A → B.

It remains to show that Γ̂∪∆Ω0(A)∪∆Ω0(B) is satisfiable in T (since Γ ⊆ Γ̂,
this implies that Γ∪∆Ω0(A)∪∆Ω0(B) is satisfiable in T ). Taking into considera-
tion the Ω0-convexity of T and the fact that Γ̂ is satisfiable in T , satisfiability of
Γ̂∪∆Ω0(A)∪∆Ω0(B) in T means that for no atom α(a) false in A (α(b) false in B)
we have that T∪Γ̂∪∆+

Ω0
(A)∪∆+

Ω0
(B) |= α(a) (T∪Γ̂∪∆+

Ω0
(A)∪∆+

Ω0
(B) |= α(b)).11

However, as remarked above, T ∪ Γ̂ |= α(a) holds iff A |= α(a) holds (and sim-
ilarly for B). This means that T ∪ Γ̂ ∪ ∆+

Ω0
(A) ∪ ∆+

Ω0
(B) is the same theory

as T ∪ Γ̂. But then the claim that “for no atom α(a) false in A (or α(b) false
in B) we have that T ∪ Γ̂ |= α(a) (T ∪ Γ̂ |= α(b))” becomes trivial, once again
because T ∪ Γ̂ |= α(a) is equivalent to A |= α(a) (T ∪ Γ̂ |= α(b) is equivalent to
B |= α(b)). a

10It goes without saying that “finiteness” here means “finiteness modulo T0;” see the defi-
nition of local finiteness.

11Recall that ∆+
Ω0

(A) denotes the positive diagram of A, i.e., it consists of those atoms true

in A. Also note that ¬α(a) ∈ ∆Ω0 (A) \∆+
Ω0

(A) iff the atom α(a) is false in A.
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Example 5.1 (continued) Let us come back to the connection of T := BA
with itself w.r.t. the theory T0 of semilattices, which yields as combined theory
the equational theory EK corresponding to the basic modal logic K. In this
case, checking during the saturation process whether T ∪ Γ |= α(a) amounts
to checking whether a propositional formula φΓ (whose size is linear in the size
of Γ) implies a propositional formula of the form ψ1 ⇔ ψ2, where ψ1, ψ2 are
disjunctions of the propositional variables from a. Since propositional reasoning
can be done in time exponential in the number of propositional variables, and
there are only exponentially many different formulae of the form ψ1 ⇔ ψ2, the
saturation process needs at most exponential time. The size of the Γ0-saturated
set Γ̂ may be exponential in the size of Γ, but it still contains only the free
constants a. Consequently, testing satisfiability of Γ̂ in T is again a propositional
reasoning problem that can be done in time exponential in the number of free
constants a.

Consequently, we have shown that Theorem 5.4 yields an ExpTime decision
procedure for the global consequence relation in K, which thus matches the
known worst-case complexity of the problem.

§6. Conditions on the connection functions. Until now, we have con-
sidered connection functions that are arbitrary homomorphisms. In this section
we impose the additional conditions that the connection functions be surjective,
embeddings, or isomorphisms: in this way, we obtain new combined theories,
which we denote by T1 >

em
T0

T2, T1 >
s
T0
T2, T1 >

iso
T0

T2, respectively. This defines
the combined theories in a model-theoretic way. One can also give an axiomatic
description of T1>

em
T0
T2, T1>

s
T0
T2, and T1>

iso
T0
T2. For example, the axioms of

T1>
s
T0
T2 are obtained from the ones of T1>T0 T2 by adding axioms expressing

that h is surjective, i.e., for every sort S in Ω0 we add the axiom

∀y.∃x.hS(x) = y,

where x is a variable of sort S1 and y a variable of sort S2.
For these combined theories one can show combination results that are analo-

gous to Theorem 4.1: one just needs different compatibility conditions. To treat
embeddings and isomorphisms, we use the compatibility condition introduced
in [16, 4, 5] for the case of unions of theories. Following [16, 4, 5], we call this
condition T0-compatibility in the following.

In order to define this notion of compatibility, we need to introduce the notion
of a model completion. The definition given below differs from the one given in
[16, 4, 5]. However, the two notions can be shown to be equivalent for universal
theories (see Proposition 8.4 in §8), and we will apply the definition only to
theories that are universal. The reason for giving an alternative formulation
is that it makes the connection between a model completion and a positive-
existential model completion more transparent.

Definition 6.1. Let T be a universal Ω-theory and let T ∗ be an Ω-theory. We
say that T ∗ is a model completion of T iff the following conditions are satisfied:

1. T ⊆ T ∗;
2. every model of T embeds into a model of T ∗;
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3. for every formula φ(x) there is an open formula φ∗(x) such that

T ∗ |= φ↔ φ∗.

It can be shown that the models of T ∗ are just the existentially closed models
of T (see [11] or §8).

Definition 6.2. Let T0 ⊆ T be theories over the respective signatures Ω0 ⊆ Ω.
We say that T is T0-compatible iff T0 is universal, has a model completion T ∗0 ,
and every model of T embeds into a model of T ∪ T ∗0 .

The notions of a model completion and of T0-compatibility can actually be
viewed as special cases of the notions of a positive-existential model completion
and of T0-positive-existential compatibility. To show this, we employ a notation
introduced in Section 2.3. Recall that, given a theory T over the signature Ω, the
theory T¬ over the signature Ω¬ is defined as follows: for every n-ary predicate
symbol P of Ω, the signature Ω¬ extends Ω by the additional new n-ary predicate
symbol P¬, and the theory T¬ contains in addition to the axioms of T the axioms

¬P (x1, . . . , xn) ↔ P¬(x1, . . . , xn).

The following proposition states some relevant facts about the connection be-
tween T and T¬:

Proposition 6.3. Let T be a universal Ω-theory, and T0 ⊆ T a theory over
the subsignature Ω0 of Ω.

1. The theory T¬ is a universal Ω¬-theory.
2. The universal fragment of T is decidable iff the universal fragment of T¬

is decidable.
3. T¬ has a positive-existential model completion iff T has a model completion.
4. T¬ is T¬0 -positive-existentially compatible iff T is T0-compatible.

Proof. The first two facts follow immediately from our definitions.
To prove the third fact, first assume that T¬ has a positive-existential model

completion T¬∗. It is easy to see that the theory T ∗ obtained from T¬∗ by
replacing all predicates P¬ by ¬P is a model completion of T . To see this, note
that one can eliminate quantifier from arbitrary formulae as soon as one can
eliminate quantifiers from existentially quantified conjunctions of literals (see
[11], Lemma 1.5.1). In addition, atoms in T¬ correspond to literals in T .

Conversely, assume that T has a model completion T ∗. It would be tempting to
claim that T ∗¬ is a positive-existential model completion of T¬. However, recall
that we require the positive-existential model completion of T¬ to be a geometric
theory. This need not be the case for T ∗¬ since the model completion T ∗ of T
need not be a geometric theory. In order to define the positive-existential model
completion of T¬, we recall from Section 4.3 that it is enough to (i) produce
for every simple existential formula φ(x) an open and geometric formula φ∗(x);
(ii) extend T¬ to T¬∗ by adding the formulae φ(x) ↔ φ∗(x) for every simple
existential formula φ(x); and (iii) show that every model of T¬ embeds into a
model of T¬∗.

Given a simple existential formula φ(x) in the signature Ω¬ of T¬, we can
first replace all predicates P¬ in φ(x) by ¬P , which yields a formula φ′(x) in the
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signature Ω of T . Since T ∗ is a model completion of T , we know that there is an
open formula φ′∗(x) over the signature Ω such that T ∗ |= φ′(x) ↔ φ′

∗(x). Let
φ∗(x) be the formula obtained from φ′

∗(x) by replacing all negated predicates
¬P by P¬, and let T¬∗ be the theory obtained from T¬ by adding the formulae
φ(x) ↔ φ∗(x) for every simple existential formula φ(x).

To show that every model of T¬ embeds into a model of T¬∗, let A¬ be a
model of T¬. Then the reduct A of A¬ to Ω can be embedded into a model B
of T ∗. Let B¬ be the expansion of B to Ω¬ that interprets the predicates P¬

by the complements of the interpretations of the predicates P . Then B¬ is a
model of T¬, and obviously A¬ embeds into B¬. In addition, for every simple
existential formula φ(x), the facts that T ∗ |= φ′(x) ↔ φ′

∗(x), that B is a model
of T ∗, and that B¬ is a model of T¬ imply that B¬ is a model of φ(x) ↔ φ∗(x).
This shows that A¬ embeds into the model B¬ of T¬∗.

Finally, the fourth fact is an easy consequence of the third. Basically, the only
additional things to prove are the embedding conditions. One direction is again
simple, and the other can be shown similarly to the proof of the embedding
condition above. a

6.1. Embeddings as connection functions. Let us first investigate the
case of connection functions that are embeddings.

Theorem 6.4. Let T0, T1, and T2 be theories over the respective signatures
Ω0, Ω1, and Ω2, where Ω0 is a common subsignature of Ω1 and Ω2. Assume
that T0 ⊆ T1 and T0 ⊆ T2, and that T0 is universal and locally finite. If T2 is
T0-compatible, then the decidability the universal fragments of T1 and T2 entails
the decidability of the universal fragment of T1>

em
T0
T2.

Proof. This theorem is an easy consequence of Theorem 4.1 and Proposi-
tion 6.3. In fact, by Proposition 6.3, the preconditions of the theorem imply
that the theories T¬0 , T

¬
1 , T

¬
2 satisfy the preconditions of Theorem 4.1. Thus, we

know that the universal theory of T¬1 >T¬
0
T¬2 is decidable.

Let Ω be the signature of T1>
em
T0
T2, and Ω¬ the signature of T¬1 >T¬

0
T¬2 . To

show decidability of the universal fragment of T1>
em
T0
T2, it is sufficient to show

that an Ω-constraint is satisfiable in a model of T¬1 >T¬
0
T¬2 iff it is satisfiable

in a model of T1 >
em
T0

T2. However, the models of T¬1 >T¬
0
T¬2 are of the form

(M1,M2, g), where M1 is a model of T¬1 , M2 is a model of T¬2 , and g is an
Ω¬0 -homomorphism. The reducts N 1,N 2 of M1,M2 to the signatures Ω1,Ω2

are models of T1, T2, respectively, and the reduct h of g to Ω0 is an Ω0-embedding.
Thus, (N 1,N 2, h) is a model of T1>

em
T0
T2, which obviously satisfies the same Ω-

constraints as (M1,M2, g). Conversely, every model of T1>
em
T0
T2 can uniquely

by expanded to a model of T¬1 >T¬
0
T¬2 that satisfies the same Ω-constraints

by defining the interpretations of the predicates P¬ as the complement of the
interpretations of the predicates P . a

Of course, Theorem 6.4 can also be proved directly by using an approach
analogous to the one employed in the proof of Theorem 4.1. Assume that the
constraint Γ consists of ground flat literals over the signature Ω of T1 >

em
T0

T2

(with additional free constants). Since all literals in Γ are flat, we can divide Γ
into three disjoint sets Γ = Γ0 ∪ Γ1 ∪ Γ2 where Γi (i = 1, 2) is a set of literals in
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the signature Ωi (expanded with free constants), and Γ0 is of the form

Γ0 = {h(a1) ≈ b1, . . . , h(an) ≈ bn}
for free constants a1, b1, . . . , an, bn. Theorem 6.4 easily follows from the next
proposition, which in turn is an easy consequence of Proposition 4.2 and Propo-
sition 6.3.

