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Abstract
We introduce and investigate the expressive description logic (DL) ALCSCC++, in

which the global and local cardinality constraints introduced in previous papers can be
mixed. On the one hand, we prove that this does not increase the complexity of satisfiability
checking and other standard inference problems. On the other hand, the satisfiability
problem becomes undecidable if inverse roles are added to the languages. In addition, even
without inverse roles, conjunctive query entailment in this DL turns out to be undecidable.
We prove that decidability of querying can be regained if global and local constraints are
not mixed and the global constraints are appropriately restricted. The latter result is
based on a locally-acyclic model construction, and it reduces query entailment to ABox
consistency in the restricted setting, i.e., to ABox consistency w.r.t. restricted cardinality
constraints in ALCSCC, for which we can show an ExpTime upper bound.

1 Introduction
Description Logics (DLs) [7] are a well-investigated family of logic-based knowledge representa-
tion languages, which are frequently used to formalize ontologies for application domains such
as biology and medicine [14]. To define the important notions of such an application domain
as formal concepts, DLs state necessary and sufficient conditions for an individual to belong
to a concept. These conditions can be Boolean combinations of atomic properties required for
the individual (expressed by concept names) or properties that refer to relationships with other
individuals and their properties (expressed as role restrictions). Using an example from [8], the
concept of a motor vehicle can be formalized by the concept description

Vehicle u ∃part.Motor,

which uses the concept names Vehicle and Motor and the role name part as well as the concept
constructors conjunction (u) and existential restriction (∃r.C). The concept inclusion (CI)

Motor-vehicle v Vehicle u ∃part.Motor
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then states that every motor vehicle needs to belong to this concept description. Numerical
constraints on the number of role successors (so-called number restrictions) have been used early
on in DLs [10, 16, 15]. For example, using number restrictions, motorcycles can be constrained
to being motor vehicles with exactly two wheels:

Motorcycle v Motor-vehicle u (6 2 part.Wheel) u (> 2 part.Wheel).

The exact complexity of reasoning in ALCQ, the DL that has all Boolean operations and
number restrictions of the form (6n r.C) and (>n r.C) as concept constructors, was determined
by Stephan Tobies [23, 25]: it is PSpace-complete without CIs and ExpTime-complete w.r.t.
CIs, independently of whether the numbers occurring in the number restrictions are encoded
in unary or binary. Note that, using unary coding of numbers, the number n is assumed to
contribute n to the size of the input, whereas with binary coding the size of the number n is
log n. Thus, for large numbers, using binary coding is more realistic.

Whereas number restrictions are local in the sense that they consider role successors of an
individual under consideration (e.g. the wheels that are part of a particular motor vehicle),
cardinality restrictions on concepts (CRs) [5, 24] are global, i.e., they consider all individuals
in an interpretation. For example, the cardinality restriction

(6 45000000 (Car u ∃registered-in.German-district))

states that at most 45 million cars are registered all over Germany. Such cardinality restrictions
can be seens as quantitative extensions of CIs since a CI of the form C v D can be expressed
by the CR (6 0 (C u ¬D)). The availability of CRs increases the complexity of reasoning: as
mentioned above, consistency in ALCQ w.r.t. CIs is ExpTime-complete, but consistency w.r.t.
CRs is NExpTime-complete if the numbers occurring in the CRs are assumed to be encoded in
binary [24]. With unary coding of numbers, consistency stays ExpTime-complete even w.r.t.
CRs [24], but the above example considering 45 million cars clearly shows that unary coding is
not appropriate if numbers with large values are employed.

In two previous publications we have, on the one hand, extended the DL ALCQ by more
expressive number restrictions using cardinality and set constraints expressed in the quantifier-
free fragment of Boolean Algebra with Presburger Arithmetic (QFBAPA) [17]. In the resulting
DL ALCSCC, which was introduced and investigated in [1], cardinality and set constraints are
applied locally, i.e., they refer to the role successors of an individual under consideration. For
example, we can state that the number of cylinders of a motor must coincide with the number
of spark plugs in this motor, without fixing what this number actually is, using the following
ALCSCC CI:

Motor v succ(|part ∩ Cylinder | = |part ∩ SparkPlug |).

It was shown in [1] that pure concept satisfiability in ALCSCC is a PSpace-complete problem,
and concept satisfiability w.r.t. a general TBox is ExpTime-complete. This shows that the more
expressive number restrictions do not increase the complexity of reasoning since reasoning in
ALCQ has the same complexity, as mentioned above.

On the other hand, we have extended the terminological formalism of the well-known de-
scription logic ALC1 from CIs not only to CRs, but to more general cardinality constraints
expressed in QFBAPA [8], which we called extended cardinality constraints (ECBoxes). These

1The DL ALC is the fragment of ALCQ in which only number restrictioins of the form (6 0 r.¬C) (written
∀r.C) and (> 1 r.C) (written ∃r.C) are available.
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constraints are global since they refer to all individuals in the interpretation domain. An ex-
ample of a constraint expressible this way, but not expressible using CRs is

2 · |Car u ∃registered-in.German-district u ∃fuel.Diesel|
≤ |Car u ∃registered-in.German-district u ∃fuel.Petrol|,

which states that, in Germany, cars running on petrol outnumber cars running on diesel by a
factor of at least two. It was shown in [8] that reasoning w.r.t. ECBoxes is still in NExpTime
even if the numbers occurring in the constraints are encoded in binary. The NExpTime lower
bound follows from the result of Tobies [24] CRs mentioned above. This complexity can be
lowered to ExpTime if a restricted form of cardinality constraints (RCBoxes) is used. Such
RCBoxes are still powerful enough to express statistical knowledge bases [19].

An obvious way to generalize these two approaches is to combine the two extensions, i.e.,
to consider extended cardinality constraints, but now on ALCSCC concepts rather than just
ALC concepts. This combination was investigated in [2], where a NExpTime upper bound was
established for reasoning in ALCSCC w.r.t. ECBoxes. It is also shown in [2] that reasoning
w.r.t. RCBoxes stays in ExpTime also for ALCSCC.

Here we go one step further by allowing for a tighter integration of global and local con-
straints. The resulting logic, which we call ALCSCC++, allows, for example, to relate the
number of role successors of a given individual with the overall number of elements of a certain
concept. For example, the ALCSCC++ concept description2

sat(|likes ∩ Cat | = |Cat |)

describes cat lovers, i.e., individuals that like all cats, independently of whether these cats
are related to them by some role or not. More generally, DLs that can express both local
cardinality constraints (i.e., constraints concerning the role successors of specific individuals)
and global cardinality constraints (i.e., constraints on the overall cardinality of concepts) can,
for instance, be used to check the correctness of statistical statements. For example, if a German
car company claims that they have produced more than N cars in a certain year, and P% of the
tires used for their cars were produced by Betteryear, this may be contradictory to a statement of
Betteryear that they have sold less than M tires in Germany. Such statistical information may,
of course, also influence the answers to queries. If we know that the car company VMW uses
only tires from Betteryear or Badmonth, but the statistical information allows us to conclude
that another car company has actually bought all the tires sold by Betteryear, then we know
that the cars sold by VMW all have tires produced by Badmonth. This motivates investigating
DLs with expressive cardinality constraints, and to consider not just standard inferences such
as satisfiability checking for these DLs, but also query answering.

In the present paper, we show that, from a worst-case complexity point of view, the ex-
tended expressivity of ALCSCC++ comes for free if we consider classical reasoning problems.
Concept satisfiability in ALCSCC++ has the same complexity as in ALC and ALCSCC with
global cardinality constraints: it is NExpTime-complete. However, if we add inverse roles, then
concept satisfiability becomes undecidable. In addition, for effective conjunctive query answer-
ing this logic turns out to be too expressive. We show that conjunctive query entailment w.r.t.
ALCSCC++ knowledge bases is, in fact, undecidable. In contrast, we can show that conjunctive
query entailment w.r.t. (an extension of) ALCSCC ERCBoxes is decidable. It is achieved by
a reduction from query entailement over arbitrary structures to query entailment over locally

2To distinguish between constraint expressions in ALCSCC and in ALCSCC++, which have a different
semantics, we use different keywords for them.
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acyclic graph, based on the three step model construction. Later, the ExpT ime upper bound
is achieved by employing Lutz [18] algorithm for CQ query entailment designed for ALCHQ.

We assume the reader to be sufficiently familiar with all the standard notions of description
logics [6, 9, 22].

2 The logic ALCSCC++

As in [1, 8], we use the quantifier-free fragment of Boolean Algebra with Presburger Arithmetic
(QFBAPA) to express our constraints. In this logic, one can build set terms by applying
Boolean operations (intersection ∩, union ∪, and complement ·c) to set variables as well as the
constants ∅ and U . Set terms s, t can then be used to state set constraints, which are equality
and inclusion constraints of the form s = t, s ⊆ t, where s, t are set terms. Presburger Arithmetic
(PA) expressions are built from integer constants and set cardinalities |s| using addition as well
as multiplication with an integer constant. They can be used to form cardinality constraints
of the form k = `, k < `,N dvd `, where k, ` are PA expressions, N is an integer constant, and
dvd stands for divisibility. A QFBAPA formula is a Boolean combination of set and cardinality
constraints. A solution σ of a QFBAPA formula φ assigns a finite set σ(U) to U and subsets
of σ(U) to set variables such that φ is satisfied by this assignment (see [1] for more details). A
QFBAPA formula φ is satisfiable if it has a solution. In [17] it is shown that the satisfiability
problem for QFBAPA formulae is NP-complete.

We are now ready to define our new logic, which we call ALCSCC++ to indicate that
it is an extension of the logic ALCSCC introduced in [1]. When defining the semantics of
ALCSCC++, we restrict the attention to finite interpretations to ensure that cardinalities of
concept descriptions are always well-defined non-negative integers.

Definition 1. Given disjoint finite sets NC and NR of concept names and role names, respec-
tively, ALCSCC++ concept descriptions (short: concepts) are Boolean combinations of concept
names and constraint expressions, where a constraint expression is of the form sat(c) for a set
constraint or a cardinality constraint c that uses role names and ALCSCC++ concept descrip-
tions in place of set variables. As usual, we use > ( top) and ⊥ (bottom) as abbreviations for
A t ¬A and A u ¬A, respectively.

A finite interpretation of NC and NR consists of a finite, non-empty set ∆I and a mapping
·I that maps every concept name A ∈ NC to a subset AI of ∆I and every role name r ∈ NR to
a binary relation rI over ∆I . For a given element d ∈ ∆I we define rI(d) := {e ∈ ∆I | (d, e) ∈
rI}. The interpretation function ·I is inductively extended to ALCSCC++ concept descriptions
by interpreting the Boolean operators as usual, and the constraint expressions as follows:
sat(c)I := {d ∈ ∆I | the mapping ·Id satisfies c}, where ·Id maps
• ∅ to ∅Id := ∅ and U to UId := ∆I ,

• the ALCSCC++ concept descriptions C occurring in c to CId := CI ,

• and the role names r occurring in c to rId := rI(d).
The ALCSCC++ concept description C is satisfiable if there is a finite interpretation I such
that CI 6= ∅.

