
A Tableau Algorithm for Fuzzy Description
Logics over Residuated De Morgan Lattices

Stefan Borgwardt and Rafael Peñaloza

Theoretical Computer Science, TU Dresden, Germany
{stefborg,penaloza}@tcs.inf.tu-dresden.de

Abstract. Fuzzy description logics can be used to model vague knowl-
edge in application domains. This paper analyses the consistency and
satisfiability problems in the description logic SHI with semantics based
on a complete residuated De Morgan lattice. The problems are undecid-
able in the general case, but can be decided by a tableau algorithm when
restricted to finite lattices. For some sublogics of SHI, we provide upper
complexity bounds that match the complexity of crisp reasoning.

1 Introduction

Description Logics (DLs) [1] are a family of knowledge representation formalisms
that are widely used to model application domains. In DLs, knowledge is repre-
sented with the help of concepts (unary predicates) and roles (binary predicates)
that express the relationships between concepts. They have been successfully
employed to formulate ontologies–especially in the medical domain–like Galen1

and serve as the underpinning for the current semantic web language OWL 2.2
Standard reasoning in these logics includes concept satisfiability (is a given con-
cept non-contradictory?) and ontology consistency (does a given ontology have
a model?). These and other reasoning problems have been studied for DLs, and
several algorithms have been proposed and implemented.

One of the main challenges in knowledge representation is the correct mod-
eling and use of imprecise or vague knowledge. For example, medical diag-
noses from experts are rarely clear-cut and usually depend on concepts like
HighBloodPressure that are necessarily vague. Fuzzy variants of description log-
ics were introduced in the nineties as a means to tackle this challenge. Their
applicability to the representation of medical knowledge was studied in [22].

Fuzzy DLs generalize (crisp) DLs by providing amembership degree semantics
for their concepts. Thus, e.g. 130/85 belongs to the concept HighBloodPressure
with a lower degree than, say 140/80. In their original form, membership degrees
are elements of the real-number interval [0, 1], but this was later generalized to
lattices [21,26]. The papers [21,26] consider only a limited kind of semantics over
lattices, where conjunction and disjunction are interpreted through the lattice
operators meet and join, respectively.
1 http://www.opengalen.org/
2 http://www.w3.org/TR/owl2-overview/



In this paper, we consider a more general lattice-based semantics that uses
a triangular norm (t-norm) and its residuum as interpretation functions for the
logical constructors. We study fuzzy variants of the standard reasoning problems
like concept satisfiability and ontology consistency in this setting.

We show that concept satisfiability in ALC under this semantics is unde-
cidable in general, even if we restrict ourselves to a very simple class of infi-
nite lattices. However, we show with the help of a tableaux-based algorithm
that decidability of reasoning can be regained—even for the more expressive DL
SHI—if the underlying lattice is required to be finite. Moreover, we describe a
black-box method that can be used to transform any decision algorithm for (a
small generalization of) satisfiability into a decision procedure for consistency.

Due to space constraints, some of the technical proofs have been left out of
this paper; they can be found in the technical report [12].

2 Preliminaries

We start with a short introduction to residuated lattices, which will be the base
for the semantics of the fuzzy DL L-SHI. For a more comprehensive view on
these lattices, we refer the reader to [15,17].

2.1 Lattices

A lattice is a triple (L,∨,∧), consisting of a carrier set L and two idempotent,
associative, and commutative binary operators join ∨ and meet ∧ on L that
satisfy the absorption laws `1 ∨ (`1 ∧ `2) = `1 = `1 ∧ (`1 ∨ `2) for all `1, `2 ∈ L.
These operations induce a partial order ≤ on L: `1 ≤ `2 iff `1∧`2 = `1. As usual,
we write `1 < `2 if `1 ≤ `2 and `1 6= `2. A subset T ⊆ L is called an antichain
(in L) if there are no two elements `1, `2 ∈ T with `1 < `2. Whenever it is clear
from the context, we will use the carrier set L to represent the lattice (L,∨,∧).

The lattice L is distributive if ∨ and ∧ distribute over each other, finite if
L is finite, and bounded if it has a minimum and a maximum element, denoted
as 0 and 1, respectively. It is complete if joins and meets of arbitrary subsets
T ⊆ L,

∨
t∈T t and

∧
t∈T t, respectively, exist. Clearly, every finite lattice is also

complete, and every complete lattice is bounded.
A De Morgan lattice is a bounded distributive lattice L extended with an

involutive and anti-monotonic unary operation ∼, called (De Morgan) negation,
satisfying the De Morgan laws ∼(`1∨`2) = ∼ `1∧∼ `2 and ∼(`1∧`2) = ∼ `1∨∼ `2
for all `1, `2 ∈ L.

Given a lattice L, a t-norm is an associative and commutative binary operator
on L that is monotonic and has 1 as its unit. A residuated lattice is a lattice L
with a t-norm ⊗ and a binary operator ⇒ (called residuum) such that for all
`1, `2, `3 ∈ L we have `1 ⊗ `2 ≤ `3 iff `2 ≤ `1 ⇒ `3. A simple consequence is that
for all `1, `2 ∈ L we have 1⇒ `1 = `1, and `1 ≤ `2 iff `1 ⇒ `2 = 1.