Proposition 6.5. The constraint Γ = Γ0 ∪Γ1 ∪Γ2 is satisfiable in T1>
em
T0
T2

iff there exists a triple (A,B, ν) such that
1. A is an Ω0-model of T0, which is generated by {aA1 , . . . , aAn };
2. B is an Ω0-model of T0, which is generated by {bB1 , . . . , bBn};
3. ν : A → B is an Ω0-embedding such that ν(aAj ) = bBj for j = 1, . . . , n;
4. Γ1 ∪∆Ω0(A) is satisfiable in T1;
5. Γ2 ∪∆Ω0(B) is satisfiable in T2.

6.2. Surjective connections. To treat T1>
s
T0
T2, we must dualize the no-

tions “positive-existential model completion” and “positive-existential compati-
bility”. These notions are based on co-geometric formulae, which are the dual
of geometric formulae in the sense that existential quantification is replaced by
universal quantification. A co-geometric formula is a formula built from atoms
by using conjunction, disjunction and universal quantification. Similarly, a co-
geometric theory is a theory axiomatized by (universal closure of) implications
of co-geometric formulae.

Definition 6.6. Let T be a universal Ω-theory, and let T ∗ be an Ω-theory.
We say that T ∗ is a positive-universal model completion of T iff the following
conditions are satisfied:

1. T ⊆ T ∗;
2. every model of T embeds into a model of T ∗;
3. for every co-geometric formula φ(x) there is an open co-geometric formula
φ∗(x) such that

T ∗ |= φ↔ φ∗.

The new notion of compatibility defined below differs from the one introduced
in §3 in that positive-existential model completions are replaced by positive-uni-
versal model completions.

Definition 6.7. Let T0 ⊆ T be theories over the respective signatures Ω0 ⊆
Ω1. We say that T is T0-positive-universally compatible iff T0 is universal, has
a positive-universal model completion T ∗0 , and every model of T embeds into a
model of T ∪ T ∗0 .

If the prerequisites of Theorem 4.1 hold and T1 is additionally T0-positive-uni-
versally compatible, then decidability of the universal fragment transfers from
T1, T2 to T1>

s
T0
T2.

Theorem 6.8. Let T0, T1, and T2 be theories over the respective signatures
Ω0, Ω1, and Ω2, where Ω0 is a common subsignature of Ω1 and Ω2. Assume that
T0 ⊆ T1 and T0 ⊆ T2, that T0 is universal and locally finite, that T1 is T0-positive-
universally compatible, and that T2 is T0-positive-existentially compatible. Then
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the decidability of the universal fragments of T1 and T2 entails the decidability
of the universal fragment of T1>

s
T0
T2.

To prove the theorem, let Γ = Γ0∪Γ1∪Γ2 be a finite set of ground flat literals
over the signature Ω of T1 >

s
T0
T2 (with additional free constants), where Γi

(i = 1, 2) is a set of literals in the signature Ωi (expanded with free constants),
and Γ0 is of the form

{h(a1) ≈ b1, . . . , h(an) ≈ bn},

for free constants a1, b1, . . . , an, bn. The following proposition, whose formu-
lation is identical to the formulation of Proposition 4.2, immediately entails
Theorem 6.8.

Proposition 6.9. The constraint Γ = Γ0 ∪ Γ1 ∪ Γ2 is satisfiable in T1>
s
T0
T2

iff there exists a triple (A,B, ν) such that
1. A is an Ω0-model of T0, which is generated by {aA1 , . . . , aAn };
2. B is an Ω0-model of T0, which is generated by {bB1 , . . . , bBn};
3. ν : A → B is an Ω0-homomorphism such that ν(aAj ) = bBj for j = 1, . . . , n;
4. Γ1 ∪∆Ω0(A) is satisfiable in T1;
5. Γ2 ∪∆Ω0(B) is satisfiable in T2.

Proof. The only-if direction is again simple. The proof of the if direction
requires now a back-and-forth argument. Suppose we are given A, B, ν as in
1.–5. of the proposition, and let N ′ be an Ω1-model of T1 satisfying Γ1∪∆Ω0(A),
and N ′′ be an Ω2-model of T2 satisfying Γ2 ∪∆Ω0(B). We can assume without
loss of generality that N ′,N ′′ are both at most countable, that N ′ is a model
of the positive-universal model completion of T0, and that N ′′ is a model of the
positive-existential model completion of T0. By Robinson’s diagram theorem,
N ′ has A as an Ω0-substructure, and N ′′ has B as an Ω0-substructure. Let us
enumerate the elements of N ′ as

c1, c3, . . . , c2k+1, . . .

and the elements of N ′′ as

d2, d4, . . . , d2k, . . .

(here we prefer, for uniformity, both lists to be infinite, so we may tolerate
repetitions in each list). We define an increasing sequence of sort-conforming
surjective mappings νk : Sk → Tk, such that:
• Sk is a finite subset of N ′ including all the elements from A as well as c2j+1,

for 2j + 1 ≤ k;
• Tk is a finite subset of N ′′ including all the elements from B as well as d2j ,

for 2j ≤ k;
• for all Ω0-atoms C(x) we have

N ′
|Ω0

|= C(a) implies N ′′
|Ω0

|= C(νk(a)) (12)

for every tuple a from Sk.
Once this is settled, N ′ and N ′′ together with the surjective homomorphism
ν∞ =

⋃
k≥n νk give, as usual, the desired model of T1>

s
T0
T2 satisfying Γ.
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We first take ν0 to be ν. To define νk (k > 0), we distinguish the case in
which k is even from the case in which k is odd. In the latter case, we proceed
as in the proof of Proposition 4.2. As to the former case, let b = d2k and let
a be a tuple collecting all the elements from Sk−1. We want to find a suitable
a ∈ N ′ in order to extend νk−1 by defining νk(a) := b. For this purpose, it
is sufficient to show that N ′ 6|= ∀y.φ(a, y), where φ(x, y) is the disjunction of
all atoms C(x, y) such that N ′′ 6|= C(νk−1(a), b). In fact, if N ′ 6|= ∀y.φ(a, y),
then there is a (sort-conforming) a ∈ N ′ such that N ′ |= ¬φ(a, a), and we
can set νk(a) := b. Assume that C is an atom such that N ′

|Ω0
|= C(a, a), but

N ′′
|Ω0

6|= C(νk(a, a)) = C(νk−1(a), b). However, this means that C(x, y) occurs as
a disjunct in φ(x, y), and thus N ′ |= ¬φ(a, a) implies that N ′ |= ¬C(a, a), which
is a contradiction to our assumption that N ′

|Ω0
|= C(a, a).

To show that N ′ 6|= ∀y.φ(a, y), we consider the positive-universal model com-
pletion T ∗0 of T0. In this theory, ∀y.φ(x, y) ↔ φ∗(x) is provable for some
co-geometric (and thus also geometric12) open formula φ∗(x). As usual, the
implication φ∗(x) → ∀y.φ(x, y) must already hold in T0 because T0 and its
positive-universal model completion T ∗0 entail the same open formulae, and
φ∗(x) → ∀y.φ(x, y) is equivalent to the open formula φ∗(x) → φ(x, y).

Since N ′ is a model of T ∗0 , and T ∗0 |= ∀y.φ(x, y) → φ∗(x), it is enough to
prove that N ′ 6|= φ∗(a). However, N ′′ 6|= ∀y.φ(νk−1(a), y), by the definition
of φ. Since N ′′ is a model of T0, and T0 |= φ∗(x) → ∀y.φ(x, y), this implies
N ′′ 6|= φ∗(νk−1(a)). Finally, the induction hypothesis on the validity of (12)
yields N ′ 6|= φ∗(a). a

The following example shows that there are natural theories T0 admitting both
a positive-existential and a positive-universal model completion.

Example 6.10. Consider the theory of join semilattices with a greatest ele-
ment. These are join semilattices as introduced in Example 4.6, but endowed
with a further element > such that x t > = > holds for all x. The positive-
existential model completion of this theory is axiomatized as in Example 4.6
above. In order to axiomatize the positive-universal model completion of this
theory, we need a theory that allows us to eliminate the universal quantifier from
formulae ∀y.φ(x, y) of the form

∀y. ((y v t1) ∨ · · · ∨ (y v tn) ∨ (u1 v s1 t y) ∨ · · · ∨ (um v sm t y)) , (13)

where ti, sj , uk are terms not involving y. Let φ∗(x) be the formula
n∨

i=1

(ti ≈ >) ∨
m∨

j=1

(uj v sj), (14)

and let T ∗0 be obtained from T0 by adding to it the universal closures of the
sentences φ ↔ φ∗. The theory T ∗0 is included in the theory BA∗ of atomless
Boolean algebras (recall that a Boolean algebra is said to be atomless iff it does
not have non-zero minimal elements): the axioms of T ∗0 are in fact provable in
BA∗, as it is evident from the quantifier elimination procedure for BA∗ (see,
e.g., [17]). Since every join semilattice with a greatest element embeds into an

12In the open case, geometric and co-geometric formulae trivially coincide.
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atomless Boolean algebra,13 this shows both that T ∗0 is the positive-universal
model completion of T0, and that the theory of Boolean algebras is positive-uni-
versally compatible with the theory of join semilattices with a greatest element.

Since the formulation of Proposition 6.9 coincides with the one of Proposi-
tion 4.2, we know that the universal fragments of T1 >

s
T0
T2 and T1 >T0 T2

coincide if the conditions of Theorem 6.8 are satisfied.

Corollary 6.11. Let T0, T1, and T2 be theories over the respective signatures
Ω0, Ω1, and Ω2, where Ω0 is a common subsignature of Ω1 and Ω2. Assume that
T0 ⊆ T1 and T0 ⊆ T2, that T0 is universal and locally finite, that T1 is T0-positive-
universally compatible, and that T2 is T0-positive-existentially compatible. Then
the universal fragments of T1>T0 T2 and T1>

s
T0
T2 coincide.

6.3. Isomorphisms as connection functions. Finally, let us consider the
problem of deciding the universal fragment of T1>

iso
T0
T2.