Note that the interpretation of concepts as set variables in ALCSCC++ is global in the sense
that it does not depend on d, i.e., CId = CIe for all d, e ∈ ∆I . In contrast, the interpretation
of role names r as set variables is local since only the r-successors of d are considered by ·Id .
In ALCSCC, also the interpretation of concepts as set variables is local since in the semantics
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of ALCSCC the mapping ·Id considers only the elements of CI that are role successors of d for
some role name in NR.

Example 2. If A is a concept name and r is a role name, then the folowing is an ALCSCC++

concept description:

E := sat(|A| ≥ 4) u sat(A ⊆ r) u sat(|r| ≤ 3).

The first constraint expression requires that the overall size of the concept A is at least 4. Thus,
if I is an interpretation with |AI | ≤ 3, then no element of ∆I can belong to sat(|A| ≥ 4)I .
Otherwise, every element of ∆I belongs to sat(|A| ≥ 4)I . The second constraint says that
every element of A must be an r successor of the given individual. Thus, sat(A ⊆ r)I consists
of those elements of ∆I that are connected, via the role r, with every element of AI . The
third constraint is satisfied by those element of ∆I that have at most 3 r successors. Thus, the
third and the second constraint put together require that AI has at most 3 elements, which
contradicts the first constraint. Thus, we have seen that the concept E is actually unsatisfiable.

Using the syntax for ALCSCC introduced in [1], we can write the following ALCSCC concept
description

E′ := succ(A ⊆ r) u succ(|r| ≤ 3),

and state the global constraint |A| ≥ 4 in an ECBox. But now we have that E′ is satisfiable
w.r.t. this ECBox since the constraints in E′ are local. In fact, the first constaint in E′ is
satisfied by individuals for which every role successor that belongs to A is also an r successors
of this indiviudual. Together with the second constraint, this only implies that an individual
that belongs to E′ has at most three role successors belonging to A, but this does not constrain
the overall number of elements of A, and thus does not contradict the statement in the ECBox,
which is global. For example, an interpretation I consisting of 4 individuals belonging to A,
none of which has any role successors, is a model of the global constraint |A| ≥ 4, and every of
its elements belongs to E′. In contrast, none of the individuals in I belongs to the ALCSCC++

concept C since the second constraint of E is clearly violated.

The local successor constraints of ALCSCC can clearly be simulated in ALCSCC++ by using
C ∩ (

⋃
r∈NR

r) instead of C when formulating the constraint. Thus, ALCSCC concepts can be
expressed by ALCSCC++ concepts. In addition, extended cardinality constraints (ECBoxes),
as introduced in [8], are expressible within ALCSCC++ concept descriptions, as are nominals,
the universal role, and role negation.

Proposition 3. ALCSCC++ concepts can polynomially express nominals, role conjunctions,
and ALCSCC ECBoxes, and thus also ABoxes, ALC ECBoxes and ALCSCC TBoxes. In addi-
tion, they have the same expressivity as concepts of ALCSCC extended with the universal role
or with role negation, whereas both of these features are not expressible in plain ALCSCC.

Proof. ECBoxes correspond to Boolean combinations of concept descriptions of the form sat(c)
where c contains only concept descriptions as set variables. Since the concept descriptions
occurring in c are interpreted globally, such a constraint expression sat(c) is satisfied either by
no element of ∆I or by all of them. Consequently, their effect is to enforce the constraint on
the whole interpretation domain if they are conjoined to a concept description.

Nominals are concepts that must be interpreted as singleton sets. Given a concept name
A, we can enforce that it is interpreted as a singleton set using the constraint expression
sat(|A| = 1). Regarding role conjunction, the constraint sat(> ⊆ sat(t = r ∩ s)) ensures that,
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for every individual d, its t successors are exactly the individulas that are both its r and s
successors.

The constraint sat(> ⊆ sat(u = U)) ensures that u is the universal role since it says that the
u-successors of every indivudual are all the elements of the interpretatiin domain. Conversely,
if the universal role is available, then every indiuvidual has all indiuviduals as a role successors,
and thus the dofference between th semantics of ALCSCC and ALCSCC++ goes away.

Regarding role negation, for given role names r, r, the constraint sat(> ⊆ sat(r ∩ r ⊆ ∅))
enforces that, for every individual, the sets of its r and r successors are disjoint. In addition,
the constraint sat(> ⊆ sat(|r| + |r| = |U|)) says that elements of the domain that are not r
successors of a given individual must be r successors. Thus, we can express in ALCSCC++

that the role r is interpreteted as the complement of r, i.e. rI = ∆I ×∆I \ rI for every finite
interpretation I. Conversely, role negation allows us to express the universal role in ALCSCC:
the ALCSCC constraint sat(r∪¬r = u) is satisfied by an individual d if the set of its u successors
consists of it r and its ¬r successors, and thus all elements of the interpretation domain. Thus,
conjoining thus constraint at every place where u is used ensures that u really acts as the
universal role.

3 Satisfiability of ALCSCC++ concept descriptions
In the following we consider an ALCSCC++ concept description E and show how to test E
for satisfiability by reducing this problem to the problem of testing satisfiability of QFBAPA
formulae. Since the reduction is exponential and satisfiability in QFBAPA is in NP, this yields
a NExpTime upper bound for satisfiability of ALCSCC++ concept descriptions. This bound
is optimal since consistency of extended cardinality constraints in ALC, as introduced in [8],
is already NExpTime hard, and can be expressed as an ALCSCC++ satisfiability problem by
Proposition 3.

Our NExpTime algorithm combines ideas from the satisfiability algorithm for ALCSCC
concept descriptions [1] and the consistency procedure for ALC ECBoxes [8]. In particular,
we use the notion of a type, as introduced in [8]. This notion is also similar to the Venn
regions employed in [1]. Given a set of concept descriptionsM, the type of an individual in an
interpretation consists of the elements ofM to which the individual belongs. Such a type t can
also be seen as a concept description Ct, which is the conjunction of all the elements of t. We
assume in the following thatM consists of all subdescriptions of the concept description E as
well as the negations of these subdescriptions. In Example 2, the setM consists of

E,¬E, sat(|A| ≥ 4),¬sat(|A| ≥ 4), sat(A ⊆ r),¬sat(A ⊆ r), sat(|r| ≤ 3),¬sat(|r| ≤ 3), A,¬A.

Definition 4. A subset t ofM is a type for E if it satisfies the following properties:

1. for every concept description ¬C ∈M, either C or ¬C belongs to t;
2. for every concept description C uD ∈M, we have that C uD ∈ t iff C ∈ t and D ∈ t;
3. for every concept description C tD ∈M, we have that C tD ∈ t iff C ∈ t or D ∈ t.
We denote the set of all types for E with types(E). Given an interpretation I and an individual
d ∈ ∆I , the type of d is the set tI(d) := {C ∈M | d ∈ CI}.

It is easy to show that the type of an individual really satisfies the conditions stated in the
definition of a type. In our example, the following are the only types containing E:

t1 := {E, sat(|A| ≥ 4), sat(A ⊆ r), sat(|r| ≤ 3), A}, (1)
t2 := {E, sat(|A| ≥ 4), sat(A ⊆ r), sat(|r| ≤ 3),¬A}. (2)

6
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Due to Condition (1) in the definition of types, concept descriptions Ct, Ct′ induced by
different types t 6= t′ are disjoint, and all concept descriptions in M can be obtained as the
disjoint union of the concept descriptions induced by the types containing them, i.e., we have

CI =
⋃

t type withC∈t

CIt

for all C ∈ M and finite interpretations I. In particular, the following holds for all finite
interpretations I:

|CI | =
∑

t type withC∈t

|CIt | and |CIt | = |
⋂
C∈t

CI |,

where the latter identity is an immediate consequence of the definition of Ct as the conjunction
of all the elements of t. In our example, we have |EI | = |CIt1 |+ |C

I
t2 |.

Given a type t, the constraints occurring in the top-level Boolean structure of t induce a
QFBAPA formula ψt, in which the concepts C and roles r occurring in these constraints are
replaced by set variables XC and Xt

r, respectively. In our example, t1 and t2 contain the same
constraints, and the associated QFBAPA formulae are clearly unsatisfiable:

ψti = |XA| ≥ 4 ∧XA ⊆ Xti
r ∧ |Xti

r | ≤ 3 for i = 1, 2.

Note that set variables corresponding to concepts are independent of the type t, i.e., they are
shared by all types, whereas the set variables corresponding to roles are different for different
types. This corresponds to the fact that roles are evaluated locally, but concepts are evaluated
globally in the semantics of ALCSCC++. In order to ensure that the Boolean structure of
concepts is respected by the set variables, we introduce the formula

β =
∧

CuD∈M
XCuD = XC ∩XD ∧

∧
CtD∈M

XCtD = XC ∪XD ∧
∧
¬C∈M

X¬C = (XC)
c
.

Overall, we translate the ALCSCC++ concept E into the QFBAPA formula

δE := (|XE | ≥ 1) ∧ β ∧
∧

t∈types(E)

(|
⋂
C∈t

XC | = 0) ∨ ψt.

Intuitively, to satisfy E, we need to have at least one element in it, which explains the first
conjunct. The third conjunct together with β ensures that, for any type that is realized (i.e.,
has elements), the constraints of this type are satisfied.

In our example, β ensures that XE =
⋂
C∈t1 XC ∪

⋂
C∈t2 XC is satisfied. Together with

|XE | ≥ 1 this implies that there is an i ∈ {1, 2} such that |
⋂
C∈ti XC | > 0 must hold. But then

we need to satisfy ψti , which is impossible since this QFBAPA formula is unsatisfiable. Thus,
we have seen that δE is not solvable, which corresponds to the fact E is unsatisfiable.

The following two lemmas state that there is indeed a 1–1-relationship between solvability
of δE and satisfiability of E.

Lemma 5. If the ALCSCC++ concept description E is satisfiable, then the QFBAPA formula
δE is also satisfiable.

Proof. Assume that the finite interpretation I satisfies E, i.e., there is a d0 ∈ ∆I such that
d0 ∈ EI . We define σ(XC) := CI for all concepts C ∈M. Then we have d0 ∈ σ(XE), and thus
σ satisfies the cardinality constraint |XE | ≥ 1. In addition, σ clearly satisfies β. For example,

7
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σ(XCuD) = (C uD)I = CI ∩DI = σ(XC) ∩ σ(XD) = σ(XC ∩XD). For every type t we have
CIt =

⋂
C∈t C

I =
⋂
C∈t σ(XC) = σ(

⋂
C∈tXC), and thus σ(|

⋂
C∈tXC |) = 0 iff CIt = ∅.

Let t by a type such that σ(|
⋂
C∈tXC |) 6= 0. Then there is an individual d ∈ ∆I such that

d ∈ CIt . The semantics of ALCSCC++ then implies that we can extend σ to a solution of ψt
by interpreting the set variables with superscript t using the role successors of d:

σ(Xt
r) := {e | (d, e) ∈ rI}.

If t is a type such that σ(|
⋂
C∈tXC |) = 0, then it is not necessary for σ to satisfy ψt. We

can thus extend σ to the set variables with superscript t in an arbitrary way, e.g. by interpreting
all of them as the empty set. Overall, this show that we can use an interpretation satisfying E
to define a solution σ of δE .

Next, we show that the converse of Lemma 5 holds as well.

Lemma 6. If the QFBAPA formula δE is satisfiable, then the ALCSCC++ concept description
E is also satisfiable.