A t-norm ⊗ over a complete lattice L is continuous if for all ` ∈ L and T ⊆ L
we have `⊗(

∨
`′∈T `

′) =
∨
`′∈T (`⊗`′). Every continuous t-norm ⊗ has the unique
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Fig. 1. The De Morgan residuated lattice L4 with ∼ u = u and ∼ i = i.

residuum ⇒ defined by `1 ⇒ `2 =
∨
{x | `1 ⊗ x ≤ `2} for all `1, `2 ∈ L. If L is a

distributive lattice, then the meet operator `1 ∧ `2 always defines a continuous
t-norm, often called the Gödel t-norm. In a residuated De Morgan lattice L, the
t-conorm ⊕ is defined as as `1⊕`2 := ∼(∼ `1⊗∼ `2). The t-conorm of the Gödel
t-norm is the join operator `1 ∨ `2.

For example, consider the finite lattice L4, with the elements f, u, i, and t as
shown in Figure 1. This lattice has been used for reasoning about incomplete and
contradictory knowledge [5] and as a basis for a paraconsistent rough DL [28].
In our blood pressure scenario, the two degrees i and u may be used to express
readings that are potentially and partially high blood pressures, respectively.
The incomparability of these degrees reflects the fact that none of them can be
stated to belong more to the concept HighBloodPressure than the other.

For the rest of this paper, L denotes a complete residuated De Morgan lattice
with t-norm ⊗ and residuum ⇒, unless explicitely stated otherwise.

2.2 The Fuzzy DL L-SHI

The fuzzy DL L-SHI is a generalization of the crisp DL SHI that uses the
elements of L as truth values, instead of just the Boolean true and false. The
syntax of L-SHI is the same as in SHI with the addition of the constructor→.

Definition 1 (syntax of L-SHI). Let NC, NR, and NI be pairwise disjoint
sets of concept-, role-, and individual names, respectively, and N+

R ⊆ NR a set
of transitive role names. The set of (complex) roles is NR ∪ {r− | r ∈ NR}. The
set of (complex) concepts C is obtained through the following syntactic rule,
where A ∈ NC and s is a complex role:

C ::= A | C1 u C2 | C1 t C2 | C1 → C2 | ¬C | ∃s.C | ∀s.C | > | ⊥.

The inverse of a complex role s (denoted by s) is s− if s ∈ NR and r if s = r−.
A complex role s is transitive if either s or s belongs to N+

R .

The semantics of this logic is based on functions specifying the membership
degree of every domain element in a concept C.

Definition 2 (semantics of L-SHI). An interpretation is a pair I = (∆I , ·I)
where ∆I is a non-empty domain, and ·I is a function that assigns to every
individual name a an element aI ∈ ∆I , to every concept name A a function



AI : ∆I → L, and to every role name r a function rI : ∆I × ∆I → L, where
rI(x, y)⊗ rI(y, z) ≤ rI(x, z) holds for all r ∈ N+

R and x, y, z ∈ ∆I .
The function ·I is extended to L-SHI concepts as follows for every x ∈ ∆I :

– >I(x) = 1, ⊥I(x) = 0,
– (C uD)I(x) = CI(x)⊗DI(x), (C tD)I(x) = CI(x)⊕DI(x),
– (C → D)I(x) = CI(x)⇒ DI(x),
– (¬C)I(x) = ∼CI(x),
– (∃s.C)I(x) =

∨
y∈∆I

(
sI(x, y)⊗ CI(y)

)
,

– (∀s.C)I(x) =
∧
y∈∆I

(
sI(x, y)⇒ CI(y)

)
,

where (r−)I(x, y) = rI(y, x) for all x, y ∈ ∆I and r ∈ NR.

The semantics of the existential and value restrictions is just the direct ap-
plication of the semantics of quantification of fuzzy first-order logic [18,19] to
fuzzy DLs.

Notice that, unlike in crisp SHI, existential and universal quantifiers are not
dual to each other, i.e. in general, (¬∃s.C)I(x) = (∀s.¬C)I(x) does not hold.
Likewise, the implication constructor → cannot be expressed in terms of the
negation ¬ and conjunction u.

The axioms of this logic are those of crisp SHI, but with associated lattice
values, which express the degree to which the restrictions must be satisfied.

Definition 3 (axioms). An assertion can be a concept assertion of the form
〈a : C . `〉 or a role assertion of the form 〈(a, b) : s . `〉, where C is a concept,
s is a complex role, a, b are individual names, ` ∈ L, and .∈ {=,≥}. If . is =,
then it is called an equality assertion. A general concept inclusion (GCI) is of
the form 〈C v D, `〉, where C,D are concepts, and ` ∈ L. A role inclusion is of
the form s v s′, where s and s′ are complex roles.

An ontology (A, T ,R) consists of a finite set A of assertions (ABox), a
finite set T of GCIs (TBox), and a finite set R of role inclusions (RBox). The
ABox A is called local if there is an individual a ∈ NI such that all assertions
in A are of the form 〈a : C = `〉, for some concept C and ` ∈ L.