Theorem 6.12. Let T0, T1, and T2 be theories over the respective signatures
Ω0, Ω1, and Ω2, where Ω0 is a common subsignature of Ω1 and Ω2. Assume that
T0 ⊆ T1 and T0 ⊆ T2, that T0 is universal and locally finite, and that T1, T2 are
both T0-compatible. Then the decidability of the universal fragments of T1 and
T2 entails the decidability of the universal fragment of T1>

iso
T0
T2.

This theorem follows from the corresponding theorem for surjective connection
functions (Theorem 6.8) due to Proposition 6.3 and the following analogous
proposition for the positive-universal case.

Proposition 6.13. Let T be a universal Ω-theory, and T0 ⊆ T a theory over
the subsignature Ω0 of Ω.

1. T¬ has a positive-universal model completion iff T has a model completion.
2. T¬ is T¬0 -positive-universally compatible iff T is T0-compatible.

Both, the proof of this proposition and the proof of Theorem 6.12, are similar
to the corresponding proofs given in Section 6.1. Of course, Theorem 6.12 can
again be proved directly. As before, we consider a a finite set of ground flat
literals over the signature Ω of T1>

iso
T0
T2 (with additional free constants), which

is of the form Γ = Γ0 ∪ Γ1 ∪ Γ2, where Γi (i = 1, 2) is a set of literals in the
signature Ωi (expanded with free constants), and Γ0 is of the form

{h(a1) ≈ b1, . . . , h(an) ≈ bn},
for free constants a1, b1, . . . , an, bn. The following proposition, whose formu-
lation is identical to the formulation of Proposition 6.5, immediately entails
Theorem 6.12. The proposition itself is an easy consequence of the Proposi-
tions 6.9, 6.13, and 6.3.

Proposition 6.14. The constraint Γ = Γ0∪Γ1∪Γ2 is satisfiable in T1>
iso
T0
T2

iff there exists a triple (A,B, ν) such that

13One can embed a join semilattice with greatest element into a bounded distributive lattice
by taking the dual of the lattice of non-empty upward closed subsets; that bounded distributive

lattices embed into Boolean algebras, and that Boolean algebras embed into atomless Boolean

algebras are standard lattice-theoretic facts.
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1. A is an Ω0-model of T0, which is generated by {aA1 , . . . , aAn };
2. B is an Ω0-model of T0, which is generated by {bB1 , . . . , bBn};
3. ν : A → B is an Ω0-embedding such that ν(aAj ) = bBj for j = 1, . . . , n;
4. Γ1 ∪∆Ω0(A) is satisfiable in T1;
5. Γ2 ∪∆Ω0(B) is satisfiable in T2.

Since the formulation of Proposition 6.14 coincides with the one of Propo-
sition 6.5, we know that the universal fragments of T1 >

em
T0

T2 and T1 >
iso
T0

T2

coincide if the conditions of Theorem 6.12 are satisfied.

Corollary 6.15. Let T0, T1, and T2 be theories over the respective signatures
Ω0, Ω1, and Ω2, where Ω0 is a common subsignature of Ω1 and Ω2. Assume that
T0 ⊆ T1 and T0 ⊆ T2, that T0 is universal and locally finite, and that T1, T2

are T0-compatible. Then the universal fragment of T1>
em
T0
T2 coincides with the

universal fragment of T1>
iso
T0
T2.

It is easy to see that the problem of deciding the universal fragment of T1>
iso
T0

T2 is interreducable in polynomial time with the problem of deciding the universal
fragment of T1∪T2. Consequently, the proof of Theorem 6.12 yields an alternative
proof of the combination result in [16].

The main reason for this is that there is a close connection between models
of T1 ∪ T2 and T1 >

iso
T0

T2. In fact, if M is a model of T1 ∪ T2, then it can be
turned into a model (M1,M2, ν) of T1 >

iso
T0

T2 by taking as M1 the reduct of
M to Ω1, as M2 the reduct of M to Ω2, and as isomorphism ν the identity
mapping on the domain of the reduct of M to Ω0. Conversely, if (M1,M2, ν) is
a model of T1>

iso
T0
T2, then one can turn it into a model of T1 ∪ T2 by adapting

the well-known fusion construction [31] to the many-sorted case.
Now, given a conjunction Γ of (sort-conforming) literals to be tested for sat-

isfiability in T1 >
iso
T0

T2, we can simply remove the connection function h and
the superscripts introduced through the renaming done in the construction of
T1 >

iso
T0

T2, and test the resulting conjunction Γ′ of literals for satisfiability in
T1 ∪ T2. If M is a model of T1 ∪ T2 satisfying Γ′, then it is easy to see that
the corresponding model (M1,M2, ν) of T1 >

iso
T0

T2 satisfies Γ. Conversely, if
(M1,M2, ν) is a model of T1>

iso
T0
T2 satisfying Γ, then it is easy to see that the

modelM of T1∪T2 obtained from this model by applying the fusion construction
satisfies Γ′.

Conversely, given a conjunction Γ of ground flat literals to be tested for sat-
isfiability in T1 ∪ T2, we can partition Γ into Γ = Γ1 ∪ Γ2 where Γ1 is over the
signature Ω1 and Γ2 is over the signature Ω2. For every free constant c occur-
ring in Γ, we introduce two free constants c1 and c2. We replace c in Γ1 by c1

and c in Γ2 by c2, and also do the appropriate renamings of the shared function
and predicate symbols. In addition, we add the equation c2 ≈ h(c1) for each free
constant c occurring in Γ. Let Γ′ be the conjunction of literals over the signature
of T1 >

iso
T0
T2 obtained this way. Again, it is easy to see that Γ is satisfiable in

T1 ∪ T2 iff Γ′ is satisfiable in T1>
iso
T0
T2.

Corollary 6.16. Let T0, T1, and T2 be theories over the respective signatures
Ω0, Ω1, and Ω2, where Ω0 is a common subsignature of Ω1 and Ω2. Assume that
T0 ⊆ T1 and T0 ⊆ T2, that T0 is universal and locally finite, and that T1, T2 are
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both T0-compatible. Then the decidability of the universal fragments of T1 and
T2 entails the decidability of the universal fragment of T1 ∪ T2.

§7. The connection to E-connections. The purpose of this section is to
give a more detailed comparison between the notion of an E-connection, as in-
troduced in [20], and our notion of a connection of many-sorted theories.

First of all, note that [20] consider connections that are more general than ours,
in the sense that more complex modalities (n-ary modalities, inverse modalities,
Boolean combinations of modalities, counting modalities, etc.) can be used as
connection functions. Using such sophisticated modalities as connection function
is, currently, beyond the scope of our methods, but they will be the subject of
future research.

Here, we will content ourselves with examining the special case of plain unary
modalities as connection functions, which is the most basic case of an E-connection
considered in [20]. However, even with this restriction, there are still significant
differences between our approach and the approach in [20]. The main difference
is that, seen from the modal logic point of view, our approach for defining the
connection is syntactic (or algebraic), in the sense that we consider an equational
axiomatization of the logic. In contrast, in [20] the emphasis is on the model-
theoretic side, meaning that E-connections are defined at the semantic level as
enrichments of suitable Kripke-like structures. Because of this difference, it is
not a priori clear that our results specialize to decidability transfer results for E-
connections defined in the framework of [20] (even within the limitation to plain
unary modalities as connection functions). In this section, we show that this is
indeed the case (but this proof turns out to be not entirely trivial). To simplify
matters further, we will not consider abstract description systems in their full
generality (as used in [20] as the components of E-connections), but restrict our
considerations to normal modal logics and to standard uni-modal Kripke frames
(most of these further restrictions are, however, without loss of generality; they
are assumed just for the sake of simplicity of presentation).

Propositional modal formulae are built using the Boolean connectives and a
diamond operator 3. A Kripke frame is a pair F = (W,R), where W is a
non-empty set, the set of possible worlds, and R is a binary relation on W , the
transition relation. A Kripke model is a triple M = (W,R, V ), where (W,R) is
a Kripke frame and V is a map, called valuation, associating with each proposi-
tional letter a subset of W . The forcing relation w |=M α, which expresses that
the modal formula α is true in the Kripke model M at world w, is defined in
the standard way (see, e.g., [9]).

For a given class of Kripke frames C, the modal constraint problem for C is the
problem of deciding whether a finite set of modal formulae is satisfiable w.r.t. a
set of global constraints.14

14This is the kind of problem considered in [20], where satisfiability of an A-Box containing

many individual constants, with respect to a given T-Box, is taken into consideration. Notice
that, by contrast, relativized satisfiability as traditionally considered in modal logic concerns

local satisfiability of just one formula with respect to a global constraint formed by a finite set

of formulae, i.e., is is the special case of modal constraints for which m = 1.
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Definition 7.1. A modal constraint is a pair of finite sets of modal formulae,
written as α1, . . . , αn;β1, . . . , βm (n,m ≥ 0); we say that such a modal constraint
is satisfiable in a Kripke model M = (W,R, V ) iff there are worlds w1, . . . , wm ∈
W such that

1. w1 |=M β1, . . . , wm |=M βm;
2. for all v ∈W and for all i = 1, . . . , n, we have v |=M αi.

The modal constraint α1, . . . , αn;β1, . . . , βm is satisfiable in a class of Kripke
frames C iff it is satisfiable in some M = (W,R, V ), for (W,R) ∈ C.

Thus, the satisfiability of a modal constraint α1, . . . , αn;β1, . . . , βm means that
there is a model in which the βj are satisfied in some worlds wj , and in which
α1, . . . , αn hold globally, i.e., in every world.

In order to algebraize the above decision problem, let us introduce the signa-
ture BM : this is the single-sorted signature obtained by expanding the signature
of Boolean algebras by a new unary operator that we still call 3. Notice that
there is an obvious bijective correspondence in this way between modal formulae
and terms of the signature BM (thus, from now on, we identify modal formulae
and terms of the signature BM ). Also, a Kripke frame F = (W,R) can be con-
verted into a BM -structure called BF as follows: we take as underlying Boolean
algebra the powerset Boolean algebra P(W ) and interpret 3 as the function
associating with X ⊆W the subset of W given by

3(X) := {w2 ∈W | ∃w1 ∈W. (w2, w1) ∈ R ∧ w1 ∈ X}.
Valuations V of F correspond in an obvious way to assignments of variables to
elements of P(W ). It is easy to see that, for any modal formula θ, we have
w |=(W,R,V ) θ iff w belongs to the set obtained by evaluating the term θ in BF
under the assignment V .

With every class of Kripke frames C we associate the BM -theory TC whose
axioms are the formulae

(α1 ≈ >) ∧ · · · ∧ (αn ≈ >) → (β1 ≈ ⊥) ∨ · · · ∨ (βm ≈ ⊥), (15)

where α1, . . . , αn;β1, . . . , βm are the modal constraints that are not satisfiable
in C. If F is a Kripke frame in C, then the corresponding BM -structure BF is a
model of TC .