Proof. Assume that there is a solution σ of δE . We claim that, for every element e ∈ σ(U),
there is a unique type te such that e ∈

⋂
C∈te σ(XC). In fact, we can define te as

te := {C ∈M | e ∈ σ(XC)}.

Since σ satisfies β, the set te is indeed a type. For example, assume that C t D ∈ te. Then
e ∈ σ(XCtD) = σ(XC)∪σ(XD) iff e ∈ σ(XC) or e ∈ σ(XD) iff C ∈ te or D ∈ te. Satisfaction of
the other conditions in the definition of a type can be shown similarly. Regarding uniqueness,
assume that t is a type different from te. Then there is an element C ∈ M such that (modulo
removal of double negation) C ∈ te and ¬C ∈ t. But then e ∈ σ(XC) implies e 6∈ σ((XC)c) =
σ(X¬C), and thus e 6∈

⋂
D∈t σ(XD).

Let
Tσ := {t | t type with σ(|

⋂
C∈t

XC |) 6= 0}

be the set of all types that are realized by σ. Note that, by what we have shown above, we
have Tσ = {te | e ∈ σ(U)}.

We now define a finite interpretation I and show that it satisfies E. The interpretation
domain consists of copies of the realized types, where the number of copies is determined by σ:

∆I := {(t, j) | t ∈ Tσ and 1 ≤ j ≤ σ(|
⋂
C∈t

XC |)}.

Since for every element e ∈ σ(U) there is a unique type te such that e ∈
⋂
C∈te σ(XC), there is

a bijection π from σ(U) to ∆I such that π(e) = (t, j) implies that t = te.
For concept names A we define

AI := {(t, j) ∈ ∆I | A ∈ t}

and for role names r

rI := {((t, j), π(e)) | (t, j) ∈ ∆I ∧ e ∈ σ(Xt
r)}.

Since σ solves the constraint XE ≥ 1, there is a d0 ∈ σ(XE). Let t0 be the unique type such
that d0 ∈

⋂
C∈t0 σ(XC). Then we have σ(|

⋂
C∈t0 XC)|) 6= 0, and thus (t0, 1) ∈ ∆I . To show

that I satisfies E, it is sufficient to show that (t0, 1) ∈ EI .

8
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For this, we show the following more general claim: for all concept descriptions C ∈M and
all (t, j) ∈ ∆I we have

(t, j) ∈ CI iff C ∈ t. (3)

We show (3) by induction on the structure of C:
• Let C = A for A ∈ NC . Then (3) is an immediate consequence of the definition of AI for

concept names A.

• Let C = ¬D. Then induction yields (t, j) ∈ DI iff D ∈ t. By contraposition, this is the
same as (t, j) 6∈ DI iff D 6∈ t. By Condition 1 in the definition of types and the semantics of
negation, this is in turn equivalent to (t, j) ∈ (¬D)I iff ¬D ∈ t.

• Let C = D1 u D2. Then induction yields (t, j) ∈ DI1 iff D1 ∈ t and (t, j) ∈ DI2 iff D2 ∈ t.
From this, we obtain (t, j) ∈ (D1 uD2)I iff D1 uD2 ∈ t using Condition 2 in the definition
of types and the semantics of conjunction.

• The case where C = D1 tD2 can be handled similarly, using Condition 3 in the definition
of types and the semantics of disjunction.

• C = sat(c) be a constraint expression. First, assume that C ∈ t. Then the translation c′

of c using set variables XD and Xt
r is a conjunct in ψt. In addition, since (t, j) ∈ ∆I , we

have σ(|
⋂
D∈tXD|) 6= 0. Consequently, σ satisfies this translation c′. Thus, to show that

(t, j) ∈ CI , it is sufficient to show that the following holds:

1. π(σ(Xt
r)) = rI(t, j) and

2. π(σ(XD)) = DI for all concepts D occurring in the constraint c.

The first statement is an immediate consequence of the definition of the interpretation of the
roles in I.
To show the second statement, first assume that e ∈ σ(XD). Then π(e) = (te, j

′) where te
is the unique type such that e ∈

⋂
F∈te σ(XF ). Thus, e ∈ σ(XD) implies that D ∈ te. By

induction, we obtain π(e) = (te, j
′) ∈ DI . Second, assume that π(e) = (te, j

′) ∈ DI . Then
induction yields D ∈ te, and thus e ∈ σ(XD).

Conversely, assume that C 6∈ t. Then ¬ succ(c) ∈ t, and thus the translation ¬c′ of ¬c using
set variables XD and Xt

r is a conjunct in ψt. We can now proceed as in the first case, but
with ¬c and ¬c′ in place of c and c′.

This completes the proof of (3) and thus the proof of the lemma.

We have shown that the question of whether an ALCSCC++ concept description E is satisfi-
able can be reduced to checking whether the corresponding QFBAPA formula δE is satisfiable.
Since the size of δE is exponential in the size of E, this yields the following complexity result.

Theorem 7. Satisfiability of ALCSCC++ concept descriptions is NExpTime-complete inde-
pendently of whether the numbers occurring in these descriptions are encoded in unary or binary.

Proof. Since satisfiability of QFBAPA formulae can be decided within NP even for binary
coding of numbers [17], it is sufficient to show that the size of the QFBAPA formula δE is at
most exponential in the size of E. This is an easy consequence of the fact that there are at most
exponentially many types t since the cardinality of M is linear in the size of E. This implies
that the conjunction over all types in δE has only exponentially many conjuncts. The conjunct
for a type t is of the form (|

⋂
C∈tXC | = 0) ∨ ψt. Since every type contains only linearly many

9
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concepts, and these concepts have linear size, both (|
⋂
C∈tXC | = 0) and ψt is of polynomial

size. Obviously, (|XE | ≥ 1) has linear size, and the formula β has polynomial size since M
contains linearly many elements of linear size.

The NExpTime lower bound is inherited from consistency of ALC ECBoxes [8] due to
Proposition 3. As argued in [8], this lower bound already holds if number are encoded in unary
since one can use small ECBoxes to generate large numbers from small ones.

Thanks to Proposition 3, the NExpTime upper bound carries over to satisfiability of
ALCSCC++ knowledge bases, which may feature an ABox, a TBox and an ECBox.

4 Restricted Cardinality Constraints and ABoxes in ALCSCC
Recall that ALCSCC is the restriction of ALCSCC++ where concepts C in constraint expres-
sions occur only in the form C∩(

⋃
r∈NR

r). In the syntax of ALCSCC, we dispense with writing
the intersection with (

⋃
r∈NR

r) explicitely, and then realize the restriction to the role succes-
sors of the individual in question by defining the semantics of set variables corresponding to
concepts in the constraint expressions accordingly. Syntactically, we write succ(c) instead of
sat(c) to make clear that the constraint is to be interpreted locally by considering only the role
successors of the given individual (see [1] for a detailed introduction of the syntax and seman-
tics of ALCSCC). ALCSCC ECBoxes are basically ALCSCC++ concept descriptions that are
Boolean combinations of constraint expressions sat(c) where c contains only ALCSCC concept
descriptions as set variables, but now such expressions are not viewed as concept constructors,
but as terminological statements that may be true or false in an interpretation, corresponding
to the respective settings where the concept description contains all individuals (true) or no
individual (false) (see [8, 2] for a detailed introduction of the syntax and semantics of ECBoxes
in ALC and ALCSCC).

For the sub-logic ALC of ALCSCC, a restricted notion of cardinality boxes, called RCBoxes,
was introduced in [8], and it was shown that this restriction lowers the complexity of the
consistency problem from NExpTime to ExpTime. In [2] it was shown that the same is true for
ALCSCC. Here we prove that this result can be extended to consistency of ALCSCC ABoxes
w.r.t.ALCSCC RCBoxes. In the presence of ECBoxes, this extension is irrelevant since ECBoxes
can express nominals, and thus also ABoxes. However, this is not the case for RCBoxes. Below,
we actually consider an extension of RCBoxes, which were called ERCBoxes in [21].

Definition 8 (Syntax). Semi-restricted ALCSCC cardinality constraints are of the form

N1|C1|+ · · ·+Nk|Ck|+B ≤ Nk+1|Ck+1|+ · · ·+Nk+`|Ck+`|, (4)

where Ci are ALCSCC concept descriptions, Ni are integer constants for 1 ≤ i ≤ k + `, and B
is a non-negative integer constant. An extended restricted ALCSCC cardinality box (ERCBox)
is a positive Boolean combination of semi-restricted ALCSCC cardinality constraints.

An ALCSCC ABox is a finite set of concept assertions of the form C(a) and role assertions
r(a, b), where C is an ALCSCC concept description, r is a role name, and a, b are individual
names from a set NI of such names, which is disjoint with NC and NR. The set of all individual
names occurring in an ABox B is denoted as IndB.

The semantics of semi-restricted ALCSCC cardinality constraints and of ABoxes is defined
in the usual way.

10
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Definition 9 (Semantics). An interpretation I is a model of the semi-restricted ALCSCC
cardinality constraint (4) if

N1|CI1 |+ · · ·+Nk|CIk |+B ≤ Nk+1|CIk+1|+ · · ·+Nk+`|CIk+`|.

The notion of a model is extended to ERCBoxes using the usual interpretation of conjunction
and disjunction in propositional logic.

The interpretation I is a model of an ABox B if it satisfies aI ∈ CI for all concept assertions
C(a) ∈ B and (aI , bI) ∈ rI for all role assertions r(a, b) ∈ B.

Note that ALCSCC ECBoxes can express both ERCBoxes and ABoxes. Since ExpTime-
hardness already holds for consistency of restricted cardinality boxes (RCBoxes) in ALCSCC
without an ABox [8, 2], we obtain the following complexity lower bound. Actually, the hardness
proof does not require large number, and thus ExpTime-hardness even holds for unary coding
of numbers.

Proposition 10. The consistency of ALCSCC ERCBoxes w.r.t. ALCSCC ABoxes is ExpTime-
hard, independently of whether numbers are encoded in unary or binary.

Following the approach in [2] for consistency of ALCSCC RCBoxes, we show the ExpTime
upper bound for numbers encoded in binary using type elimination, where the notion of aug-
mented type from [1] is used, and a second step for removing types is added to take care of
the ERCBox, similarly to what is done in [8]. In addition, the ABox individuals are taken into
account by making them elements of exactly one augmented type.

The ExpTime upper bound for our procedure on the one hand depends on the following
lemma, which applies in our setting due to the special form of semi-restricted cardinality con-
straints. It is an extension of Lemma 10 in [8].

Lemma 11. Let φ be a system of linear inequalities consisting of A · v ≥ b and v ≥ 0, where
A,B are matrices of integer coefficients, b is a vector of non-negative integer parameters, and
v is the variable vector.

1. The solutions of φ are closed under addition.
2. If {v1, . . . , vk} is a set of variables such that, for all vi (1 ≤ i ≤ k), φ has a solution ci in

which the ith component c(i)i is not 0, then there is a non-negative integer solution c of φ
such that, for all i, 1 ≤ i ≤ k, the ith component c(i) of c satisfies c(i) ≥ 1.

3. Deciding whether φ has a non-negative integer solution can be done in polynomial time.

Proof. (1) Let c,d be two solutions of φ. Since all components of these vectors are non-negative,
this is clearly also the case for their sums. In addition, we have

A · (c + d) = A · c +A · d ≥ b + b ≥ b,

where the first inequality holds since c,d are solutions of φ, and the last inequality holds since
the components of b are non-negative.