An interpretation I satisfies the assertion 〈a : C . `〉 if CI(aI) . ` and the
assertion 〈(a, b) : s . `〉 if sI(aI , bI) . `. It satisfies the GCI 〈C v D, `〉 if
CI(x)⇒ DI(x) ≥ ` holds for every x ∈ ∆I . It satisfies the role inclusion s v s′
if for all x, y ∈ ∆I we have sI(x, y) ≤ s′I(x, y).
I is a model of the ontology (A,T ,R) if it satisfies all axioms in A, T , R.

Given an RBox R, the role hierarchy vR on the set of complex roles is the
reflexive and transitive closure of the relation

{(s, s′) | s v s′ ∈ R or s v s′ ∈ R}.

Using reachability algorithms, the role hierarchy can be computed in polynomial
time in the size of R. An RBox R is called acyclic if it contains no cycles of the
form svR s′, s′vR s for two roles s 6= s′.



The fuzzy DL L-ALC is the sublogic of L-SHI where no role inclusions,
transitive roles, or inverse roles are allowed. SHI is the sublogic of L-SHI
where the underlying lattice contains only the elements 0 and 1, which may
be interpreted as false and true, respectively, and the t-norm and t-conorm are
conjunction and disjunction, respectively.

Recall that the semantics of the quantifiers require the computation of a
supremum or infimum of the membership degrees of a possibly infinite set of
elements of the domain. To obtain effective decision procedures, reasoning is
usually restricted to a special kind of models, called witnessed models [19].

Definition 4 (witnessed model). Let n ∈ N. A model I of an ontology O
is n-witnessed if for every x ∈ ∆I , every role s and every concept C there are
x1, . . . , xn, y1, . . . , yn ∈ ∆I such that

(∃s.C)I(x) =
n∨
i=1

(
sI(x, xi)⊗ CI(xi)

)
, (∀s.C)I(x) =

n∧
i=1

(
sI(x, yi)⇒ CI(yi)

)
.

In particular, if n = 1, the suprema and infima from the semantics of ∃s.C and
∀s.C are maxima and minima, respectively, and we say that I is witnessed.

The reasoning problems for SHI generalize to the fuzzy semantics of L-SHI.
Definition 5 (decision problems). Let O be an ontology, C,D be two con-
cepts, a ∈ NI, and ` ∈ L. O is consistent if it has a (witnessed) model. C is
strongly `-satisfiable if there is a (witnessed) model I of O and x ∈ ∆I with
CI(x) ≥ `. The individual a is an `-instance of C if 〈a : C ≥ `〉 is satisfied by
all (witnessed) models of O. C is `-subsumed by D if 〈C v D, `〉 is satisfied by
all (witnessed) models of O.
Example 6. It is known that coffee drinkers and salt consumers tend to have a
higher blood pressure. On the other hand, bradycardia is highly correlated with
a lower blood pressure. This knowledge can be expressed through the TBox

{〈CoffeeDrinker v HighBloodPressure, i〉, 〈SaltConsumer v HighBloodPressure, i〉,
〈Bradycardia v ¬HighBloodPressure, i〉},

over the lattice L4 from Figure 1. The degree i in these axioms expresses that the
relation between the causes and HighBloodPressure is not absolute. Consider the
patients ana, who is a coffee drinker, and bob, a salt consumer with bradycardia,
as expressed by the ABox

{〈ana : CoffeeDrinker = t〉, 〈bob : SaltConsumer u Bradycardia = t〉}.

We can deduce that both patients are an i-instance of HighBloodPressure, but
only bob is an i-instance of ¬HighBloodPressure. Notice that if we changed all
the degrees from the GCIs to the value t, the ontology would be inconsistent.

We will focus first on a version of the consistency problem where the ABox
is required to be a local ABox; we call this problem local consistency. We show
in Section 5 that local consistency can be used for solving other reasoning prob-
lems in L-SHI if L is finite. Before that, we show that satisfiability and (local)
consistency are undecidable in L-ALC, and hence also in L-SHI, in general.



3 Undecidability

To show undecidability, we use a reduction from the Post Correspondence Prob-
lem [24] to strong satisfiability in L-ALC over a specific infinite lattice. The
reduction uses ideas that have been successfully applied to showing undecidabil-
ity of reasoning for several fuzzy description logics [2,3,14].

Although the basic idea of the proof is not new, it is interesting for several
reasons. First, previous incarnations of the proof idea focused on decidability of
ontology consistency [3,13,14], while we are concerned with strong `-satisfiability.
Second, most of the previous undecidability results only hold for reasoning w.r.t.
witnessed models, but the current proof works for both witnessed and general
models. Finally, in contrast to an earlier version of this proof [11], the employed
lattice has a quite simple structure in the sense that it is a total order that has
only the two limit points −∞ and ∞ instead of infinitely many. Note that any
distributive lattice without limit points is already finite and reasoning in finite
residuated De Morgan lattices is decidable (see Sections 4 and 5).

Definition 7 (PCP). Let P = {(v1, w1), . . . , (vn, wn)} be a finite set of pairs
of words over the alphabet Σ = {1, . . . , s} with s > 1. The Post Correspondence
Problem (PCP) asks for a finite non-empty sequence i1 . . . ik ∈ {1, . . . , n}+ such
that vi1 . . . vik = wi1 . . . wik . If this sequence exists, it is called a solution for P.