Proposition 7.2. The problem of deciding satisfiability of modal constraints
in C is equivalent to the problem of deciding the universal fragment of the theory
TC.

Proof. First, notice that a modal constraint

α1, . . . , αn;β1, . . . , βm (16)

is unsatisfiable in C iff the formula (15) is a logical consequence of TC . In fact,
if (16) is unsatisfiable in C, then (15) is an axiom of TC . Conversely, if (16) is
satisfiable in a frame F = (W,R) ∈ C, then (15) cannot be a logical consequence
of TC , because it it is easy to see that it is then false in the BM -structure BF .

Given that, it is sufficient to observe that identities in TC are all equivalent15

to identities of the kind α ≈ > as well as to identities of the kind β ≈ ⊥.

15Use Boolean bi-implication and complement to show this.
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Thus an arbitrary open formula in the signature BM is in fact a conjunction
of formulae of the kind (15). Together with what we have shown about the
connection between such formulae and modal constraints, this implies the claim
of the proposition. a

Let us now show that this correspondence

C 7−→ TC

is compatible with building connections, where on the left-hand side the con-
nections are the E-connections as introduced in [20], and on the right-hand side
the connections are the connections of many-sorted theories as introduced in the
present paper. To show this, we need to recall the definition of an E-connection
(in the present simplified case of classes of Kripke frames).

For E-connections, we use two-sorted propositional modal formulae. The for-
mulae of sort 1 are just the standard propositional modal formulae (where, how-
ever, the modal operator 3 is renamed to 31); the formulae of sort 2 are built
from propositional variables16 of sort 2 and formulae of the form 3Eφ where φ is
a formula of sort 1, by applying the Boolean connectives and the modal operator
32.

From the semantic side, suppose we are given two classes C1, C2 of Kripke
frames. The class of connection frames E(C1, C2) is formed by all triples F =
(F1, E

F ,F2) such that F1 = (W1, R1) ∈ C1, F2 = (W2, R2) ∈ C2 and EF ⊆
W2 ×W1 is an arbitrary binary relation.

An E(C1, C2)-connection Kripke model is a 4-tuple M = (F1, E
F ,F2, V ),

where F = (F1, E
F ,F2) ∈ E(C1, C2) is a connection frame and V is a map

associating with propositional letters of sort i subsets of Wi (i = 1, 2). The
forcing relation w |=M α, which says that the modal formula α is true in M at
world w, is defined in the standard way (see [20]), where the only non-obvious
case is the following: for w2 ∈W2 and for a formula α of sort 1, we have:

w2 |=M 3Eα iff (∃w1 ∈W1. (w2, w1) ∈ EF and w1 |=M α).

Now, E(C1, C2)-satisfiability of a modal constraint α1, . . . , αn;β1, . . . , βm is de-
fined as above (but notice that the αi and the βj may be formulae of sort 1 or
2, indifferently).

When connecting the theories corresponding to two frame classes, we build the
two-sorted signature B2

M : this consists of two renamed copies of the signature
BM and, in addition, of the new unary function symbol 3E of arity S1S2 (where
S1, S2 are the single sorts of the renamed copies of BM ). Again, terms in the
signature B2

M can be identified with the two-sorted modal formulae introduced
above; moreover any connection frame F = (F1, E

F ,F2) can be turned into a
B2

M -structure (which we still call BF ) by interpreting the two sorts by power-
set Boolean algebras, as described above, and by defining 3E as the function
associating with X ⊆W1 the subset of W2 given by

3E(X) := {w2 ∈W2 | ∃w1 ∈W. (w2, w1) ∈ EF ∧ w1 ∈ X}.

16Propositional variables of sort 1 are kept disjoint from propositional variables of sort 2.
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We can then build the theory TE(C1,C2), whose axioms are the formulae

(α1 ≈ >) ∧ · · · ∧ (αn ≈ >) → (β1 ≈ ⊥) ∨ · · · ∨ (βm ≈ ⊥), (17)

where α1, . . . , αn;β1, . . . , βm are the modal constraints that are not satisfiable in
E(C1, C2). As in the proof of Proposition 7.2, it can be shown that the problem
of deciding satisfiability of modal constraints in E(C1, C2) is equivalent to the
problem of deciding the universal fragment of the theory TE(C1,C2).

The following proposition states a precise relationship between E-connections
and our connections of many-sorted theories.

Proposition 7.3. Let C1, C2 be classes of Kripke frames; TE(C1,C2) coincides
with TC1>T0 TC2 , where T0 is the theory of semilattices.17

Proof. Both theories TE(C1,C2) and TC1 >T0 TC2 are universal and relative to
the same signature B2

M , so it is sufficient to show that a finite set of literals is
satisfiable in a model of one of them iff it is satisfiable in a model of the other.
First, note that a finite set of literals is satisfied in a model of TE(C1,C2) iff it
is satisfied in a model of the form BF , where F = (F1, E

F ,F2) is such that
F1 ∈ C1 and F2 ∈ C2. This can be shown by basically repeating the arguments
used in the proof of Proposition 7.2: every universal B2

M -formula is equivalent
to conjunction of formulae of the kind (15), and (15) is a logical consequence of
the theory TE(C1,C2) iff the modal constraint (16) is unsatisfiable in frames of the
kind F = (F1, E

F ,F2) (for F1 ∈ C1 and F2 ∈ C2), i.e., iff (15) is true in models
of the kind BF , where F = (F1, E

F ,F2) is such that F1 ∈ C1 and F2 ∈ C2.
Clearly, models of the form BF for a connection frame F = (F1, E

F ,F2) are
models of TC1 >T0 TC2 . However, the converse is far from being true: in fact,
models of TC1>T0 TC2 may interpret the two sorts S1 and S2 by Boolean algebras
that are not powerset Boolean algebras. Moreover, in models of TC1>T0 TC2 , the
connecting diamond 3E is taken to be any semilattice homomorphism and, as
such, it need not preserve infinitary joins (as is the case, on the contrary, for the
interpretation of 3E in all models of the kind BF ).

Thus, the key point of the proof is to show that any finite set of B2
M -literals Γ

satisfiable in a model of TC1>T0 TC2 , is also satisfiable in a model of the form BF ,
where F = (F1, E

F ,F2) is a connection frame such that F1 ∈ C1 and F2 ∈ C2.
We can, as usual, replace variables with constants and assume Γ to be flat,

so that we can divide Γ into three disjoint sets Γ = Γ0 ∪ Γ1 ∪ Γ2, where Γi

(i = 1, 2) is a set of literals in the i-th copy of the signature BM (expanded with
free constants), and Γ0 is of the form

Γ0 = {3E(a1) ≈ b1, . . . ,3E(an) ≈ bn}
for free constants a1, b1, . . . , an, bn.

This observation is not sufficient yet: we need to modify Γ0 ∪ Γ1 ∪ Γ2 further.
Let Θ be the set of terms of the form

±a1 u · · · u ±an,

where +ai is ai and −ai is ai. Notice that the equations

ai ≈
⊔
{θ | θ ∈ Θ, θ v ai}

17See Example 2.2.
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are logical consequence of the Boolean algebra axioms, and hence are always
valid in our models (here θ v ai means that ai (and not ai) appears as conjunct
in θ).

Let Γ̃1 be any set of B1
M -literals obtained from Γ1 by adding either θ ≈ ⊥ or

θ 6≈ ⊥ for every θ ∈ Θ. For any θ ∈ Θ, introduce a new constant cθ and replace
Γ0 with

Γ̃0 := {3E(θ) ≈ cθ | θ ∈ Θ}.
Finally, let

Γ̃2(Γ̃1) := Γ2 ∪ {cθ ≈ ⊥ | θ ≈ ⊥ ∈ Γ̃1} ∪ {(
⊔

θvai

cθ) ≈ bi | i = 1, . . . , n}.

It is easily seen that Γ0 ∪ Γ1 ∪ Γ2 is satisfiable in a model of TC1 >T0 TC2 iff
there is a Γ̃1 such that Γ̃0 ∪ Γ̃1 ∪ Γ̃2(Γ̃1) is satisfiable in a model of TC1>T0 TC2 .
The same observation applies to satisfiability in models of TE(C1,C2). So, let us fix
a set Γ̃0∪ Γ̃1∪ Γ̃2(Γ̃1), and assume that it is satisfiable in a model of TC1>T0 TC2 .
We must show that it is satisfiable in a model of TE(C1,C2).

Now, if Γ̃0 ∪ Γ̃1 ∪ Γ̃2(Γ̃1) is satisfiable in a model of TC1 >T0 TC2 , then Γ̃1 is
satisfiable in a model of TC1 and Γ̃2(Γ̃1) is satisfiable in a model of TC2 . By
the definition of TCi , it follows that Γ̃i must be satisfiable in a model of the
form BFi , where Fi = (Wi, Ri) ∈ Ci (i = 1, 2). So we simply need to define
the interpretation EF of the connecting relation E in such a way that also Γ̃0

is satisfied in F = (F1, E
F ,F2). This is done as follows: pick s1 ∈ W1 and

s2 ∈ W2; we say that (s2, s1) ∈ EF iff s2 ∈ c
BF2
θ ,18 where θ is the unique

element19 of Θ such that s1 ∈ θBF1 . This implies that, for every θ ∈ Θ, we
have 3

BF
E (θBF1 ) ⊆ c

BF2
θ . For the converse inclusion, suppose that s2 ∈ c

BF2
θ .

Then BF2 6|= cθ ≈ ⊥. By the definition of Γ̃2(Γ̃1) and by the fact that either
θ ≈ ⊥ ∈ Γ̃1 or θ 6≈ ⊥ ∈ Γ̃1, we have that BF1 6|= θ ≈ ⊥. This means that
there is some s1 ∈ θBF1 ; for such s1 we have that (s2, s1) ∈ EF , i.e. that
s2 ∈ 3

BF
E (θBF1 ). a

The above proposition, together with our main combination result (Theorem
4.1), and the fact that Boolean-based theories are positive-existentially compati-
ble with respect to the theory of semilattices (Example 4.6), immediately entails
the following result:

Corollary 7.4. Let C1 and C2 be classes of modal frames. If the modal con-
straint problems for C1 and C2 are both decidable, then so is the modal constraint
problem for E(C1, C2).

This decidability transfer result can be proved directly by an argument similar
to the one we used to prove Proposition 7.3. Notice, however, that Theorem 4.1
gives in fact more, as it applies to any Boolean-based theory, i.e., also to theories
that are not of the kind TC for a class C of Kripke frames.