(2) Given solutions ci as described in the second part of the lemma, the solution c satisfying
the stated properties can be obtained as their sum.

(3) It is well-known that solvability in the rational numbers of a system of inequalities of
the form stated in the lemma can be decided in polynomial time [13]. In addition, if φ has
a rational solution c, then it also has an integer solution. In fact, let D be the lcm of the
denominators of the components of c. Then D · c is an integer vector that is a solution of φ
due to closure under addition of solutions, as stated in the first part of the lemma.
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Another important ingredient of our ExpTime procedure are augmented types, which have
been introduced in [1] to show that satisfiability in ALCSCC w.r.t. concept inclusions is in
ExpTime. We use the notion of a type as introduced in Definition 4 (see also Definition 3 of
[2]), but extended such that it takes the ABox into account, i.e., as setM of all relevant concept
descriptions we use all subdescriptions of the concept descriptions occurring in R or B as well
as their negations. In addition, for every individual name a ∈ IndB,M contains this name and
its negation. We then call the types obtained this way types for R and B. Intuitively, a type
containing b ∈ IndB is supposed to represent the individual b. Our type elimination procedure
will ensure that, for every individual b exactly one type is available. However, ERCBoxes do
not allow us to express that this type should be realized by only one element of the model.
In our model construction, we will actually have several individuals that realize such a type,
and choose one of them to actually interpret the individual b. With respect to membership
in concepts, this “chosen” individual and its copies behave the same. However, to satisfy role
assertions we much ensure that role successors are always the chosen individuals. This can be
achieved by adding an appropriate cardinality constraint when defining augmented types (see
below).

Augmented types consider not just the concepts to which a single individual belongs, but
also the Venn regions to which its role successors belong. Basically, we define the notion of a
Venn region as in [1, 2], but extend it by (i) always considering the set of all set variables XD for
D ∈M and Xr for r ∈ NR rather than just the ones occurring in the given QFBAPA formula;
and (ii) additionally considering set variables Xb for all individuals b ∈ IndB. Again, a Venn
region containing b says that this element corresponds to the individual b ∈ IndB. But now
QFBAPA allows us to formulate constraints on the cardinality of the sets Xb. In particular,
by adding |Xb| ≤ 1 we can ensure that there is only one role successor that belongs to a type
containing b.

Given a type t for R and B, we consider the corresponding QFBAPA formula φt, which
is induced by the (possibly negated) successor constraints occurring in t. We conjoin to this
formula the set constraint

Xr1 ∪ . . . ∪Xrn = U ,

where NR = {r1, . . . , rn},3 as well as the cardinality constraints

|Xb| ≤ 1

for b ∈ IndB. In case a ∈ IndB belongs to t, we consider all role assertions r1(a, b1), . . . , rk(a, bk)
with a in the first component in B, and add the conjuncts

|Xb1 ∩Xr1 | ≥ 1, . . . , |Xbk ∩Xrk | ≥ 1.

For the resulting formula φ′t, we compute the number Nt that bounds the number of Venn
regions that need to be non-empty in a solution of φ′t (see Lemma 1 in [2]).

Definition 12. Let R be an ALCSCC ERCBox and B be an ALCSCC ABox. An augmented
type (t, V ) for R and B consists of a type t for R and B together with a set of Venn region V
such that |V | ≤ Nt and the formula φ′t has a solution in which exactly the Venn regions in V
are non-empty.

The existence of a solution of φ′t in which exactly the Venn regions in V are non-empty can
obviously be checked (within NP) by adding to φ′t conjuncts that state non-emptiness of the

3Without loss of generality we assume that NR contains only the role names occurring in R and B.
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Venn regions in V and the fact that the union of these Venn regions is the universal set (see the
description of the PSpace algorithm in the proof of Theorem 1 in [1]). Another easy to show
observation is that there are only exponentially many augmented types (see the accompanying
technical report of [1] for a proof of the following lemma).

Lemma 13. Let R be an ALCSCC ERCBox and B be an ALCSCC ABox. The set of augmented
types for R and B contains at most exponentially many elements in the size of R and B, and
it can be computed in exponential time.

The type elimination procedure checking the consistency of ALCSCC RCBoxes introduced
in [2] starts with the set of all augmented types, and then successively eliminates augmented
types

(i) whose Venn regions are not realized by the currently available augmented types, or
(ii) whose first component is forced to be empty by the constraints in R.

To make the first reason for elimination more precise, assume that A is a set of augmented types
and that v is a Venn region. In the following, let D denote an ALCSCC and b an individual
name. The Venn region v yields a set of concept descriptions Sv that contains, for every set
variable XD (Xb) occurring in v, the element D (b) in case v contains XD (Xb) and the element
¬D (¬a) in case v contains Xc

D (Xc
b ). It is easy to see that Sv is actually a subset ofM (modulo

removal of double negation).

Definition 14. Let A be a set of augmented types and v a Venn region, We say that v is
realized by A if there is an augmented type (t, V ) ∈ A such that Sv ⊆ t.

Since in the definition of Venn regions we assume that all concepts D ∈M and individuals
a ∈M are represented by set variables XD and Xa, the fact that both Venn regions and types
contain every concept or individual (set variable) either positively or negatively implies that,
modulo elimination of double negation, we actually have Sv = t whenever Sv ⊆ t. Note that
for some Venn regions v there may not be a type t such that Sv ⊆ t since in the definition of
Venn regions we do not consider the Boolean structure of concepts (e.g., a Venn region may
contain XCuD positively, but XD negatively). However this will not be a problem since in our
proofs we will always work with Venn regions that are contained in types.

Also note that the condition that Venn regions must be realized also takes care of role
assertions. In fact, consider an augmented type (t, V ) and assume that the type t contains a
and r(a, b) ∈ B. Then φ′t contains the conjuncts |Xb ∩ Xr| ≥ 1 and |Xb| ≤ 1. Consequently,
V contains a Venn region v in which Xr and Xb occur positively, and thus b ∈ Sv. If this
Venn region is realized by the augmented type (s,W ), then s must contain b (i.e., represent the
individual b). Intuitively, this ensures that a has r-successor b. In order to show this formally,
however, some more work is needed since we must ensure that a is actually linked to the copy
chosen to represent b rather than just to a type containing b (see the proof of Lemma 16 below).

We are now ready to formulate our algorithm. We assume without loss of generality that
B is non-empty, and thus contains at least one individual. In addition, we assume that R is a
conjunction of semi-restricted constraints, which we call a conjunctive ERCBox. We will argue
later why is is sufficient to restrict the attention to conjunctive ERCBoxes.

Algorithm 15. Let R be a conjunctive ALCSCC ERCBox and B 6= ∅ be an ALCSCC ABox.
First, we compute the setM consisting of all subdescriptions of R and B as well as the negations
of these subdescriptions, and then add to this set all individual names occurring in B and their
negations. Based on M, we compute the set Â of all augmented types for R and B. We now
decide consistency of B w.r.t. R by performing the following three steps:
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1. Compute all maximal subsets A of Â such that

(a) for every individual b ∈ IndB, there is exactly one augmented type (t, V ) ∈ A with b ∈ t,
(b) if (t, V ) ∈ A and b ∈ t for an individual b ∈ IndB, then C ∈ t for all concept assertion

C(b) ∈ B,

To achieve this, in a first step, we can remove all augmented types that do not satisfy con-
dition (1b). In case there is an individual b ∈ IndB such that all types containing b have
been removed, then the algorithm fails. Otherwise, choose for every b ∈ IndB exactly one of
the remaining augmented types whose first component contains b and remove all the other
augmented types containing b.

Check whether the following two steps succeed for one of the sets A computed this way.

2. If there is an individual b ∈ IndB such that A does not contain an augmented type (t, V )
such that b ∈ t, then the algorithm fails for the current set of augmented types. Otherwise,
it checks whether A contains an element (t, V ) such that not all the Venn regions in V are
realized by A. If there is no such element (t, V ) in A, then continue with the next step.
Otherwise, let (t, V ) be such an element, and set A := A\{(t, V )}. Continue with this step,
but now using the new current set of augmented types.

3. Let TA := {t | there is V such that (t, V ) ∈ A}, and let φTA be obtained from R by replacing
each |C| in R with

∑
t∈TA s.t. C∈t vt and adding vt ≥ 0 for each t ∈ TA. Check whether TA

contains an element t such that φTA ∧ vt ≥ 1 has no solution. If this is the case for t, then
remove all augmented types of the form (t, ·) from A, and continue with the previous step.
If no type t is removed in this step, then the algorithm succeeds.

Before proving that this algorithm runs in exponential time, we show that it is sound and
complete.

Lemma 16 (Soundness). Let R be a conjunctive ALCSCC ERCBox and B 6= ∅ an ALCSCC
ABox. If the Algorithm 15 succeeds on input R and B, then B is consistent w.r.t. R.

Proof. Assume that the algorithm succeeds on input R and B, and let A be the final set of
augmented types when the algorithm stops successfully. Note that A 6= ∅ since there is at least
one individual b in B, and thus the algorithm would have failed for an empty set of augmented
types. We show how A can be used to construct a model I of R and B.

For this construction, we first consider the formula φTA , which is obtained from R by
replacing each |C| in R with

∑
t∈TA s.t. C∈t vt and adding vt ≥ 0 for each t ∈ TA. Note that,

due to the special form of conjunctive ERCBoxes, we know that this yields a system of linear
inequalities of the form A · v ≥ b, v ≥ 0. Since the algorithm has terminated successfully, we
know for all t ∈ TA that the formula φTA ∧ vt ≥ 1 has a solution. By Lemma 11 this implies
that φTA has a solution in which all variables vt for t ∈ TA have a value ≥ 1 and all variables vt
with t 6∈ TA have value 0. In addition, given an arbitrary number N ≥ 1, we know that there
is a solution σN of φTA such that σN (vt) ≥ 1 and N |σN (vt) holds for all t ∈ TA. To see this,
note that we can just multiply with N a given solution satisfying the properties mentioned in
the previous sentence.

We use the augmented types in A to determine the right N :
• For each augmented type (t, V ), we know that the formula φ′t has a solution where exactly

the Venn regions in V are non-empty (see Definition 12). Assume that this solution assigns
a set of cardinality k(t,V ) to the universal set.
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• For each t ∈ TA, let nt be the cardinality of the set {V | (t, V ) ∈ A}, i.e., the number of
augmented types in A that have t as their first component.

We now define N as
N := (max{k(t,V ) | (t, V ) ∈ A}) ·

∏
t∈TA

nt,

and use the solution σN of φTA to construct a finite interpretation I as follows. The domain of
I is defined as

∆I := {(t, V )i | (t, V ) ∈ A and 1 ≤ i ≤ σN (vt)/nt}.

Note that σN (vt)/nt is a natural number since N |σN (vt) implies nt|σN (vt). In addition, ∆I 6= ∅
because A 6= ∅ and σN (vt)/nt ≥ 1 since σN (vt) ≥ 1. Moreover, for each type t ∈ TA, the set
{(t, V )i | (t, V )i ∈ ∆I} has cardinality σN (vt).

The interpretation of the concept names A is based on the occurrence of these names in the
first component of an augmented type, i.e.,

AI := {(t, V )i ∈ ∆I | A ∈ t}.