For ν = i1 · · · ik ∈ {1, . . . , n}∗, we define vν := vi1 · · · vik and wν := wi1 · · ·wik .
We consider the lattice Z∞ whose domain is Z ∪ {−∞,∞} with the usual

ordering over the integers and −∞ and∞ as the minimal and maximal element,
respectively. Its De Morgan negation is ∼ ` = −` if ` ∈ Z, ∼∞ = −∞, and
∼(−∞) =∞. The t-norm ⊗ is defined as follows for all `,m ∈ Z∞:

`⊗m :=

{
`+m if `,m ∈ Z and `,m ≤ 0

min{`,m} otherwise.

This is in fact a residuated lattice with the following residuum:

`⇒ m :=


∞ if ` ≤ m
m if ` > m and ` ≥ 0

m− ` if ` > m and ` < 0.

Given an instance P of the PCP, we will construct a TBox TP such that the
designated concept name S is strongly∞-satisfiable iff P has no solution. Recall
that the alphabet Σ consists of the first s positive integers. Thus, every word
in Σ+ can be seen as a positive integer written in base s + 1; we extend this
intuition and denote the empty word by 0. We encode each word u ∈ Σ∗ with
the number −u ≤ 0.

The idea is that the TBox TP describes the search tree of P with the nodes
{1, . . . , n}∗. At its root ε, it encodes the value vε = wε = ε, which is represented
by 0, using the concept names V andW . These concept names are used through-
out the tree to express the values vν and wν at every node ν ∈ {1, . . . , n}∗.



Additionally, we will use the auxiliary concept names Vi and Wi to encode the
constant words vi and wi, respectively, for each i ∈ {1, . . . , n}. These will be
used to compute the concatenation vνi = vνvi at each node.

To simplify the reduction, we will use some abbreviations. Given two L-ALC
concepts C and D and r ∈ NR, 〈C ≡ D〉 abbreviates the axioms 〈C v D,∞〉,
〈D v C,∞〉; and 〈C r

 D〉 stands for the axioms 〈C v ∀r.D,∞〉, 〈∃r.D v C,∞〉.
For n ≥ 1, the concept Cn is inductively defined by C1 := C and Cn+1 := CnuC.

Proposition 8. Let I be an interpretation and x ∈ ∆I .
– If I satisfies 〈C ≡ D〉, then CI(x) = DI(x).
– If I satisfies 〈C r

 D〉 and CI(x) ≤ 0, then CI(x) = DI(y) holds for all
y ∈ ∆I with rI(x, y) ≥ 1.

– If CI(x) ∈ Z, CI(x) ≤ 0, and n ≥ 1, then (Cn)I(x) = n · CI(x).

We now introduce the TBox T0 :=
⋃n
i=0 T iP that encodes the search tree of the

instance P of the PCP:

T 0
P := {〈S v V, 0〉, 〈S v ¬V, 0〉, 〈S vW, 0〉, 〈S v ¬W, 0〉},
T iP := {〈> v ∃ri.>, 1〉,

〈> v Vi,−vi〉, 〈> v ¬Vi, vi〉, 〈> vWi,−wi〉, 〈> v ¬Wi, wi〉,

〈(V (s+1)|vi| u Vi)
ri V 〉, 〈(W (s+1)|wi| uWi)

ri W 〉},

where |u| denotes the length of the word u.
The TBox T 0

P initializes the search tree by ensuring for every model I and
every domain element x ∈ ∆I that satisfies SI(x) = ∞ that the values of V
and W are both 0, which is the encoding of the empty word. Each TBox T iP
ensures the existence of an ri-successor for every domain element and describes
the constant pair (vi, wi) using the concepts Vi and Wi, that is, it forces that
V Ii (x) = −vi and W Ii (x) = −wi for every x ∈ ∆I . Using the last two axioms,
the search tree is then extended by concatenating the words v and w produced
so far with vi and wi, respectively. In the following, we will describe this in more
detail.

Consider the interpretation IP over the domain ∆IP = {1, . . . , n}∗, where
for all ν, ν′ ∈ {1, . . . , n}∗ and i ∈ {1, . . . , n},
– V IP (ν) = −vν , W IP (ν) = −wν ,
– V IPi (ν) = −vi, W IPi (ν) = −wi,
– rIPi (ν, νi) =∞ and rIPi (ν, ν′) = −∞ if ν′ 6= νi,
– SIP (ε) =∞ and SIP (ν′) = −∞ if ν′ 6= ε.

It is easy to see that IP is in fact a model of T0 and it strongly satisfies S with
degree∞. Moreover, every model of this TBox that strongly∞-satisfies S must
“include” IP in the following sense.

Lemma 9. Let I be a model of T0 such that SI(x0) = ∞ for some x0 ∈ ∆I .
Then there exists a function g : ∆IP → ∆I such that AIP (ν) = AI(g(ν)) and
ri(g(ν), g(νi)) ≥ 1 hold for every concept name A ∈ {V,W, V1,W1, . . . , Vn,Wn},
every ν ∈ ∆IP , and every i ∈ {1, . . . , n}.