18We use tBF2 to denote the interpretation of the ground term t in the structure BF2 (and

similarly for F1).
19By the definition of Θ, different elements of Θ are interpreted by disjoint sets in F1, and

the union of the interpretations of all elements of Θ in F1 is W1.
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Let us now turn to E-connections that correspond to connections of theories
where more than the theory of semilattices is shared. The frame classes Ed(C1, C2)
and Ef (C1, C2) are defined similarly to E(C1, C2): the only difference is that now
the connecting relation E is respectively taken to be a partial function and a
function. For such deterministic or functional connections, we can show results
that are analogous to Proposition 7.3.

Proposition 7.5. Let C1 and C2 be classes of modal frames.
1. TEd(C1,C2) coincides with TC1 >T0 TC2 , where T0 is the theory of distributive

lattices with a least element.
2. TEf (C1,C2) coincides with TC1 >T0 TC2 , where T0 is the theory of bounded

distributive lattices.

Proof. Only slight modifications to the proof of Proposition 7.3 are needed.
When building Γ̃2(Γ̃1), we add also the atoms cθ1 u cθ2 ≈ ⊥, for θ1 6= θ2. In the
case of a functional connection, we additionally add > ≈

⊔
θ∈Θ cθ.

To define EF , we now proceed as follows: first, the definition domain of the
partial function EF is (

⊔
θ∈Θ cθ)

BF2 . Now notice that any s2 in this definition

domain belongs to exactly one cBF2
θ ; moreover, if s2 ∈ c

BF2
θ , then BF2 |= cθ 6≈ ⊥

and thus BF1 |= θ 6≈ ⊥. Select just one s1 ∈ θBF1 and let EF (s2) := s1. This
definition of EF guarantees that BF |= 3Eθ ≈ cθ again holds for all θ ∈ Θ. In
addition, in the case of a functional connection, the presence of > ≈

⊔
θ∈Θ cθ

in Γ̃2(Γ̃1) enforces that the definition domain of the partial function EF is the
whole domain. a

Given the positive-existential compatibility of any Boolean-based theory with
respect to the theory of distributive lattices with a least element and with respect
to the theory of bounded distributive lattices (see Examples 4.7 and 4.8), we thus
obtain the following decidability transfer results:

Corollary 7.6. Let C1 and C2 be classes of modal frames. If the modal con-
straint problems for C1 and C2 are both decidable, then so are the modal constraint
problems for Ed(C1, C2) and Ef (C1, C2).

§8. The theory of theory completions. In this section we develop some
model theory concerning the notions of completions of a theories introduced
above. The results of this section give further insights into the properties of
these important ingredients of our combination approach, though they are not
really needed in order to understand and justify our combination procedures.
We shall recall well-known classical results for model completions, and show
how they can be adapted to the case of positive-existential model completions
and positive-universal model completions.

Let us call a model M of a theory T :
• positive-existentially closed iff every sentence of the kind ∃x.(α1(a, x)∧· · ·∧
αn(a, x)), where a are parameters from M and the αi(y, x) are atoms, that
is satisfied in some N ⊇M with N |= T is satisfied in M itself;

• positive-universally closed iff every sentence of the kind ∃x.(¬α1(a, x)∧· · ·∧
¬αn(a, x)), where a are parameters fromM and the αi(y, x) are atoms, that
is satisfied in some N ⊇M with N |= T is satisfied in M itself;
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• existentially closed iff every sentence of the kind ∃x.(α1(a, x)∧· · ·∧αn(a, x)),
where a are parameters fromM and the αi(y, x) are literals, that is satisfied
in some N ⊇M with N |= T is satisfied in M itself.

The following lemma is taken from [18, 11]:

Lemma 8.1. If T is universal, then every model M of T embeds into an ex-
istentially closed (and thus also positive-existentially closed and positive-univer-
sally closed) model of T .

Proof. Take a well-order {φi}i<α of the existential sentences with parameters
from M. Define a first chain {Mi}i<α of models of T , by letting Mi to be an
extension of

⋃
j<iMj in which φi is true (if this extension does not exists, Mi

is just
⋃

j<iMj). Now let M1 be
⋃

j<αMj ; repeating the construction,20 we
produce a countable chain M ⊆ M1 ⊆ M2 ⊆ · · · . The union of this chain is
the desired existentially closed extension of M (notice that this argument works
because T is preserved under union of chains, being universal). a

Proposition 8.2. Suppose that T has a (positive-existential, positive-univer-
sal) model completion T ∗. Then the models of T ∗ are precisely those models of
T that are existentially (positive-existentially, positive-universally) closed.

Proof. We give the proof just for the case of the positive-existential model
completion T ∗. (The proof for the case of the positive-universal model comple-
tion is analogous, and the one for the model completion can be found in [11].)

First, assume that M |= T ∗. We must show that M is a positive-existentially
closed model of T . Since T ⊆ T ∗ by the definition of a positive-existential model
completion, M |= T . To show that M is positive-existentially closed, assume
that N ⊇M is an extension of M that is also a model of T , and that N |= φ(a),
where φ(a) is of the form ∃x.(α1(a, x) ∧ · · · ∧ αn(a, x)) for parameters a from
M and atoms αi(y, x). We must show that φ(a) is also true in M. Obviously,
φ is a geometric formula, and thus Definition 3.2 and Lemma 3.3 imply that
there is the corresponding geometric open formula φ∗ with T |= φ → φ∗ and
T ∗ |= φ∗ → φ. Consequently, we have N |= φ∗(a) and also M |= φ∗(a) (because
N ⊇M and φ∗ is open). Since M is a model of T ∗, this implies that M |= φ(a).

Conversely, suppose that M is a positive-existentially closed model of T . We
must show that it is also a model of the geometric theory T ∗. Let φ(a) be a
geometric sentence with parameters in M such that M |= φ∗(a), where φ∗ is
the geometric open formula corresponding to φ. By 2. of Definition 3.2, M can
be embedded into a model N of T ∗. Since φ∗ is open, M |= φ∗(a) implies N |=
φ∗(a), and thus T ∗ |= φ∗ → φ yields N |= φ(a). Since the geometric formula φ(a)
is obviously equivalent to a disjunction of existentially quantified conjunctions
of atoms, the fact that M is positive-existentially closed yields M |= φ(a). Thus
M |= φ↔ φ∗ holds for all geometric formulae φ (the implication φ→ φ∗ being
already a logical consequence of T ). It is now easy to show that M |= T ∗. Let
φ1 → φ2 be a geometric sequent in the axiomatization of T ∗. We have that
M |= φ1 → φ2 iff M |= φ∗1 → φ∗2, and T ∗ |= φ1 → φ2 implies T ∗ |= φ∗1 → φ∗2.

20The construction needs to be repeated, in order to take care of existential formulae with
parameters from |M1| \ |M|.
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Since T and T ∗ agree on open formulae (see 1. and 2. of Definition 3.2 and
Lemma 3.1), T ∗ |= φ∗1 → φ∗2 thus yields T |= φ∗1 → φ∗2. Hence, M |= T
implies M |= φ∗1 → φ∗2, and this in turn implies M |= φ1 → φ2. Thus, we have
shown that M satisfies every geometric sequent in the axiomatization of T ∗, i.e.,
M |= T ∗. a

Notice that Proposition 8.2 implies that T ∗, when it exists, is unique. Clearly,
not all universal theories T have a positive-existential model completion or a
model completion: there is no general guarantee, for instance, that the class of
positive-existentially (existentially) closed models of T is elementary (i.e., that
it is the class of models of some first order theory). In the next two subsec-
tions we consider conditions for the existence of model completions and positive-
existential model completions, respectively.

8.1. Model completions. A classical result from model theory says that a
universal theory T has a model completion iff T has the amalgamation property
and the class of the existentially closed models of T is an elementary class (see,
e.g., [11]).

We say that a theory T has the amalgamation property (AP for short) iff for
every triple M,N1,N2 of models of T , for every pair of embeddings µ1 : M→
N1 and µ2 : M → N2, there are a further model N of T , and embeddings
ν1 : N1 → N and ν2 : N2 → N such that the square

N2 N--
ν2

M N1
-- µ1

?

?

µ2

?

?

ν1

commutes, i.e., ν1 ◦ µ1 = ν2 ◦ µ2.

Theorem 8.3. The universal theory T has a model completion iff it has AP
and the class of existentially closed models of T is elementary.

Though not explicitly formulated as a result there, this theorem easily follows
from the results in [11]. In addition, due to the connection between model
completions and positive-existential model completions shown in Proposition 6.3,
and the obvious connection between AP and and the injection transfer property
IT introduced in the next subsection, it is also a consequence of Theorem 8.6
below.

We conclude this subsection with a proof of the fact that the definition of a
model completion given in Definition 6.1 above agrees with the standard def-
inition used in most textbooks and also in [16, 4, 5].21 Though this result is
known,22 we include its proof for the sake of completeness.

21The alternative definition suggested by Proposition 8.4 is in general preferable because it
conveniently applies also to theories which might not be universal. We adopted Definition 6.1
in the present article since it makes the connection between model completion and positive-

existential model completion (see Definition 3.2) clearer.
22It follows from the information reported in textbooks on model theory, though we could

not find an explicit statement of the result in a standard textbook; explicit proofs can, e.g., be
found in Appendix B of [15] and in [17].
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We say that a theory T ∗ admits quantifier elimination if it satisfies 3. of
Definition 6.1, i.e., for every formula φ(x) there is an open formula φ∗(x) such
that T ∗ |= φ↔ φ∗.

Proposition 8.4. Let T be a universal Ω-theory and let T ∗ be a further Ω-
theory extending T . We have that T ∗ is a model completion of T iff the following
two conditions are satisfied:

1. every model of T embeds into a model of T ∗;
2. for every Ω-structure A that is a model of T , we have that T ∗ ∪ ∆(A)

is a complete Ω|A|-theory, i.e., for every Ω|A|-sentence φ, either φ or its
negation follows from T ∗ ∪∆(A).

Proof. First, assume that T ∗ is a model completion of T . It is enough to
show that, for every model A of T , the theory T ∗ ∪ ∆(A) is complete. Thus,
let φ(a) be an Ω|A|-sentence. Since T ∗ admits quantifier elimination, there is
an open formula φ∗ such that T ∗ |= φ ↔ φ∗. We have either A |= φ∗(a) or
A |= ¬φ∗(a). We show that in the former case T ∗ ∪ ∆(A) |= φ(a) and in the
latter T ∗∪∆(A) |= ¬φ(a). We restrict the attention to the former case since the
latter can be treated analogously. Thus, assume that A |= φ∗(a), and let M be
a model of T ∗ ∪∆(A). We must show that M |= φ(a). By Robinson’s diagram
theorem, we can assume without loss of generality that M is a superstructure
of A. Since φ∗(a) is open, A |= φ∗(a) thus implies M |= φ∗(a), and since M is
a model of T ∗, this in turn implies M |= φ(a).