Individual names are treated similarly, however we need to ensure that an individual name is
interpreted by a single element of ∆I , and not by a set of cardinality > 1. First, note that, due
to step (1) and the failure condition in step (2), for each individual name a ∈ IndB, A contains
exactly one augmented type (t, V ) such that a ∈ t. Let us denote this augmented type with
(ta, Va). The interpretations domain may contain several copies of (ta, Va), but we interpret a
using the first one, i.e., we define

aI := (ta, Va)1.

Defining the interpretation of the role names is a bit more tricky. Obviously, it is sufficient
to define, for each role name r ∈ NR and each d ∈ ∆I , the set rI(d). Thus, consider an element
(t, V )i ∈ ∆I . Since (t, V ) is an augmented type in A, the formula φ′t has a solution σ in which
exactly the Venn regions in V are non-empty, and which assigns a set of cardinality m := k(t,V )

to the universal set. In addition, each Venn region w ∈ V is realized by an augmented type
(tw, V w) ∈ A. Assume that the solution σ assigns the finite set {d1, . . . , dm} to the set term U .
We consider an injective mapping π of {d1, . . . , dm} into ∆I such that the following holds for
each element dj of {d1, . . . , dm}: if dj belongs to the Venn region w ∈ V , then
• π(dj) = (tw, V w)` for some 1 ≤ ` ≤ σN (vtw)/ntw ;

• if w contains Xb for an individual name b ∈ IndB positively, then ` = 1.
Such a bijection exists since,
• σN (vtw)/ntw ≥ max{k(t′,V ′) | (t′, V ′) ∈ A} ≥ k(t,V ) = m;

• due to the presence of the cardinality constraints |Xb| ≤ 1 in the QFBAPA formula φ′t, there
is at most one individual dj that belongs to a Venn region w containing Xb positively. Any
other individual dk belongs to a different Venn region w′ not containing Xb positively, and
thus Sw ⊆ tw and Sw′ ⊆ tw

′
implies tw 6= tw

′
since b ∈ tw but b 6∈ tw

′
. This shows that

choosing the index ` = 1 when defining π(dj) is possible without getting into conflict with
the required choice of the index 1 for a different individual.

We now define
rI((t, V )i) := {π(dj) | dj ∈ σ(Xr)}.

First, note that this definition of the interpretation of roles in I satisfies the role assertions
in B. To see this, assume that r(a, b) ∈ B, and let aI = (ta, Va)1. Then a ∈ ta, which
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implies that φ′ta contains the cardinality constraint |Xb ∩ Xr| ≥ 1 as well as the constraint
|Xb| ≤ 1. Consequently, Va contains exactly one Venn region w that contains Xb and Xr

positively. Consider the solution of φ′ta used above to define rI((ta, Va)1), and let dj be the
unique individual belonging to Xb under this solution. Then this individual also belongs to Xr

under this solution, and we have π(dj) = (tw, V w)1 ∈ rI((ta, Va)1). In addition, tw contains
b since Sw contains b and Sw ⊆ tw. This shows that bI = (tw, V w)1, and thus that the role
assertion r(a, b) is satisfied by I.

To prove that I also satisfies the concept assertions in B and the ERCBox R, we first show
the following claim:

Claim: For all concept descriptions C ∈M, all augmented types (t, V ) ∈ A, and all i, 1 ≤ i ≤
σN (vt)/nt, we have C ∈ t iff (t, V )i ∈ CI .

We prove the claim by induction on the size of C:
• The cases C = A, C = ¬D, C = D1 uD2, and C = D1 tD2 can be handled as in the proof

of (3) in the proof of Lemma 6.

• Now assume that C = succ(c) for a set or cardinality constraint c.

– If C ∈ t, then this constraint is part of the QFBAPA formula φ′t obtained from t, and thus
satisfied by the solution σ of φ′t used to define the role successors of (t, V )i. According to
this definition, there is a 1–1 correspondence between the elements of σ(U) and the role
successors of (t, V )i. This bijection π also respects the assignment of subsets of σ(U) to
set variables of the form Xr (for r ∈ NR) and XD (for concept descriptions D) occurring
in φ′t, i.e.,

(∗) dj ∈ σ(Xr) iff π(dj) ∈ rI((t, V )i),
dj ∈ σ(XD) iff π(dj) ∈ DI .

Once (∗) is shown it is easy to see that (t, V )i ∈ succ(c)I = CI . In fact, the translation φc
of c, where r is replaced by Xr and D by XD, is a conjunct in φ′t and thus σ satisfies φc.
Now (∗) shows that (modulo the application of the bijection π), when checking whether
(t, V )i ∈ succ(c)I , roles r and concepts D in φc are interpreted in the same way as the set
variables Xr and XD in the solution σ of φ′t. Thus the fact that σ satisfies the conjunct φc
of φ′t implies that the role successors of (t, V )i satisfy c, i.e., (t, V )i ∈ succ(c)I holds. Note
that, though φ′t also contains set variables of the form Xb for individual names b, this is
not the case for φc since individuals occur only in the ABox and not in concepts.
For role names r, property (∗) is immediate by the definition of rI((t, V )i). Now consider
a concept description D such that XD occurs in φ′t. Then D occurs in c, and is thus
smaller than C, which means that we can apply induction to it. If dj ∈ σ(XD), then the
Venn region w to which dj belongs contains XD positively. Consequently, Sw contains D,
and the augmented type (tw, V w) realizing w satisfies D ∈ tw. By induction, we obtain
π(dj) = (tw, V w)` ∈ DI . Conversely, assume that π(dj) = (tw, V w)` ∈ DI , where w is the
Venn region to which dj belongs w.r.t. σ. By induction, we obtain D ∈ tw, and thus the
Venn region w contains XD positively. Since dj belongs to this Venn region, we obtain
dj ∈ σ(XD).

– The case where C 6∈ t can be treated similarly. In fact, in this case the constraint ¬c is
part of the QFBAPA formula φ′t obtained from t, and we can employ the same argument
as above, just using ¬c instead of c.

This finishes the proof of the claim. As an easy consequence of this claim we have for all C
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occurring in R that

CI = {(t, V )i | C ∈ t, (t, V ) ∈ A, and 1 ≤ i ≤ σN (vt)/nt}.

Consequently, |CI | =
∑
t∈TA s.t. C∈t σN (vt), which shows that I satisfies R since σN solves

φTA .
Finally, assume that C(a) ∈ B. Then aI = (ta, Va)1 and C ∈ ta. The claim thus yields

(ta, Va)1 ∈ CI , which shows that I also satisfies the concept assertions in B.

Next we show that the algorithm is also complete, i.e., whenever B is consistent w.r.t. R,
then it succeeds on this input.

Lemma 17 (Completeness). Let R be a conjunctive ALCSCC ERCBox and B 6= ∅ an ALCSCC
ABox. If B is consistent w.r.t. R, then Algorithm 15 succeeds on input R and B.

Proof. Assume that I is a model of R and B. Consider the set of all types of elements of I,
i.e., TI := {tI(d) | d ∈ ∆I}, where

tI(d) := {D ∈M | D concept description and d ∈ DI} ∪
{a ∈M∩NI | aI = d} ∪ {¬a ∈M | a ∈ NI , aI 6= d}.

It is easy to see that the elements tI(d) of TI are indeed types. In addition, for every a ∈ IndB,
there is exactly one type t in TI that contains a, which is tI(aI). Also note that C(a) ∈ B
implies aI ∈ CI , and thus C ∈ tI(aI). This shows that the types in TI satisfy the conditions
on the sets of augmented types computed in step (1) of the algorithm. However, we still need
to equip our types with Venn regions.

Consider t := tI(d) for an element d ∈ ∆I . We claim that the QFBAPA formula φ′t
corresponding to t has as solution the substitution σ in which the universal set U consists
of all the role successors of d, and the other set variables are assigned sets according to the
interpretations of individuals, roles, and concept descriptions in the model I. The fact that
d ∈ CI for all concept descriptions C ∈ t implies that σ satisfies φt, and the fact that σ(U)
consists of all the role successors of d implies that Xr1 ∪ . . . ∪ Xrn = U is also satisfied by σ.
The constraints |Xb| ≤ 1 for b ∈ IndB are satisfied since at most one role successors of d can be
equal to bI . If a ∈ IndB belongs to t, then t = tI(aI) and thus d = aI . If r(a, b) ∈ B, then bI
is an r-successor of d in I, and thus bI ∈ σ(Xb) ∩ σ(Xr). This shows that σ also satisfies the
cardinality constraints of the form |Xb ∩Xr| ≥ 1 in φ′t.

Now, let {d1, . . . , dm} = σ(U) be the set of all role successors of d in I, and wi the Venn
region to which di belongs w.r.t. σ. By Lemma 1 in [2], there is a solution σ′ of φ′t such that the
set V of non-empty Venn regions w.r.t. σ′ has cardinality ≤ Nt and each of these non-empty
Venn regions in V is one of the Venn regions wi, i.e., V ⊆ {w1 . . . , wm}. If a ∈ IndB belongs
to t and r(a, b) ∈ B, then there is an i such that di = bI . Note that the Venn region wi then
belongs to V since otherwise σ′ could not be a solution of |Xb ∩Xr| ≥ 1.

By construction, (t, V ) is an augmented type. Let AI denote the set of augmented types
obtained by extending the types in TI in this way for every d ∈ ∆I . By construction, for every
t ∈ TI there is a set of Venn regions V such that (t, V ) ∈ AI . It is easy to see that AI satisfies
the conditions (1a) and (1b) considered in the first step of the algorithm, and thus there is a
set of augmented types A computed in this first step such that AI ⊆ A. We now perform the
other steps using A as a starting point.

First, note that no element of AI can be removed in Step 3 of our algorithm. This is an
easy consequence of the following observation. Let T be a set of types such that TI ⊆ T , and
let φT be obtained from R by replacing each |C| in R with

∑
t∈T s.t. C∈t vt and adding vt ≥ 0
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for each t ∈ T . Since I is a model of R, it is easy to see that φT has a solution that also satisfies
vt ≥ 1 for all t ∈ TI .

Next, we show that the Venn regions occurring in some augmented type in AI are realized
by AI . Thus, let (t, V ) be an augmented type constructed from a type t = tI(d) as described
above, and let w ∈ V be a Venn region occurring in this augmented type. Then there is a role
successor di of d such that di belongs to the Venn region w = wi w.r.t. the solution σ of φ′t
induced by I. We know that di ∈ DI for all D ∈ Sw, and thus Sw ⊆ tI(di). Since AI contains
an augmented type with first component tI(di), this shows that w is realized by AI .

We claim that, in a the run of Algorithm 15, we always have AI ⊆ A and TI ⊆ TA.
Obviously, this is true when we enter the second step for the first time with the set A satisfying
AI ⊆ A. In addition, in Step 2 of our algorithm, no element of AI can be removed since we
have seen that the Venn regions occurring in some augmented type in AI are realized by AI .
Finally, we have also seen above that, in Step 3 of our algorithm, no element of TI = TAI can
be removed.

Since AI contains, for every a ∈ IndB, an augmented type (t, V ) such that a ∈ t, the
algorithm cannot fail. This completes the proof of completeness.

We have now proved that both the positive and the negative answers given by the algorithm
are correct. This allows us to show our ExpTime complexity upper bound.

Theorem 18. Consistency of ALCSCC ABoxes w.r.t. ALCSCC ERCBoxes is an ExpTime-
complete problem.