Proof. We construct the function g by induction on ν and set g(ε) := x0. Since
I is a model of T 0

P and SI(x0) =∞, we have V I(x0) ≥ 0 and ∼V I(x0) ≥ 0, i.e.
V I(x0) = 0, and similarlyW I(x0) = 0. In the same way, for every i ∈ {1, . . . , n},
V Ii (x0) and W Ii (x0) are restricted by T iP to be −vi and −wi, respectively.

Let now ν ∈ {1, . . . , n}∗ and assume that g(ν) already satisfies the condition.
For each i ∈ {1, . . . , n}, the first axiom of T iP ensures that

∨
y∈∆I rIi (g(ν), y) ≥ 1.

Thus, there is yi ∈ ∆I such that rIi (g(ν), yi) ≥ 1. We define g(νi) := yi. By
Proposition 8, we have

V I(yi) = (V (s+1)|vi| u Vi)I(g(ν)) = −
(
(s+ 1)|vi|vν + vi

)
= −vνvi = −vνi,

and similarly for W I(yi). The claim for Vi and Wi can be shown as above. ut

This proposition shows that every model of T0 encodes a description of the search
tree for a solution of P. Thus, to decide the PCP, it suffices to detect whether
there is a node ν ∈ {1, . . . , n}+ of IP where V IP (ν) =W IP (ν). We accomplish
this using the TBox

T ′ := {〈> v ∀ri.¬((V →W ) u (W → V )), 0〉 | 1 ≤ i ≤ n}.

The interpretation IP is a model of T ′ iff V IP (ν) 6= W IP (ν) holds for every
ν ∈ {1, . . . , n}+.

Lemma 10. P has a solution iff S is not ∞-satisfiable w.r.t. TP := T0 ∪ T ′.

Proof. For any two values `,m ≤ 0, we have ` 6= m iff (`⇒ m)⊗ (m⇒ `) ≤ 0.
Assume now that S is not ∞-satisfiable w.r.t. TP . Then, in particular, IP

does not satisfy T ′, i.e. we have (∀ri.¬((V → W ) u (W → V )))IP (ν) < 0 for
some ν ∈ {1, . . . , n}∗ and i ∈ {1, . . . , n}. There must be a ν ∈ {1, . . . , n}+ with
(¬((V → W ) u (W → V )))IP (ν) < 0; thus, −vν = V IP (ν) = W IP (ν) = −wν .
This shows that vν = wν , i.e. P has a solution.

For the other direction, let I be a model of TP and x0 ∈ ∆I such that
SI(x0) =∞. In particular, we have

rIi (g(ν), g(νi))⇒ (¬((V →W ) u (W → V )))I(g(νi)) ≥ 0

for every ν ∈ {1, . . . , n}∗ and i ∈ {1, . . . , n}, where g is the function constructed
in Lemma 9. Thus, ((V →W )u(W → V ))I(g(ν)) ≤ 0 for every ν ∈ {1, . . . , n}+,
which implies −vν = V I(g(ν)) 6= W I(g(ν)) = −wν . This shows that vν 6= wν
for all ν ∈ {1, . . . , n}+, i.e. P has no solution. ut

As mentioned before, since the interpretation IP is witnessed, undecidability
holds even if we restrict reasoning to n-witnessed models, for any n ∈ N.

Theorem 11. Strong satisfiability is undecidable in L-ALC, for some countable
total order L with at most two limit points, even if reasoning is over n-witnessed
models only.



This theorem also shows that (local) consistency is undecidable in Z∞-ALC since
S is strongly ∞-satisfiable w.r.t. TP iff ({〈a : S =∞〉}, TP) is locally consistent,
where a is an arbitrary individual name.

Notice that this does not exclude the existence of classes of infinite lattices
for which reasoning in L-SHI is decidable. In fact, there exists a large class of
infinite total orders for which consistency is decidable [9]. What Theorem 11
shows is that there exist lattices for which this problem is undecidable. If we
restrict to finite lattices, then a tableau algorithm can be used for reasoning.

4 A Tableaux Algorithm for Local Consistency

Before presenting a tableau algorithm [4] that decides local consistency by con-
structing a model of a given L-SHI ontology, we discuss previous approaches to
deciding consistency of fuzzy DLs over finite residuated De Morgan lattices in
the presence of GCIs.

A popular method is the reduction of fuzzy ontologies into crisp ones, which
has so far only been done for finite total orders [7,8,26]. Reasoning can then be
performed through existing optimized reasoners for crisp DLs. The main idea is
to translate every concept name A into finitely many crisp concept names A≥`,
one for each truth value `, where A≥` collects all those individuals that belong
to A with a truth degree ≥ `. The lattice structure is expressed through GCIs of
the form A≥`2 v A≥`1 , where `2 is a minimal element above `1, and analogously
for the role names. All axioms are then recursively translated into crisp axioms
that use only the introduced crisp concept and role names. The resulting crisp
ontology is consistent iff the original fuzzy ontology is consistent.