To prove the other direction, suppose that T ∗∪∆(A) is a complete Σ|A|-theory
for every model A of T ∗. We must show that T ∗ admits quantifier elimination.
Thus, let φ(x) be an arbitrary formula. For new constants a consider the set of
sentences

Θ := T ∗ ∪ {φ(a)} ∪ {¬ψ(a) |ψ is open and T ∗ |= ψ(a) → φ(a)}.

If Θ is inconsistent, then we have T ∗ |= φ(a) → ψ1(a) ∨ · · · ∨ ψn(a) for open
formulae ψ1, . . . , ψn implying φ. Consequently, we have

T ∗ |= φ(x) ↔ ψ1(x) ∨ · · · ∨ ψn(x),

which shows that T ∗ admits quantifier elimination.
Thus, it suffices to show that Θ cannot be consistent. Suppose to the contrary

that Θ has a model, say M, and let A be the substructure of M generated by
the a. Thus, M is a model of T ∗ ∪∆(A) (by Robinson’s diagram theorem) that
satisfies φ(a). Since T ∗ ∪∆(A) is complete, this implies

T ∗ ∪∆(A) |= φ(a).

By compactness, this means that, for some quantifier-free sentence ψ(a) true in
A, we have that T ∗ |= ψ(a) → φ(a). According to the definition of Θ, ¬ψ(a)
is true in M, and thus also in its substructure A (because it is quantifier-free),
which yields the desired contradiction. a

8.2. Positive-existential model completions. We are looking for a result
analogous to Theorem 8.3, but for the case of positive-existential model comple-
tions. To this aim, we need to identify the semantic properties playing the rôle
of amalgamation in this context.
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We say that a theory T has the injection-transfer property (IT for short) iff
for every triple M,N1,N2 of models of T , for every homomorphism µ : M→N2

and for every embedding ι : M → N1, there are a further model N of T , an
embedding ι′ : N2 → N and a homomorphism µ′ : N1 → N such that the square

N2 N--
ι′

M N1
-- ι

?

µ

?

µ′

commutes.

Proposition 8.5. If the universal Ω-theory T has a positive-existential model
completion T ∗, then T has IT .

Proof. Let µ : M → N2 be a homomorphism and let ι : M → N1 be
an embedding, where M,N1,N2 are models of T . By 2. of Definition 3.2, we
can freely suppose that N2 is a model of T ∗. By Robinson’s diagram theorem,
it is sufficient to show the consistency of T ∪ ∆+(N1) ∪ ∆(N2). Suppose this
set is not consistent. By compactness, there are θ1(m,n1), θ2(m,n2) such that
T ∪ {θ1(m,n1), θ2(m,n2)} is inconsistent, where
• m are parameters from M;
• n1, n2 are parameters from N1,N2 (not belonging to the image of ι, µ,

respectively);
• θ1(m,n1) is a conjunction of ground atoms true in N1;
• θ2(m,n2) is a conjunction of ground literals true in N2.

Let φ(m) be ∃y.θ1(m, y), and let φ∗ be a geometric open formula such that T ∗ |=
φ ↔ φ∗. We have N1 |= φ∗(m) since φ → φ∗ is already a logical consequence
of T (see Lemma 3.1). Since φ∗(m) is geometric and open, and thus preserved
under sub- and superstructures, we obtain that it is also true in M and in N2.
Since the latter is a model of T ∗, this implies N2 |= φ(m). Consequently, N2 is a
model of T ∪ {φ(m), θ2(m,n2)}. Since the parameters n1 have no fixed meaning
in N2, this implies that T ∪ {θ1(m,n1), θ2(m,n2)} is satisfiable in N2, which
contradicts our assumption that this set is inconsistent. a

Propositions 8.2 and 8.5 can be inverted, in the following sense:

Theorem 8.6. The universal theory T has a positive-existential model com-
pletion iff it has IT and the class of positive-existentially closed models of T is
elementary.

Proof. The direction from left to right is covered by Proposition 8.2 and
Proposition 8.5.

Suppose now that T has IT and that there is a first-order theory T ′ (in
principle, not necessarily a geometric one) such that the models of T ′ are exactly
the positive-existentially closed models of T . Let φ(x) be a geometric formula
and let a be free constants. Define Γ as the set of geometric, open, and ground
formulae in the signature Ωa (where Ω is the signature of T ) that are logical
consequences of T ′ ∪ {φ(a)}.
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We first claim that Γ∪T ′ |= φ(a). To show this, consider an arbitrary modelM
of Γ∪T ′. Let ∆−(a) be the set of negative ground Ωa-literals that are true in M.
The set T ′ ∪∆−(a)∪ {φ(a)} is consistent. In fact, otherwise compactness yields
finitely many elements ¬α1, . . . ,¬αn of ∆−(a) such that T ′ ∪{¬α1, . . . ,¬αn}∪
{φ(a)} is inconsistent, i.e., T ′ ∪ {φ(a)} |= α1 ∨ . . . ∨ αn. Since α1 ∨ . . . ∨ αn

is geometric, open, and ground, it belongs to Γ, and thus M |= α1 ∨ . . . ∨ αn,
which contradicts the fact that ¬α1, . . . ,¬αn are true in M. Hence, the set
T ′ ∪ ∆−(a) ∪ {φ(a)} has a model, say N . Let A be the substructure of N
generated by the a. Notice that A is a model of T ⊆ T ′ because T is universal.
In addition, there is a homomorphism from A into M since M satisfies the
positive diagram of A. In fact, assume that α(a) is an atom in the positive
diagram of A, but M 6|= α(a). Then M |= ¬α(a), and thus ¬α(a) ∈ ∆−(a),
which implies that N |= ¬α(a). Since ¬α(a) is open, this yields A |= ¬α(a),
which contradicts our assumption that α(a) belongs to the positive diagram of
A. By applying IT , we obtain the following commutative square:

M N ′--

A N--

?

µ

?

µ′

From N |= φ(a), we get N ′ |= φ(a) (since φ is geometric), and finally M |=
φ(a) because M is positive-existentially closed (since it is a model of T ′). This
completes the proof of the claim that Γ ∪ T ′ |= φ(a).

From the claim and compactness, we obtain that, for every geometric formula
φ, there is a geometric open formula φ∗ such that

T ′ |= φ→ φ∗ and T ′ |= φ∗ → φ.

Let T ∗ be the extension of T axiomatized by the universal closure of the geo-
metric sequents φ → φ∗ and φ∗ → φ. Thus, we have T ⊆ T ∗ ⊆ T ′ and T ∗

is a geometric theory. As every model of T embeds into a model of T ′ by
Lemma 8.1, condition 2. of Definition 3.2 is satisfied for T ∗. Since condition 3.
of Definition 3.2 comes directly from the construction, T ∗ is a positive-existential
model completion of T . a

8.3. Positive-universal model completions. In this case, we need a prop-
erty that is, in a sense, dual to IT . Note that IT says that a partial homomor-
phism (i.e., one from a substructure M of N1 to N2) can be extended in the
co-domain (by extending N2 to N ) so that it becomes totally defined in the
domain (i.e, in N1). Now we require that a partial homomorphism can be ex-
tended in the domain so that it becomes totally “defined” (namely surjective)
in the co-domain. In order to formalize this intuition, let us introduce partial
homomorphisms formally.

A partial homomorphism from A to B is a pair (m,h) given by an embedding
m : A′ → A and a homomorphism h : A′ → B (usually, m is an inclusion, so
that a partial homomorphism is a homomorphism from a substructure of A into
B). If such a partial homomorphism is given, A′ is said to be the domain of
(m,h) and B the co-domain of (m,h). A partial homomorphism (m,h) is total
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iff m is the identity map. We say that (m,h) is a partial homomorphism among
models of T if the structures A,B,A′ are models of T .

An extension of a partial homomorphism (m,h) to the partial homomorphism
(m̃, h̃) is a triple ι1, ι2, ι3 of embeddings such that the two squares in the diagram
on the left-hand side of Fig. 1 commute. In case ι1 is the identity map, (m̃, h̃)
is said to be a co-domain extension of (m,h) and in case ι3 is the identity map,
(m̃, h̃) is said to be a domain extension of (m,h).

A′ Ã′--
ι2

A Ã-- ι1

6

6

m
6

6

m̃

B B̃--
ι3

-

?
h

?
h̃

A′ Ã′--
n1

A Ã-- n2

6

6

m
6

6

m̃

-

B
h@@R h̃�

�	
��	

Figure 1. Extensions of partial homomorphisms and the SL property.

We say that the universal Ω-theory T has the surjection lifting property (SL
for short) iff any partial homomorphism among models of T can be extended in
the domain so that it becomes surjective in the co-domain, i.e., the property SL
means that, for every partial homomorphism (m,h) among models of T , there
are embeddings m̃, n1, n2 into models of T and a surjective homomorphism h̃
such that the diagrams of models of T and Ω-homomorphisms shown on the
right-hand side of Fig. 1 commute.

Using this definition, we can prove results for the positive-universal case that
are analogous to the ones for the positive-existential case.

Proposition 8.7. If the universal Ω-theory T has a positive-universal model
completion T ∗, then T has SL.

Proof. Let (m,h) be a partial homomorphism with m : A′ → A and h :
A′ → B, where we assume without loss of generality that m is a substructure
inclusion mapping. Given the statement we want to prove, we can freely suppose
that A is a model of T ∗. Define ∆−(B) to consist of the negative ground literals
¬α(a′, b) satisfying the following three conditions:
• a′ are parameters from |A′|,
• b are parameters from |B| \ h(|A′|),
• α(h(a′), b) is false in B.

It is sufficient to show that

Θ := T ∪∆(A) ∪∆−(B)

is consistent. In fact, if this set of (Ω∪|A|∪(|B|\h(|A′|)))-sentences is consistent,
we can easily get the commutative diagrams shown on the right-hand side of
Fig. 1 by taking Ã to be a model of Θ, and Ã′ to be the Ω-substructure of Ã
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generated by |A′| ∪ (|B| \ h(|A′|). By Robinson’s diagram theorem, A can be
embedded into Ã, which yields the embedding n2. In addition, Ã′ is defined
as a substructure of Ã, which yields the embedding m̃. Since Ã satisfies the
diagram of A, it also satisfies the diagram of the substructure A′ of A, and since
Ã′ has the elements of |A′| as generators, it satisfies this diagram as well. This
yields the embedding n1 from A′ into Ã′. To define h̃, we define the images of
the generators of Ã′ as follows: the elements a′ of |A′| are mapped onto h(a′),
and the elements b of |B| \ h(|A′|) onto b. Obviously, already this mapping of
the generators into |B| is surjective. To see that this mapping can be extended
to a well-defined homomorphism from Ã′ to B, it is enough to show that, for
any atom α(a′, b) (where a′ are parameters from |A′| and b are parameters from
|B| \ h(|A′|)) that is true in Ã′, the atom α(h(a′), b) is true in B. This is an
immediate consequence of the fact that Ã′ satisfies ∆−(B).