Proof. Given an arbitrary, not necessarily conjunctive ERCBox R, we consider all Boolean
valuations of the semi-restricted cardinality constraints occurring in R, and collect those that
evaluate the positive Boolean structure of R to true. For each of these valuations ρ, we con-
sider the conjunctive ERCBox Rρ that is the conjunction of all the semi-restricted cardinality
constraints evaluated to true by ρ. There are exponentially many such conjunctive ERCBoxes
Rρ, but each of them has a size that is linearly bounded by the size of R. In addition, R is
satisfiable iff one of the conjunctive ERCBox Rρ obtained this way is satisfiable.

Thus, it remains to prove that Algorithm 15 indeed runs in exponential time on conjunctive
ERCBoxes. To see this, first note that, according to Lemma 13, there are only exponentially
many augmented types, and they can be computed in exponential time. In the first step, we
first need to check whether condition (1b) is satisfied for exponentially many augmented types.
This can clearly be done in exponential time. Then, we consider all possible ways of choosing,
for every individual a, an appropriate augmented type. Since the number of individuals is
polynomial and for each one there are at most exponentially many augmented types containing
this individual in the first component, there are only exponentially many sets that can be
generated by a combination of these choices.

For each of the sets generated in the first step, the iteration between the other two steps can
happen only exponentially often since in each iteration at least one augmented type is removed.
A single Step 2 takes only exponential time since for each of the exponentially many augmented
types (t, V ), only exponentially many other augmented types need to be considered. Finally,
a single Step 3 takes only exponential time. In fact, we need to consider exponentially many
systems of linear inequalities φTA ∧ vt ≥ 1. Each of these systems may be of exponential size,
but its solvability can be tested in time that is polynomial in this size, and thus exponential in
the size of the input. Lemma 11 is applicable since adding vt ≥ 1 does not destroy the specific
form of the system required by the lemma.
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One might ask whether the approach used here to deal with individuals in ABoxes could
also be used to treat nominals in concept descriptions, where a nominal is a concept that must
be interpreted as a singleton set. As usual in Description Logic, we write such a nominal as {o}
where o is an individual name. The answer to the above question is, unfortunately, negative.
From a technical point of view, the claim in the proof of Lemma 16 is no longer correct since
for a nominal it only holds for i = 1, but not for i > 1. However, in the induction assumption
we would need this for arbitrary i and not just for i = 1. Using a reduction from [25], it is
actually easy to see that adding nominals increases the complexity of ERCBox consistency from
ExpTime to NExpTime even for ALC. As usual, we use O in the name of the DL to indicate
the presence of nominals.

Proposition 19. Consistency of conjunctive ALCO ERCBoxes is NExpTime-complete.

Proof. Membership in NExpTime follows from the fact that ALCO ERCBox can be expressed
using ALC ECBoxes, whose consistency problem was shown to be in NExpTime in [8].

In [25], Tobies has shown that consistency of ALCQ CBoxes is NExpTime-hard, using a re-
duction from a bounded tiling problem. Looking closer at this reduction, one sees that actually
only ALC concept descriptions, ALC GCIs, and cardinality restrictions of the forms (≥ 1C),
(≤ 1C), and (≤ 2n·2n C) for ALC concepts C are needed. GCIs and cardinality restrictions
(≥ 1C) can easily be expressed using semi-restricted cardinality constraints, as introduced in
Definition 8. Using a new nominal {o}, we can express (≤ 1C) as |C| ≤ |{o}|. To express
(≤ 2n·2n C), we need a new nominal and additional auxiliary new concept names: the con-
straints

|A0| ≤ |{o}| ∧ |A1| ≤ 2|A0| ∧ . . . ∧ |A2n| ≤ 2|A2n−1|

ensures that the cardinality of A2n is bounded by 22n = 2n·2n.

5 Undecidability of ALCISCC++

We next observe that a seemingly harmless extension of ALCSCC++ turns the satisfiability
problem undecidable. We obtain ALCISCC++ by adding role inverses to ALCSCC++ by
additionally allowing expressions of the form r− for any r ∈ NR in all places where role names
are allowed to occur. The semantics of the expression r− is defined by (r−)I = {(e, d) | (d, e) ∈
rI}. The key insight for showing our result is that adding this feature enables us to encode
multiplication of concept extensions, allowing for a reduction from Hilbert’s tenth problem. We
first provide an example illustrating how “class extension multiplication” can be expressed.

Example 20. In order to express that the cardinality of a concept C coincides with the product
of the cardinalities of concepts A and B, we employ two auxiliary roles r and s. We first enforce
that role r connects precisely each member of A with every member of B:

A ≡ ∃r.> B ≡ ∃r−.> A v sat(B = r) B v sat(A = r−)

Next, we make sure that every domain element has precisely as many outgoing r roles as out-
going s roles:

> v sat(|r| = |s|)

Moreover, the elements with incoming s roles are precisely the instances of concept C:

C ≡ ∃s−.>
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Finally, no element can have more than one incoming s role (in other words, s is inverse
functional):

> v sat(|s−| ≤ 1)

A construction very much along the lines of the given example allows us to express Hilbert’s
tenth problem as an ALCISCC++ concept satisfiability problem and hence establish undecid-
ability of the latter.

Theorem 21. Satisfiability of ALCISCC++ concept descriptions is undecidable.

Proof. We show the claim via a reduction from Hilbert’s tenth problem, i.e., the solvability of
Diophantine equations. Note that any Diophantine equation D can be transformed (possibly
introducing fresh auxiliary variables) into a system E of equations, where each equation has one
of the following three forms: (i) x = y · z, (ii) x = y+ z, or (iii) x = n, for a natural number n,
such that D has an integer solution if and only if E has a solution in the natural numbers.

Given such a system E of equations over a set V ar of variables, we now construct an
ALCISCC++ concept expression CE containing concept names Ax for all variables x occurring
in E , such that satisfiability of CE coincides with the existence of a natural solution for E . We
let CE =

d
eq∈E Ceq, where Ceq stands for

• the concept expression C1
eq u C2

eq u C3
eq u C4

eq if eq is of the form x = y · z, where

– C1
eq = sat

(
¬Ay ⊆ sat(|seq|=0)

)
,

– C2
eq = sat

(
Ay ⊆ sat(|seq|=|Az|)

)
,

– C3
eq = sat

(
> ⊆ sat(|s−eq|≤1)

)
, and

– C4
eq = sat

(
Ax = sat(|s−eq|≥1)

)
.

• sat(|Ax| = |Ay|+ |Az|) if eq is of the form x = y + z,

• sat(|Ax| = n) if eq is of the form x = n.
We now show that E has a solution in the natural numbers if and only if CE is satisfiable.

For the “if” direction, assume there is some finite interpretation I and domain element
d ∈ ∆I such that d ∈ CIE . Let σ : V ar → N be the variable assignment mapping every variable
x in E to |AIx |. Then, clearly, σ maps every equation eq of the form (ii) or (iii) to a true
statement due to δ ∈ CIeq. Now consider some equation x = y + z of the form (i). For this, we
obtain

|AIx | = |(sat(|s−|≥1))I | due to C4
eq

= |{e | (e′, e) ∈ sIeq}|
= |{(e′, e) | (e′, e) ∈ sIeq}| due to C3

eq

= |sIeq|
=
∑
e′∈∆I |{e | (e′, e) ∈ sIeq}|

=
∑
e′∈AIy

|{e | (e′, e) ∈ sIeq}| due to C1
eq

=
∑
e′∈AIy

|AIz | due to C2
eq

= |AIy | · |AIz |,
which finishes the proof of the “if” direction.

For the “only if” direction, let σ : V ar → N be a variable mapping satisfying all equations
in E . We now construct a model I of Ceq as follows:
• ∆I = {n ∈ N | 1 ≤ n ≤ maxv∈V ar σ(v)}

• AIv = {n ∈ N | 1 ≤ n ≤ σ(v)}
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• sIx=y·z = {(i, k · σ(z) + i) | 0 ≤ k ≤ σ(y)− 1, 1 ≤ i ≤ σ(z)}
It is straightforward to check modelhood of I. This concludes the “only if” direction and hence
the proof.

6 Query entailment in ALCSCC++

The final result of this section is the undecidability of conjunctive query entailment forALCSCC++.
To this end, we first briefly recap the notion of (Boolean) conjunctive queries and define query
entailment.

In queries, we use variables from a countably infinite set V . A Boolean conjunctive query
(CQ) q is a finite set of atoms of the form r(x, y) or C(z), where r is a role, C is concept,
and x, y, z ∈ V . A CQ q is satisfied by I (written: I |= q) if there is a variable assignment
π : V → ∆I (called match) such that (π(x), π(y)) ∈ rI for every r(x, y) ∈ q and π(z) ∈ CI
for every C(z) ∈ q. A CQ q is (finitely) entailed from a knowledge base K (written: K |= q) if
every (finite) model I of K satisfies q.

We actually show undecidability of CQ entailment for a much weaker logic, thereby providing
a very restricted fragment of constant-free and equality-free two-variable first-order logic for
which finite CQ entailment is already undecidable, significantly strengthening and solidifying
earlier results along those lines [20]. Our proof makes use of deterministic Turing machines
(DTMs). For our purposes, it is sufficient to consider only computations starting with an
empty tape. For space reasons, we assume the reader to be familiar with standard notions and
constructions concerning DTMs. We call a DTM looping if its run starting contains repeating
configurations,i.e., there are two different (and hence – due to determinism – infinitely many)
points in time, where the machine’s tape content, head position, and state are the same. It is
easy to see that the problem of determining if a given TM is looping is undecidable.

We show our undecidability result for the DLALCcov, a slight extension ofALC by role cover
axioms of the form cov(r, s) for role names r and s. An interpretation I satisfies cov(r, s) if
rI∪sI = ∆I×∆I . Role cover axioms can be expressed in ALCSCC++ via sat

(
> ⊆ sat(|r∪s| =

|U|)
)
, hence ALCcov is subsumed by ALCSCC++.

In what follows, assume that a DTM M is given. We now describe an ALCcov TBox T
and conjunctive query q such that T |= q exactly if M is not looping. We provide q and T
together with the underlying intuitions of our construction. The goal of our construction is
that a countermodel (i.e., an interpretation satisfying T but not q) corresponds to a looping
configuration sequence of M. Thereby, the domain elements represent tape cells at certain
computation steps ofM. The role h connects consecutive tape cells of the same configuration,
whereas the role v connects a configuration’s tape cell with the same tape cell of the successor
configuration.