In general such a translation is exponential in the size of the concepts that
occur in the fuzzy ontology. The reason is that, depending on the t-norm used,
there may be many possible combinations of values `1, `2 for C,D, respectively,
that lead to C uD having the value ` = `1⊗ `2, and similarly for the other con-
structors. All these possibilities have to be expressed in the translation. Since
ontology consistency in crisp SHI is ExpTime-hard, this yields a 2-ExpTime
reasoning procedure. Moreover, DL reasoners usually implement tableaux algo-
rithms with a worst-case complexity above NExpTime; in that case, one gets
a 2-NExpTime reasoning procedure. In contrast, our tableau algorithm has
a worst-case complexity of NExpTime, matching the behaviour of crisp SHI
reasoners.

To the best of our knowledge, at the moment there exists only one (correct)
tableaux algorithm that can deal with a finite total order of truth values and
GCIs [25],3 but it is restricted to the Gödel t-norm. The main difference be-
tween this algorithm and ours is that we non-deterministically guess the degree
of membership of each individual to every relevant concept, while the approach
from [25] sets only lower and upper bounds for these degrees; this greatly reduces
3 Several tableau algorithms for fuzzy DLs over infinite total orders exist, but they
are either restricted to acyclic TBoxes or are not correct in the presence of GCIs, as
shown in [2,6].



the amount of non-determinism encountered, but introduces several complica-
tions when a t-norm different from the Gödel t-norm is used.

We present a straightforward tableaux algorithm with a larger amount of
nondeterminism that nevertheless matches the theoretical worst-case complexity
of tableaux algorithms for crisp SHI. It is loosely based on the crisp tableaux
algorithm in [20]. A first observation that simplifies the algorithm is that since
L is finite, we can w.l.o.g. restrict reasoning to n-witnessed models.

Proposition 12. If the maximal cardinality of an antichain of L is n, then
every interpretation in L-SHI is n-witnessed.

For simplicity, we consider only the case n = 1. For n > 1, the construction is
similar, but several witnesses have to be produced for satisfying each existential
and value restriction. The necessary changes in the algorithm are described at
the end of this section. We can also assume w.l.o.g. that the RBox is acyclic.
The proof of this follows similar arguments as for crisp SHI [27].

Proposition 13. Deciding local consistency in L-SHI is polynomially equiva-
lent to deciding local consistency in L-SHI w.r.t. acyclic RBoxes.

In the following, let O = (A, T ,R) be an ontology where A is a local ABox
that contains only the individual name a and R is an acyclic RBox. We first
show that O has a model if we can find a tableau; intuitively, a possibly infinite
“completed version” of A. Later we describe an algorithm for constructing a finite
representation of such a tableau.

Definition 14. A tableau for O is a set T of equality assertions over a set
Ind of individuals such that a ∈ Ind, A ⊆ T, and the following conditions are
satisfied for all C,C1, C2 ∈ sub(O), x, y ∈ Ind, r, s ∈ NR, and ` ∈ L:

Clash-free: If 〈x : C = `〉 ∈ T or 〈(x, y) : r = `〉 ∈ T, then there is no `′ ∈ L
such that `′ 6= ` and 〈x : C = `′〉 ∈ T or 〈(x, y) : r = `′〉 ∈ T, respectively.

Complete: For every row of Table 1, the following condition holds:

“If 〈trigger〉 is in T, there are 〈values〉 such that 〈assertions〉 are in T.”

These conditions help to abstract from the interplay between transitive roles and
existential and value restrictions. We prove in [12] that it suffices to satisfy the
above conditions to make certain that O has a model.

Lemma 15. O is locally consistent iff it has a tableau.

We now present a tableaux algorithm for deciding local consistency. The al-
gorithm starts with the local ABox A, and nondeterministically expands it to
a tree-like ABox Â that represents a model of O. It uses the conditions from
Table 1 and reformulates them into expansion rules of the form:

“If there is 〈trigger〉 in Â and there are no 〈values〉 such that 〈assertions〉
are in A, then introduce 〈values〉 and add 〈assertions〉 to Â.”



〈trigger〉 〈values〉 〈assertions〉
u 〈x : C1 u C2 = `〉 `1, `2 ∈ L with `1 ⊗ `2 = ` 〈x : C1 = `1〉,

〈x : C2 = `2〉
t 〈x : C1 t C2 = `〉 `1, `2 ∈ L with `1 ⊕ `2 = ` 〈x : C1 = `1〉,

〈x : C2 = `2〉
→ 〈x : C1 → C2 = `〉 `1, `2 ∈ L with `1 ⇒ `2 = ` 〈x : C1 = `1〉,

〈x : C2 = `2〉
¬ 〈x : ¬C = `〉 〈x : C = ∼ `〉
∃ 〈x : ∃r.C = `〉 `1, `2 ∈ L with `1 ⊗ `2 = `,

individual y
〈(x, y) : r = `1〉,
〈y : C = `2〉

∃≤ 〈x : ∃r.C = `〉, 〈(x, y) : r = `1〉 `2 ∈ L with `1 ⊗ `2 ≤ ` 〈y : C = `2〉
∃+ 〈x : ∃s.C = `〉, 〈(x, y) : r = `1〉

with r transitive and rvR s
`2 ∈ L with `1 ⊗ `2 ≤ ` 〈y : ∃r.C = `2〉

∀ 〈x : ∀r.C = `〉 `1, `2 ∈ L with `1 ⇒ `2 = `,
individual y

〈(x, y) : r = `1〉,
〈y : C = `2〉

∀≥ 〈x : ∀r.C = `〉, 〈(x, y) : r = `1〉 `2 ∈ L with `1 ⇒ `2 ≥ ` 〈y : C = `2〉
∀+ 〈x : ∀s.C = `〉, 〈(x, y) : r = `1〉

with r transitive and rvR s
`2 ∈ L with `1 ⇒ `2 ≥ ` 〈y : ∀r.C = `2〉

inv 〈(x, y) : r = `1〉 〈(y, x) : r = `1〉
vR 〈(x, y) : r = `1〉, rvR s `2 ∈ L with `1 ≤ `2 〈(x, y) : s = `2〉
vT individual x, 〈C1 v C2, `〉 in T `1, `2 ∈ L with `1 ⇒ `2 ≥ ` 〈x : C1 = `1〉,