It remains to show that Θ is consistent. Thus, assume that Θ is not consis-
tent. Then there are open geometric sentences ψ(a′, a), φ(a′, b), where a′ are
parameters from |A′|, a are parameters from |A| \ |A′|, and b are parameters
from |B| \ h(|A′|) such that
• ψ(a′, a) is true in A,
• φ(h(a′), b) is false in B; and
• T ∪ {ψ(a′, a)} |= φ(a′, b).

Since A is a model of T ∪ {ψ(a′, a)}, we obtain A |= φ(a′, b), and since the
components of b are free parameters for A, this yields A |= ∀y.φ(a′, y). Since T ∗

is the positive-universal model completion of T , there is an open co-geometric
(and thus geometric) formula φ∗ such that T ∗ |= φ∗(x) ↔ ∀y.φ(x, y). Since
A is a model of T ∗, we can infer that φ∗(a′) is true in A, and thus also in its
substructure A′ (since φ∗ is open). Since φ∗ is geometric, it is preserved under
homomorphisms, and thus φ∗(h(a′)) is true in B. This is contradictory to the
following three facts: (i) T |= φ∗(x) → φ(x, y) (which holds by the dual version
of Lemma 3.3); (ii) B 6|= φ(h(a′), b); and (iii) B |= T . a

Theorem 8.8. The universal theory T has a positive-universal model com-
pletion iff it has SL and the class of positive-universally closed models of T is
elementary.

Proof. The direction from left to right is covered by Proposition 8.2 and
Proposition 8.7.

Suppose that T has SL and that the class of positive-universally closed models
of T is elementary, i.e., it is the class of models of a certain first-order theory
T ′ ⊇ T . Let φ(x, y) be a given open geometric (and thus also co-geometric)
formula, take free constants a, and let

Γ := {¬ψ(a) | ψ(a) geometric and open s.t. T ′ |= ψ(a) → ∀y.φ(a, y)}.

Following a strategy similar to the one employed in the proof of Theorem 8.6,
we claim that T ′ ∪ Γ |= ∃y.¬φ(a, y). To show this, consider an arbitrary model
A of T ′ ∪ Γ. We must show that A |= ∃y.¬φ(a, y). Since, as a model of T ′, A is
positive-universally closed, it is sufficient to embed A into some model Ã of T
such that Ã |= ∃y.¬φ(a, y). Let A′ be the substructure of A generated by aA,
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i.e., the interpretation of the components of a in A. The set

T ′ ∪ {∃y.¬φ(a, y)} ∪∆+(A′)

is consistent since A′ is a model of Γ, and consequently it has a model B. By
Robinson’s diagram theorem, there is a homomorphism h : A′ → B and by the
SL property we can fill the diagram on the right-hand side of Fig. 1, where we
can assume without loss of generality that the embeddings m, m̃, n1, n2 in this
diagram are in fact inclusions. Since B |= ∃y.¬φ(a, y) and since h̃ is surjective,
we get Ã′ |= ∃y.¬φ(a, y), and finally Ã |= ∃y.¬φ(a, y), as desired. This completes
the proof of the claim that T ′ ∪ Γ |= ∃y.¬φ(a, y).

From the claim and compactness it follows that for every co-geometric formula
∀y.φ(x, y)23 there exists an open co-geometric formula φ∗(x) such that

T ′ |= ∀y.φ(x, y) ↔ φ∗(x).

Let T ∗ be the extension of T obtained by adding the co-geometric sequents
∀y.φ(x, y) → φ∗(x) and φ∗(x) → ∀y.φ(x, y). Then T ⊆ T ∗ ⊆ T ′ and T ∗ is
a co-geometric theory. As every model of T embeds into a model of T ′ by
Lemma 8.1, condition 2. of Definition 6.6 is satisfied for T ∗. Since condition 3.
of Definition 6.6 comes directly from the construction, T ∗ is a positive-universal
model completion of T . a

§9. Alternative proofs. The proofs of our decidability transfer results were
all divided into two parts. First, a proposition that characterized satisfiability of
a constraint in the combined theory, based on the existence of certain models and
homomorphisms, and the satisfiability of certain constraints in the component
theories. Second, a non-deterministic algorithm that checks the conditions of the
proposition. For this algorithm to be effective, local finiteness of the connecting
theory T0 and countability of the involved signatures are required. We also used
these assumptions in the proofs of the propositions, but already mentioned there
that this is done just for the sake of simplicity. Here we give alternative proofs
of the relevant propositions from §4, §5, and §6, relying on the slightly deeper
model-theoretic machinery introduced in the previous section. The main feature
of these alternative proofs is that they use neither local finiteness of T0 nor
countability of the involved signatures.

We first need the following extended IT property, which is an interesting
consequence of T0-positive-existential compatibility:

Proposition 9.1. Let T0 ⊆ T be theories over the respective signatures Ω0 ⊆
Ω such that T0 is universal and T is T0-positive-existentially compatible. Let
A, C be Ω0-structures that are models of T0, and let M be an Ω-structure that
is a models of T . For every Ω0-homomorphism µ : A → M|Ω0 and for every
Ω0-embedding ι : A → C, there are a further Ω-structure N that is a model T ,
an Ω-embedding ι′ : M→ N and a Ω0-homomorphism µ′ : C → N|Ω0 such that
the square

23Note that we can restrict the attention to such co-geometric formulae, i.e. co-geometric
formulae in prenex form.
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C N|Ω0
-

µ′

A M|Ω0
-µ

?

?

ι

?

?

ι′|Ω0

commutes. Moreover, if M |= T ∪ T ∗0 , then the embedding ι′ can be taken to be
elementary.

Proof. Similarly to the proof of Proposition 8.5, we need to show that T ∪
∆+

Ω0
(C)∪∆Ω(M) is consistent. Again, if this is not the case, we have that there

are formulae θ1(a, c), θ2(a,m) such that T ∪ {θ1(a, c), θ2(a,m)} is inconsistent,
where
• a are parameters from A;
• c,m are parameters from C,M (not belonging to the image of ι, µ, respec-

tively);
• θ1(a, c) is a conjunction of ground Ωa,c

0 -atoms true in C;
• θ2(a,m) is a conjunction of ground Ωa,m-literals true in M.

Let φ(a) be ∃y.θ1(a, y), and let φ∗ be the corresponding geometric open formula
with T0 |= φ → φ∗ and T ∗0 |= φ∗ → φ. Then C |= φ(a) implies C |= φ∗(a)
since C is a model of T0. Since φ∗(a) is geometric and open, we obtain that
this formula is also true in A and in M. The latter can be embedded into a
model M0 of T ∪ T ∗0 , which also satisfies φ∗(a). But then T ∗0 |= φ∗ → φ implies
M0 |= φ(a), which is a contradiction since T ∪ {φ(a), θ2(a,m)} was supposed to
be inconsistent. (Note that M0 |= θ2(a,m) follows from M |= θ2(a,m) because
θ2 is open.)

In case M is a model of T ∪ T ∗0 , we can replace ∆Ω(M) by the elementary
diagram ∆e

Ω(M) of M and get an elementary embedding ι′, because there is no
need of considering the extension M0 of M. a

Let us now give an alternative proof of Proposition 4.2. The only-if di-
rection is shown as in the proof given in §4. Using the proposition we have just
shown, the proof of the more interesting if direction is very simple. From the con-
ditions 1.–5. of Proposition 4.2, we obtain an Ω0-homomorphism ν : A → B from
an Ω0-substructure A of a model N ′ of T1 satisfying Γ1 to an Ω0-substructure B
of a model N ′′ of T2 satisfying Γ2 (see the proof in §4). Proposition 4.2 is proved
if we can build an extension of ν to an Ω0-homomorphism N ′

|Ω0
→ N|Ω0 , where

N is a suitable Ω2-superstructure of N ′′ that is a model of T2. (Note that N ′′

then also satisfies Γ2 since constraints are open formulae.) But such an extension
is obtained by an application of Proposition 9.1: take as ι the inclusion of A into
N ′, and as µ the composition of ν with the inclusion of B into N ′′. a

In the remainder of this section we show that similar arguments give alternative
proofs of the other relevant propositions from §4 and §5. These proofs are a bit
more involved since an iteration of the simple argument from above is needed.

An alternative proof of Proposition 4.4 can be given as follows. We are
given models N 0,M0 of T1, T2 respectively, where N 0 satisfies the constraint Γ1
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and M0 satisfies the constraint Γ2; N 0 has Ω0-substructures A,A′, and M0 has
Ω0-substructures B,B′. We are also given Ω0-homomorphisms ν : A → B and
µ : B′ → A′. We can freely suppose that N 0,M0 are also models of T ∗0 , by the
positive-existential compatibility assumptions.

The proposition is proved if we succeed in producing elementary extensions
N∞,M∞ of N ,M endowed with Ω0-homomorphisms

ν∞ : N∞
|Ω0

→M∞
|Ω0
, µ∞ : M∞

|Ω0
→ N∞

|Ω0

extending ν and µ, respectively. To this aim, we define elementary chains of
models

N 0 ⊆ N 1 ⊆ · · · and M0 ⊆M1 ⊆ · · ·
as well as homomorphisms

νk : N k
|Ω0

→Mk+1
|Ω0

, µj : Mj
|Ω0

→ N j
|Ω0

(k ≥ 0, j ≥ 1) such that ν ⊆ νk ⊆ νk+1 and µ ⊆ µj ⊆ µj+1. Once these
chains are constructed, it is sufficient to take unions in order to get the desired
structures and homomorphisms N∞,M∞, ν∞, µ∞.24 These chains can easily be
built by using Proposition 9.1. For instance, to get M1 and ν0, it is sufficient to
fill the square

N 0
|Ω0

M1
|Ω0

-
ν0
|Ω0

A M0
|Ω0

-

?

?

?

?

where the top horizontal homomorphism is the composition of ν with the inclu-
sion B ⊆M0

|Ω0
. Note that we can get an elementary embedding of M0 into M1

since M0 |= T ∗0 ∪T2. The fact that the embedding is elementary in turn implies
that M1 is also a model of T ∗0 ∪ T2 (and not just of T2). Thus, M1 satisfies the
same conditions as M0.

To get N1 and µ1, we use Proposition 9.1 to fill the square

M1
|Ω0

N 1
|Ω0

-
µ1
|Ω0

B′ N 0
|Ω0

-

?

?

?

?

where the top horizontal homomorphism is the composite of µ with the inclusion
A′ ⊆ N 0

|Ω0
and the left vertical morphism is the composite inclusion B′ ⊆M0 ⊆

M1. Again, the embedding of N 0 into N 1 can be assumed to be elementary
since N 0 |= T ∗0 ∪ T1, and this implies that N 1 is also a model of T ∗0 ∪ T1.