We start by providing the query. Intuitively, the query is meant to catch the unwanted
situation that two corresponding tape cells of consecutive configurations are v-connected, but
the cells to their right aren’t.

q = ∃x, y, x′, y′.v(x, y) ∧ h(x, x′) ∧ h(y, y′) ∧ v(x′, y′) (5)

We proceed by giving the axioms of T . The following covering axiom ensures that, whenever
two elements are not v-connected, they must be v-connected. This is needed to enable the
above query to catch the described problem.

cov(v, v) (6)
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Table 1: TBox axioms for DTM implementation
> v ∃aux.(TapeStart u InitConf u Stateqini

) (7)

> v ∃h.> u ∃v.> (8)

TapeStart v ∀v.TapeStart (9)

InitConf v ∀h.InitConf InitConf v Symbol2 (10)

Stateq v ∀h.NoHeadR NoHeadR v ∀h.NoHeadR NoHeadR v NoHead (11)
∃h.Stateq v NoHeadL ∃h.NoHeadL v NoHeadL NoHeadL v NoHead (12)

Stateq uNoHead v ⊥ (13)

Symbolσ u Symbolσ′ v ⊥ Stateq u Stateq′ v ⊥ (14)

NoHead u Symbolσ v ∀v.Symbolσ (15)

Stateq u Symbolσ v ∀v.(Symbolσ′ u ∀h.Stateq′) (16)
∃h.(Stateq u Symbolσ) v ∀v.(Stateq′ u ∀h.Symbolσ′) (17)

TapeStart u Stateq u Symbolσ v ∀v.(Stateq′ u Symbolσ′) (18)

The remaining TBox axioms can be found in Table 1. Axiom 7 ensures (by means of an
auxiliary role aux which serves no further purpose) that there is a first tape cell of the first
(initial) configuration where the head of the TM is positioned in the initial state. Axiom 8
enforces that for every cell of every configuration there is both a tape cell to its right and a
corresponding tape cell in the successor configuration. Axiom 9 makes sure that, for every cell
that is the first on its tape, the corresponding successor configuration’s tape cell is also the first.
Axioms 10 propagates the information that a cell belongs to the initial configuration along the
tape, and fills the tape with blanks. Axioms 11–13 (instantiated for every state q) make sure
that in every configuration there can only be one cell where the head is positioned. Every cell
can only carry one symbol and the head can be in only one state, as ensured by Axioms 14 (for
distinct symbols σ, σ′ and distinct states q, q′). Thanks to Axiom 15, symbols on head-free cells
carry over to the next configuration. As specified by the DTM’s transition function, the head
reads a symbol σ, writes a symbol σ′, changes its state from q to q′ and moves right (Axiom 16)
or left (Axiom 17) or stays in its place whenever it is supposed to move left but is already at
the leftmost tape cell (Axiom 18). This finishes the description of the TBox T , allowing us to
establish the claimed property and consequenty the undecidability result.

Proposition 22. M is looping iff there is a finite model I of T with I 6|= Q.

Theorem 23. Finite CQ entailment over ALCcov TBoxes is undecidable.

Proof. According to Proposition 22, the TM looping problem can be reduced to the problem
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if for a given ALCcov TBox T and conjunctive query q, there is a finite interpretation I with
I |= T with I 6|= q. Note that the latter is the case exactly if T does not finitely entail q.

Finally, taking into account that ALCSCC++subsumes ALCcov and only allows for finite
models, we obtain the wanted result.

Corollary 24. Conjunctive query entailment for ALCSCC++is undecidable.

7 Decidable querying for ALCSCC
In stark contrast to the undecidability result just presented, we prove that conjunctive query
entailment by ALCSCC ABoxes w.r.t. ALCSCC ERCBoxes is only ExpTime-complete, thus
not harder than deciding knowledge base consistency for plain ALC.

Our result employs a construction by Lutz [18], but careful and non-trivial argumentation
is needed to show that the idea, conceived for arbitrary models, carries over to our finite-model
case. The approach reduces entailment of some CQ q to an exponential number of ExpTime
inconsistency checks in the spirit of Theorem 18, resulting in an overall ExpTime procedure.
In their entirety, these mentioned checks verify if some model exists that does not admit any
matches of q having a specific, forest-like shape.

It remains to argue that these specific, forest-shaped query matches of q are the only ones
that matter for checking entailment. To this end, we show that all other matches can be
“removed” by a model transformation consisting of the following three consecutive steps: (i)
forward-unraveling, resulting in possibly-infinite structures (in Section 7.1.1) then (ii) cautious
collapsing to regain finiteness while keeping the model “forest-like enough” for small conjunctive
queries to match only in a tree-shaped way (in Section 7.1.2) and finally (iii) enriching the model
by copies of domain elements to again satisfy the global counting constraints which had possibly
become violated in the course of the previous steps (in Section 7.1.3.

To the end of this Section let K0 = (A0, T0,R0) be an ALCSCC knowledge base composed of
an ABox A0, a Tbox T0 and an ERCBox R0. Without loss of generality we will assume that K0

is normalized, i.e. all concepts appearing in T0 are of depth at most one and all concepts
occurring in A0 and R0 are atomic. This can be done via a routine transformations.

7.1 The construction of sufficiently tree-like models

We start with some preliminary definitions on morphism, neighbourhoods and bisimulations.

Morphisms. A homomorphism from an interpretation I to an interpretation J is a func-
tion h : I → J satisfying for all concept names A and all role names r the following properties:
if d ∈ AI then h(d) ∈ AJ and if (d, d′) ∈ rI then

(
h(d), h(d′)

)
∈ rJ . An isomorphism is a

bijection f such that both f and f−1 are homomorphisms.

Neighbourhoods. For a given interpretation I and an element d ∈ ∆I we denote with SuccI(d)
the set of role successors of d, i.e. the set

⋃
r∈NR

{d′ : (d, d′) ∈ rI}. Note that it is possible
that d ∈ SuccI(d). The forward neighbourhood (or simply neighbourhood) NI(d) of d is the in-
terpretation NI(d) = (∆NI(d), ·NI(d)) such that ∆NI(d) = SuccI(d)∪{d}, ANI(d) = AI ∩∆NI(d)

for any concept name A ∈ NC and rNI(d) = rI ∩ ({d} ×∆I) for any role name r ∈ NR.
The next definition introduces a notion of bisimulation tailored to normalized ALCSCC kbs.
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Definition 25. Let I,J be interpretations with d ∈ I, d′ ∈ J . We say that d and d′ are
forward-neighbourhood bisimilar (or simply bisimilar), denoted with d ≡fb d

′, if there exist a
function f : NI(d)→ NJ (d′) (called bisimulation) satisfying the following conditions:
• f : NI(d)

∣∣
SuccI(d)

→ NJ (d′)
∣∣
SuccJ (d′)

is a bijection, and

• For all d′ ∈ NI(d), for all concept names A ∈ NC and all role names r ∈ NR equivalences
d′ ∈ AI ⇔ f(d′) ∈ AJ and (d, d′) ∈ rI ⇔ (f(d), f(d′)) ∈ rJ hold.

The following observation simplifies most of the forthcoming proofs. It can be either shown
by a straightforward structural induction over the shape of ALCSCC concepts or deduced from
Proposition 2 from [4], where the notion of ALCQt–bisimulation was developed.

Observation 26. Let I |= K be a model of a normalized ALCSCC knowledge base K. For any
two domain elements d, d′ ∈ ∆I , if d and d′ are bisimilar then they satisfy the same ALCSCC
concepts of depth at most one.

7.1.1 Forward-unravelings of finite models

For a finite interpretation I with ∆Inamed we denote those elements d ∈ ∆I for which aI = d
holds for some individual name a ∈ IndA.

Definition 27. Let I be a finite interpretation. We define a forward-unraveling I→ = (∆I
→
, ·I→)

of I as a (potentially infinite) interpretation satisfying the following conditions:
• ∆I

→
= (∆I)+ \

(
∆Inamed ·∆Inamed · (∆I)∗

)
In words, ∆I

→
consists of all nonempty sequences of elements from ∆I except those, where

the first two elements are named in I.

• For any a ∈ IndA, let aI
→

= aI , i.e. a is interpreted by the one-element sequence consisting
of the named element aI from I.4

• For concept names A, we let AI
→

= {w | last(w) ∈ AI}, where for a given element w ∈ ∆I
→

we use last(w) to denote the last5 d ∈ ∆I in the sequence w.

• For role names r, we let rI
→

= rI ∩ (∆Inamed ×∆Inamed) ∪ {(w,wd) | (last(w), d) ∈ rI}.

The notion of forward-unravelings differs only slightly from the classical notion of unraveling.
The only difference is that the sequences starting from two named individuals are excluded from
the domain and that roles linking named inviduals are assigned manually by the last item from
Definition 27. It is not surprising that forward-unravellings preserve satisfaction of ALCSCC
Aboxes and Tboxes as well as conjunctive query non-entailment. The proof is standard and
hinges on the fact that w ∈ ∆I

→
and last(w) ∈ ∆I satisfy the same ALCSCC concepts. For

CQ non-entailment it is enough to see that last(·) is a homomorphism from I→ to I.

Lemma 28. For any normalized ABox A and any finite interpretation I, if I |= A holds, then
also I→ |= A holds.

Proof. Take an arbitrary normalized ABox A as well as arbitrary finite interpretation I. As-
sume that I |= A holds. Note that ∆Inamed = ∆I

→

named holds since we agreed that we will not

4For convenience, we will not syntactically distinguish elements from ∆I and one-element sequences
from ∆I→ ; in particular this means ∆I ⊆ ∆I→ .

5We define first(w) analogously.
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syntactically distinguish elements from ∆I and one-element sequences. First, see that satisfac-
tion of assertions of the form A(a) ∈ A is guaranteed due to the third point of Definition 27 and
the fact that the property last(w) = w holds for any w ∈ ∆I

→

named. Second, we can conclude that
any assertion of the form r(a, b) ∈ A is also satisfied in I→, due to the last item of Definition 27,
more precisely the fact that rI ∩ (∆Inamed ×∆Inamed) ⊆ rI→ holds. Hence I→ |= A.

An important step towards proving that forward unravelings preserve normalized ALCSCC
TBoxes is to show that any sequence w ∈ ∆I

→
is forward-bisimilar to last(w) ∈ ∆I , i.e, the

element from which w originated.

Lemma 29. Let K = (A, T ,R) be a normalized ALCSCC knowledge base and let I be its
arbitrary finite model. Then for all domain elements d ∈ ∆I and all sequences w ∈ ∆I

→
the

implication d = last(w)⇒ d ≡fb w holds.

Proof. We define a function f : NI→(w) → NI(d), which maps the neighbourhood of w in I→
to the neighbourhood of d in I, as f(x) = last(x). The definition of f is sound, since last(d) is
defined uniquely for each sequence from (∆I)+. Moreover, see that f−1 : NI(d) → NI→(w) is
defined as f−1(x) = x for named individuals and f−1(x) = wx otherwise, which is also sound
due to the second and the last item of Definition 27.

We will first show that f : NI→(w)
∣∣
SuccI→ (w)

→ NI(d)
∣∣
SuccI(d)

is a bijection. One can show
it by proving that equations f◦ f−1 = id = f−1 ◦ f hold, where id is the identity function and ◦ is
a function-composition operator. Take an arbitrary element w from NI→(w) and assume that
both w,w′ are named. Then w = last(w) and w′ = last(w′) (since we identify named individuals
with one-element sequences) and the following equations hold:

f(f−1(w′)) = f(w′) = last(w′) = w′ = f−1(w′) = f−1(last(w′)) = f−1(f(w′)).

Now assume that one of w,w′ is not named. Then w′ is in the form w′ = we and the presented
equations f ◦ f−1 = id = f−1 ◦ f hold again, as it is written below:

f(f−1(e)) = f(we) = last(we) = e and we = f−1(e) = f−1(last(we)) = f−1(f(we)).

Hence f restricted to role successors of w is a bijection. Note that for any atomic concept A
we know that w ∈ AI

→
holds iff d ∈ AI holds, due to the third item of Definition 27 (and

since d = last(w) = f(w)). Thus, the only thing which remains to be done is to show that for
all w′ ∈ NI→(w) the equivalence (w,w′) ∈ rI→ ⇔ (f(w), f(w′)) ∈ rI→ holds.