〈x : C2 = `2〉
Table 1. The tableau conditions for L-SHI.

The rules ∃ and ∀ always introduce new individuals y that do not appear in
Â. Initially, the ABox A contains the single individual a. It is expanded by
the rules in a tree-like way: role connections are only created by adding new
successors to existing individuals. If an individual y was created by a rule ∃ or
∀ that was applied to an assertion involving an individual x, then we say that
y is a successor of x, and x is the predecessor of y; ancestor is the transitive
closure of predecessor. Note that the presence of an assertion 〈(x, y) : r = `〉
in Â does not imply that y is a successor of x—it could also be the case that
this assertion was introduced by the inv-rule. We further denote by Âx the set
of all concept assertions from Â that involve the individual x, i.e. are of the
form 〈x : C = `〉 for some concept C and ` ∈ L. To ensure that the application
of the rules terminates, we need to add a blocking condition. We use anywhere
blocking [23], which is based on the idea that it suffices to examine each set Âx
only once in the whole ABox Â.

Let � be a total order on the individuals of Â that includes the ancestor
relationship, i.e. whenever y is a successor of x, then y � x. An individual y is
directly blocked if for some other individual x in Â with y � x, Âx is equal to Ây
modulo the individual names; in this case, we write Âx ≡ Ây and also say that
x blocks y. It is indirectly blocked if its predecessor is either directly or indirectly
blocked. A node is blocked if it is either directly or indirectly blocked. The rules



∃ and ∀ are applied to Â only if the node x that triggers their execution is not
blocked. All other rules are applied only if x is not indirectly blocked.

The total order � avoids cycles in the blocking relation. One possibility is
to simply use the order in which the individuals were created by the expansion
rules. Note that the only individual a that occurs in A, which is the root of the
tree-like structure represented by Â, cannot be blocked since it is an ancestor of
all other individuals in Â. With this blocking condition, we can show that the
size of Â is bounded exponentially in the size of A, as in the crisp case [23].

Lemma 16. Every application of expansion rules to A terminates after at most
exponentially many rule applications.

We say that Â contains a clash if it contains two assertions that are equal except
for their lattice value (see Definition 14). Â is complete if it contains a clash or
none of the expansion rules are applicable. The algorithm is correct in the sense
that it produces a clash iff O is not locally consistent (see [12] for details).

Lemma 17. O is locally consistent iff some application of the expansion rules
to A yields a complete and clash-free ABox.

Since the tableau rules are nondeterministic, Lemmata 16 and 17 together imply
that the tableaux algorithm decides local consistency in NExpTime.

Theorem 18. Local consistency in L-SHI w.r.t. witnessed models can be de-
cided in NExpTime.

As explained before, L-SHI has the n-witnessed model property for some n ≥ 1.
We have so far restricted our description to the case where n = 1. If n > 1, it
does not suffice to generate only one successor for every existential and universal
restriction, but one must produce n different successors to ensure that the degrees
guessed for these complex concepts are indeed witnessed by the model. The only
required change to the algorithm is in the rows ∃ and ∀ of Table 1, where we
have to introduce n individuals y1, . . . , yn, and 2n values `11, `12, . . . , `n1 , `n2 ∈ L
that satisfy

∨n
i=1 `

i
1 ⊗ `i2 = ` or

∧n
i=1 `

i
1 ⇒ `i2 = `, respectively.

5 Local Completion and Other Black-Box Reductions

In the following, we assume that we have a black-box procedure that decides local
consistency in a sublogic of L-SHI. This procedure can be, e.g. the tableau-
based algorithm from the previous section, or any other method for solving
this decision problem. We show how to employ such a procedure to solve other
reasoning problems for this sublogic.

5.1 Consistency

To reduce consistency of an arbitrary ontology O = (A, T ,R) to local consis-
tency, we first make sure that the information contained in A is consistent “in



itself”, i.e. if we only consider the individuals occurring in A. It then suffices to
check a local consistency condition for each of the individuals.

Let IndA denote the set of individual names occurring in A and sub(A, T ) the
set of all subconcepts of concepts occurring in A or T . We first guess a set Â of
equality assertions of the forms 〈a : C = `〉 and 〈(a, b) : r = `〉 with a, b ∈ IndA,
C ∈ sub(A, T ), r ∈ NR, and ` ∈ L. We then check whether Â is clash-free and
satisfies the tableau conditions listed in Table 1, except the witnessing conditions
∃ and ∀. Additionally, we impose the following condition on Â:

“If there is an assertion 〈α . `〉 in A, then there is `′ ∈ L such that `′ . `
and 〈α = `′〉 is in Â.”