For the inductive cases, the same arguments can be applied. a

24Recall the elementary chain theorem [11], according to which the union of an elementary
chain of models is elementarily equivalent to each member of the chain.
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An alternative proof of Proposition 5.3 can be given as follows. Here
we are given a model M0 of T that satisfies the constraint Γ, and a pair of
Ω0-substructures A,B of M0 together with an Ω0-homomorphism ν : A → B.
Again, we can assume without loss of generality that M0 |= T ∪ T ∗0 .

The proposition is proved, if we succeed in producing an elementary extension
M∞ of M0 endowed with an Ω0-homomorphism

ν∞ : M∞
|Ω0

→M∞
|Ω0

extending ν. To this aim, we define an elementary chain of models

M0 ⊆M1 ⊆ · · ·

as well as homomorphisms

νk : Mk
|Ω0

→Mk+1
|Ω0

,

(k ≥ 0) such that ν ⊆ νk ⊆ νk+1 (once this is settled, it is sufficient to take
unions in order to get the desired structure M∞ and homomorphism ν∞). To
get M1 and ν0, we use Proposition 9.1 to fill the square

M0
|Ω0

M1
|Ω0

-
ν0
|Ω0

A M0
|Ω0

-

?

?

?

?

where the top horizontal homomorphism is the composite of ν with the inclusion
B ⊆ M0

|Ω0
. As in the previous proof, the embedding of M0 into M1 can be

taken to be elementary, and thus M1 is again a model of T ∪ T ∗0 .
To get inductively Mk+1 and νk, one proceeds in the same way. a

In order to give an alternative proof of Proposition 6.9, we first need to extend
the SL property, in the same way we have extended the IT property. However,
we do not need the extension of SL in its full strength: we can limit ourselves to
the case in which the partial homomorphism to be extended is a total one.

Proposition 9.2. Let T0 ⊆ T be theories over the respective signatures Ω0 ⊆
Ω such that T0 is universal and T is T0-positive universally compatible. Let A
be an Ω0-structure that is a model of T0, and let M be an Ω-structure that is
a model of T . For every Ω0-homomorphism ν : M|Ω0 → A, there are a further
Ω-structure N that is a model T , an Ω0-structure B that is a model of T0, an
Ω-embedding ι : M → N , Ω0-embeddings m : M|Ω0 → B, n : B → N|Ω0 and a
surjective Ω0-homomorphism µ : B → A such that the diagram
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M|Ω0 B--
m

N|Ω0

ι|Ω0
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commutes. Moreover, if M |= T0 ∪ T ∗0 , then ι can be taken to be elementary.

Proof. Intuitively, the proposition says that the total Ω0-homomorphism ν
can be extended to a partial surjective Ω0-homomorphism whose domain is an
Ω0-substructure of an Ω-superstructure of the domain of ν. Similarly to the
approach used in the proof of Proposition 8.7, we define ∆−

Ω0
(A) to consist of

the negative ground literals ¬α(m,a) satisfying the following three conditions:
• m are parameters from |M|Ω0 |,
• a are parameters from |A| \ ν(|M|Ω0 |),
• α(ν(m), a) is false in A.

It is sufficient to show that

Θ := T ∪∆Ω(M) ∪∆−
Ω0

(A)

is consistent. In fact, if Θ is consistent then we can take as N a model of Θ,
and as B the Ω0-substructure of N|Ω0 generated by |A| ∪ |M|Ω0 |. To show that
the required embeddings m,n and the surjective homomorphism µ exist, we can
proceed as in the proof of Proposition 8.7. Note that B is a model of T0 since
N|Ω0 is a model of T0 ⊆ T , B is an Ω0-substructure of N|Ω0 , and T0 is universal.

Thus, assume that Θ is inconsistent. Then there are open geometric (and
co-geometric) formulae ψ(x, x′), φ(x, y) (where ψ is over the signature Ω and φ
is over the signature Ω0) and parameters m from |M|Ω0 |, m′ from |M| \ |M|Ω0 |
and a from |A| \ ν(|M|Ω0 |) such that
• ψ(m,m′) is true in M,
• φ(ν(m), a) is false in A; and
• T∪{ψ(m,m′)} |= φ(m,a), which is the same as T∪{ψ(m,m′)} |= ∀y.φ(m, y)

since the parameters a have no fixed meaning in M.
Since there is a positive-universal model completion T ∗0 of T0, there is an open co-
geometric (and thus geometric) formula φ∗ such that T ∗0 |= φ∗(x) ↔ ∀y.φ(x, y).
This implies that φ∗(m) is true in M: in fact, by T0-positive universal com-
patibility of T , we can embed M into a model M′ of T ∪ T ∗0 , thus obtaining
M′ |= φ∗(m) and finally M |= φ∗(m) (recall that ψ(m,m′), φ∗(m) are both
Boolean combinations of ground atoms and hence are preserved under building
sub- and superstructures).

Since φ∗ is geometric, it is preserved under homomorphisms, and thus φ∗(ν(m))
is true in A. This is contradictory to the following three facts: (i) T0 |= φ∗(x) →
∀y.φ(x, y) (which holds by the dual version of Lemma 3.3); (ii) A 6|= φ(ν(m), a);
and (iii) A |= T0.
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In case M |= T0 ∪ T ∗0 , we can argue as above, but we replace ∆Ω(M) in the
definition of Θ by the elementary diagram ofM in the signature Ω (the argument
in fact now works without introducing the model M′). a

In the alternative proof of Proposition 6.9, we again restrict the attention
to the nontrivial if direction. From the conditions of the proposition, we obtain
an Ω0-homomorphism ν : A → B from an Ω0-substructure A of a model N 0

of T1 satisfying Γ1 to an Ω0-substructure B of a model M0 of T2 satisfying
Γ2. We may also assume that N 0 (M0) is a model of the positive-universal
(positive-existential) completion of T0.

First, we apply Proposition 9.1 to the embedding from A into N 0 and the
Ω0-homomorphism from A to M0 obtained by the composition of ν with the
embedding of B into M0. This application yields an elementary extension M1

of M0 and an Ω0-homomorphism ν0 : N 0
|Ω0

→M1
|Ω0

extending ν. Since M0 is a
model of T2 and the positive-existential completion of T0 that also satisfies Γ2,
the same is true for its elementary extension M1.

Second, we apply Proposition 9.2 to the Ω0-homomorphism ν0 : N 0
|Ω0

→M1
|Ω0

.
This application yields an elementary extension N 1 of N 0, a model A1 of T0 that
is an Ω0-superstructure ofN 0 and an Ω0-substructure ofN 1, and a surjective Ω0-
homomorphism µ1 : A1 → M1

|Ω0
such that the commutation properties stated

in Proposition 9.2 are satisfied. The fact that N 0 is a model of T1 and the
positive-universal completion of T0 that also satisfies Γ1 implies that the same
is true for its elementary extension N 1.

Next, we can apply Proposition 9.1 to the embedding from A1 into N 1 and
the Ω0-homomorphism µ1 from A1 to M1

|Ω0 , then Proposition 9.2 to the homo-
morphism ν1 obtained this way, etc. Continuing this way, we can construct the
following chains:
• an elementary chain of Ω1-structures N 0 ⊆ N 1 ⊆ · · · ;
• an elementary chain of Ω2-structures M0 ⊆M1 ⊆ · · · ;
• a chain of Ω0-structures

N 0
|Ω0

⊆ A1 ⊆ N 1
|Ω0

⊆ A2 ⊆ N 2
|Ω0

⊆ · · · ;

• a chain of Ω0-homomorphisms (for k ≥ 0)

νk : N k
|Ω0

→Mk+1
|Ω0

;

• a chain of surjective Ω0-homomorphisms (for k ≥ 0)

µk+1 : Ak+1 →Mk+1
|Ω0

,

where the above homomorphisms satisfy the condition

ν0 ⊆ µ1 ⊆ ν1 ⊆ µ2 ⊆ · · · .

Once these chains are constructed, we obtain elementary extensions N∞,M∞

of N 0,M1 endowed with a surjective Ω0-homomorphism

ν∞ : N∞
|Ω0

→M∞
|Ω0

extending ν0 by taking the unions over the chains. a
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§10. Conclusion. We have introduced a new scheme for combining many-
sorted theories, and have shown under which conditions decidability of the
universal fragment of the component theories transfers to their combination.
Though this kind of combination has been considered before in restricted cases
[20, 1, 33], it has not been investigated in the general algebraic setting considered
here.

In this article, we mainly concentrated on the simplest case of connecting
many-sorted theories where there is just one connection function. The approach
was then extended to the case of several independent connection functions, and
to variants of the general combination scheme where the connection function
must satisfy additional properties or where a theory is connected with itself.

On the one hand, our results are more general than the combination results
for E-connections of abstract description systems shown in [20] since they are
not restricted to Boolean-based equational theories, which are closely related to
abstract description systems (see Example 2.2 and §7). For instance, we have
shown in Example 4.5 that any pair of theories T1, T2 extending a universal
theory T0 that is effectively locally finite and Gaussian satisfies the prerequisites
of our transfer theorem. Examples of such theories having nothing to do with
Boolean-based equational theories can be found in [4, 5].

On the other hand, in the E-connection approach introduced in [20], one usu-
ally considers not only the modal operator induced by a connecting relation E
(see Example 2.2), but also the modal operator induced by its inverse E−1. It is
not adequate to express these two modal operators by independent connection
functions going in different directions since this does not capture the relation-
ships that must hold between them. For example, if 3 is the diamond operator
induced by the connecting relation E, and 2− is the box operator induced by
its inverse E−, then the formulae x → 2−3x and 32−y → y are valid in the
E-connection.

In order to express these relationships in the algebraic setting without assum-
ing the presence of the Boolean operators in the shared theory, one can replace
the logical implication → by a partial order ≤, and require that x ≤ r(`(x))
and `(r(y)) ≤ y hold for the connection functions r, ` generalizing the diamond
and the inverse box operator. If `, r are also order preserving, then this means
that `, r is a pair of adjoint functions for the partial order ≤. This suggests an
alternative way of connecting theories through pairs of adjoint functions. Again,
we can show transfer of decidability provided that certain algebraic conditions
are satisfied [2].

The approach in [2] can handle inverse connecting relations, and thus captures
(in an algebraic setting) more of the results from [20] than the one presented
here. It is, however, also less general than the approach presented here since it
requires the additional assumption that the theories to be connected are equipped
with a partial order and that the connection functions are adjoint functions
for this partial order. Intuitively, this makes the theories that can be handled
more similar to Boolean-based equational theories since something like logical
entailment is assumed to be present.
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