We call Â locally complete iff it is of the above form and satisfies all of the above
conditions. Guessing this set and checking whether it is locally complete can be
done in polynomial time in the size of O.

Lemma 19. An ontology O = (A, T ,R) is consistent iff there is a locally com-
plete set Â such that Ox = (Âx, T ,R) is locally consistent for every x ∈ IndA.

The proof of this lemma can be found in [12] and uses similar methods as the
proofs for the results of the previous section.

Theorem 20. If local consistency in L-SHI can be decided in a complexity
class C, then consistency in L-SHI can be decided in any complexity class that
contains both NP and C.

This means that consistency in L-SHI is decidable in NExpTime. In [10], an
automata-based algorithm was presented that can decide satisfiability and sub-
sumption in L-ALCI in ExpTime. Moreover, if the TBox is acyclic, then this
bound can be improved to PSpace. The algorithm can easily be adapted to
decide local consistency. With the above reduction, this shows that consistency
in L-ALCI w.r.t. general and acyclic TBoxes can be decided in ExpTime and
PSpace, respectively. The same argument applies to any sublogic of L-SHI for
which local consistency can be decided in ExpTime or PSpace.

5.2 Satisfiability, Instance Checking, and Subsumption

To decide whether a concept C is strongly `-satisfiable w.r.t. O = (A, T ,R),
we can simply check whether (A ∪ {a : C ≥ `}, T ,R) is consistent for a new
individual name a not occurring in A. Thus, strong `-satisfiability is in the same
complexity class as consistency. Moreover, we can easily compute the set of all
values ` ∈ L such that the ontology (A∪{a : C ≥ `}, T ,R) is consistent by calling
the decision procedure for consistency a constant number of times, i.e. once for
each ` ∈ L. We can use this set to compute the best bound for the satisfiability
of C. Formally, the best satisfiability degree of a concept C is the supremum of
all ` ∈ L such that C is `-satisfiable w.r.t. O. Since we can compute the set of
all elements of L satisfying this property, obtaining the best satisfiability degree



requires only a supremum computation. As the lattice L is fixed, this adds a
constant factor to the complexity of checking consistency.

To check `-instances, we can exploit the fact that a is not an `-instance of
C w.r.t. O iff there is a model I of O and a domain element x ∈ ∆I such that
CI(aI) � `. This is the case iff there is a value `′ � ` such that the ontology
(A∪{a : C = `′}, T ,R) is consistent. Thus, `-instances can be decided by calling
the decision procedure for consistency a constant number of times, namely at
most once for each `′ ∈ L with `′ � `. We can also compute the best instance
degree for a and C, which is the supremum of all ` ∈ L such that a is an `-instance
of C w.r.t. O. Let L denote the set of all `′ such that ({a : C = `′}, T ,R) is
consistent. The best instance degree for a and C is the infimum of all `′ ∈ L
since∨

{` ∈ L | a is an `-instance of C} =
∨
{` ∈ L | ∀`′ � ` : `′ /∈ L}

=
∨
{` ∈ L | ∀`′ ∈ L : ` ≤ `′} =

∧
L.

Finally, note that C is `-subsumed by D iff a is an `-instance of C → D, where
a is a new individual name. Thus, deciding `-subsumption and computing the
best subsumption degree can be done using the same approach as above.

Lemma 21. If local consistency in L-SHI can be decided in a complexity class
C, then strong satisfiability, instance checking, and subsumption in L-SHI can
be decided in any complexity class that contains both NP and C.

This shows that strong satisfiability, instance checking, and subsumption in
L-SHI are in NExpTime. This bound reduces to ExpTime or PSpace if we
consider L-ALCI w.r.t. general or acyclic TBoxes, respectively [10].

6 Conclusions

We have studied fuzzy description logics with semantics based on complete resid-
uated De Morgan lattices. We showed that even for the fairly inexpressive DL
L-ALC, strong satisfiability w.r.t. general TBoxes is undecidable for some infi-
nite lattices. For finite lattices, decidability is regained. In fact, local consistency
can be decided with a nondeterministic tableaux-based procedure in exponen-
tial time. We conjecture that this upper bound can be improved to ExpTime
either by an automata-based algorithm or with the help of advanced caching
techniques [16]. However, automata-based approaches [10] can only deal with
local consistency and concept satisfiability.

Our reduction shows that any algorithm deciding local consistency suffices for
deciding consistency of ontologies, through the tableau-based local completion
described in Section 5.1. In particular, this yields tight complexity bounds for
deciding consistency in L-ALCI w.r.t. acyclic and general TBoxes–PSpace and
ExpTime, respectively. Other decision and computation problems can also be
solved using a local consistency reasoner as a black box.



The presented tableaux algorithm has highly nondeterministic rules, and as
such is unsuitable for an implementation. Most of the optimizations developed for
tableaux algorithms for crisp DLs, like the use of an optimized rule-application
ordering, can be transfered to our setting. However, the most important task is
to reduce the search space created by the choice of lattice values in most of the
rules. We plan to study these optimizations in the future.
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