Let us fix an arbitrary neighbour w′ of w, i.e., a domain element w ∈ ∆I
→

s.t. (w,w′) ∈ rI→

holds for some role name r. Let d′ = last(w′) = f(w′) be the corresponding element in ∆I .
We distinguish two cases.

• w,w′ are not named.
Since we agreed that ∆I

→

named = ∆Inamed holds, we infer that d = f(w) = w and d′ = f(w′) = w′.
Thus we can use the last item of Definition 27, namely the part stating that rI ∩ (∆Inamed ×
∆Inamed) = rI

→ ∩ (∆Inamed ×∆Inamed) and conclude the mentioned property.

• At least one of w,w′ is not named.
In this case, from the second part of the third item of Definition 27 we know that w′ is actually
a sequence in the form w · e. But from the same definition as above, (w,w′) = (w,we) ∈ rI→

holds if and only if (last(w), e) = (d, e) ∈ rI holds, which is exactly what we wanted to prove.
Since we have shown preservation (and non-preservation) of atomic concepts and roles by f

and since f is a bijection, we infer that f is a bisimulation. Hence w ≡fb d holds.
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As an immediate consequence of Lemma 29 we obtain that any two sequences w,w′ ∈ ∆I
→

having the same last element are forward-bisimilar, as stated below.

Lemma 30. For any finite interpretation I being a model of a normalized ALCSCC knowledge
base K and any sequences w,w′ ∈ ∆I

→
with last(w) = last(w′), the property w ≡fb w

′ holds.

Proof. By applying Lemma 29 to w and w′, we infer that w ≡fb last(w) and w′ ≡fb last(w′) holds.
Since the elements last(w) and last(w′) are equal, we conclude that w is bisimilar to w′.

Once we have shown that w ≡fb last(w) for any w ∈ ∆I
→
, we can employ this fact to show

that forward-unraveling preserve satisfaction of normalized TBoxes.

Lemma 31. For any normalized ALCSCC TBox T and any finite interpretation I, the impli-
cation I |= T ⇒ I→ |= T holds.

Proof. Let w ∈ ∆I
→

be an arbitrary domain element from I→ and let d = last(w) be the
corresponding element from ∆I . Let ε = C0 v C1 be an arbitrary GCI from the TBox T .
Note that C0, C1 are not necessary atomic, but since we restricted our attention to normalized
knowledge bases only, we can assume that C0 and C1 are ALCSCC concepts of depth at most
one. Assume that w ∈ CI

→

0 holds. Then, to prove that I→ |= ε holds, we need to show
that w ∈ CI→1 holds. Since w ≡fb d holds (by Lemma 29), from Observation 26 we know that d
and w satisfy the same ALCSCC concepts of depth at most one. Hence d ∈ CI0 . From the fact
that I satisfies ε we infer that d ∈ CI1 holds. Again, since d and w are bisimilar, they satisfy
the same ALCSCC concepts of depth ≤ 1 and thus w ∈ CI→1 holds too. Due to the fact that w
and ε were arbitrarily chosen, we conclude that I→ |= T holds.

From the construction of forward unravelings one can immediately see that it also preserves
non-entailment of conjunctive queries. Without loss of generality we can always assume that
CQs contains only atomic concepts (e.g. by introducing a fresh name AC for each concept C
and putting the GCI C ≡ AC inside the TBox).

Lemma 32. For any finite interpretation I and any conjunctive query q, if I 6|= q holds
then I→ 6|= q holds too.

Proof. Assume that I 6|= q holds but I→ entails q. Then there exists a match π of q on I→. Note
that h(x) = last(x) is a homomorphism I→ to I. Indeed, the preservation of atomic concepts
by h can be deduced from the third item of Definition 27, and the fact that if (d, d′) ∈ rI→

holds then (h(d), h(d′)) ∈ rI holds can be inferred from the last item of Definition 27. However,
in that case π′ with π′(x) = h(π(x)) would be a match of q on I, which contradicts the initial
assumption I 6|= q. Thus I→ 6|= q holds.

7.1.2 Loosening of finite unravelings

Unraveling removes non-forest-shaped query matches, however, I→ does not need to be finite
even if I is. To regain finiteness without re-introducing query matches, we are going to introduce
the notion of k-loosening.

For a given finite interpretation I, we say that ann element u ∈ ∆I
→

is k–blocked by its
prefix w, if u = ww′ for some w′ of length longer than k, and w’s and u’s suffixes of length k
coincide. The definition is depicted below. The definition is depicted below.
We also say that w is minimally k–blocked if it is k–blocked (by some prefix), but none of its
prefixes is k–blocked. With Bl

[k]
I→ we denote the set of minimally k–blocked elements in I→.
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ww′

w
w

ww′

size > k

k

Definition 33. For a given finite interpretation I we define its k–loosening I [k] = (∆I
[k]

, ·∆I
[k]

)
as an interpretation obtained from I→ by exhaustively selecting minimally k–blocked elements v
from Bl

[k]
I→ (k–blocked by some w), removing all of descendants of v and identifying v and w.

More formally, we enumerate the set of minimally k–blocked elements Bl
[k]
I→ = {v1, v2, . . . , vn}

and define a sequence of axillary interpretations J0 = I, . . . ,Jn = I [k], where the i–th inter-
pretation J i = (∆Ji , ·Ji) for any i > 0 is defined as:
• ∆Ji = ∆Ji−1 \

(
vi · (∆I)∗

)
• ∆named

Ji = ∆named
Ji−1 and for any a ∈ IndA the condition aJi = aJi−1 is satisfied,

• AJi = AJi−1 ∩∆Ji for any concept name A ∈ NC

• rJi = rJi−1 ∩
(
∆Ji ×∆Ji

)
∪ {(w, v′i) | (w, vi) ∈ rJi−1}, for any role name r ∈ NR, where v′i

is the element k–blocking vi in I→.

> k

w

v
Bl

[k]
I→

Figure 1: A single step of the construction of I [k].

We first argue that k–loosening of a finite interpretation is also finite.

Lemma 34. For any finite interpretation I, its k–loosening I [k] for any natural k > 0 is finite.

Proof. Take an arbitrary finite I and observe that the branching of k–loosening is finite due
to finiteness of I and each element of I [k] has only finite number of successors (by pigeon-hole
principle the blocking eventually occurs on every branch of I→). Hence by employing (the
contraposition) of the König’s Lemma, we conclude that I [k] is finite.
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Like unravelings, k-loosenings preserve satisfaction of normalized Aboxes and Tboxes, as
well as CQ non-entailment. However, ERCBoxes might become violated in the construction.
We startfrom the ABox preservation.

Lemma 35. For any finite I and any normalized ABox A and any natural k > 0, the impli-
cation if I |= A then I [k] |= A holds.

Proof. Assume that I |= A holds. Then, due to Lemma 28 we know that I→ |= A holds.
Observe that ∆I

[k]

is a subset of ∆I
→
, due to the first item of Definition 33. Moreover the

sets ∆I
→

named and ∆I
[k]

named are equal, due to the second item of Definition 33. Since the k–loosening
construction does not affect the ABox part of I→ (e.g. those elements are not k–blocked for
any k, see also the second item of Definition 33) we conclude that I [k] is a model of A.

Towards proving the TBox preservation of k–loosening, we prepare a bisimulation argument.

Lemma 36. Let K = (A, T ,R) be a normalized ALCSCC knowledge base and let I be its
arbitrary finite model. Then any w ∈ ∆I

[k]

is bisimilar to last(w) ∈ ∆I .

Proof. Take an arbitrary domain element w = wI[k] ∈ ∆I
[k]

and, since ∆I
[k] ⊆ ∆I

→
holds

(see: Definition 33), let wI→ = w be the corresponding element from ∆I
→
. To show that w

and last(w) are bisimilar, is sufficient prove that wI[k] ≡fb wI→ and use Lemma 29.
We proceed as follows. We define a function f : NI[k](w) → NI→(w) as f(w′) = w′ for

all w′ ∈ NI[k](w)∩NI→(w) and f(w′) = w · last(w′) otherwise (note that in this case w′ is some
of minimally k–blocked elements).

We first argue that f is a function. Since ∆I
[k] ⊆ ∆I

→
holds, we infer that f is an identity

function on the set NI[k](w) ∩ NI→(w), thus well-defined. The problematic case is when w′

is not included in NI[k](w) ∩ NI→(w). Observe that in this case w′ was identified, during the
construction of I [k], with some k–blocked element v ∈ Bl

[k]
I→ , which originally was a successor

of w. It means that v was k–blocked by w′ and from the definition of k–blocked elements we
infer that w′ and v share the same suffix of length k. Thus w′ and v share the same last element.
Since v is a successor of w, then v = w · last(v) = w · last(w′). Hence the definition of f is sound.

To see that f : NI[k](w)
∣∣
SuccI[k] (w)

→ NI→(w)
∣∣
SuccI→ (w)

is a bijection, we can restrict our
attention only to the elements not included in the set NI[k](w) ∩ NI→(w), since, as we already
mentioned, on such set f is the identity function and thus, also a bijection. Observe that f is
injection for any w′ ∈ NI[k](w) \ NI→(w). Indeed, if there would be w′, w′′ satisfying f(w′) =
f(w′′), then it would imply that they originated from the same successor of w in I→ (since they
share the same suffix), which is clearly not possible. To see that f is a surjection it is enough to
see that for any successor w′ = we of w in I→ the function f is either identity (thus f(w′) = w′)
or w′ was minimally k–blocked and hance was identified with an element sharing the same last
element. Hence, f (restricted to appropriate sets) is a bijection.

We will prove that f is a bisimulation. In the first part we will prove the following statement:

∀A ∈ NC ∀w′ ∈ NI[k](w) the equivalence w′ ∈ AI
[k]

⇔ f(w′) ∈ AI
→

holds.

Take an arbitrary concept name A and arbitrary domain element w′ ∈ NI[k](w). If f(w′) = w′

then the above condition trivially holds. Assume that f(w′) 6= w′. Then f(w′) = wlast(w′) and
the preservation of concepts follows from Definition 27.

In the second part we will prove:

∀r ∈ NR ∀w′ ∈ NI[k](w) the equivalence (w,w′) ∈ rI
[k]

⇔ (f(w), f(w′)) ∈ rI
→

holds.
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Take an arbitrary role name r and arbitrary domain element w′ ∈ NI[k](w). Once more,
if f(w′) = w′ then the above condition trivially holds. Assume that f(w′) 6= w′. Then
again f(w′) = wlast(w′) = v and v is minimally k–blocked by w′. From Definition 33 we
know that (w, v) ∈ rI→ iff (w,w′) ∈ rI[k]

, which proves the statement about (non)preservation
of roles during the construction of I [k].

We conclude that f is a bisimulation and hence wI[k] ≡fb wI→ holds.

The TBox preservation follows immediately from the previous lemma.

Lemma 37. For any finite I and any normalized TBox T and any natural k > 0, the impli-
cation if I |= T then I [k] |= T holds.

Proof. Take an arbitrary finite interpretation I, a normalized TBox T and a positive integer k.
Assume that I |= T holds. To prove that each GCI ε from T is also satisfied in I [k], we apply
the same reasoning as we already done for Lemma 31. Namely, it is sufficient to prove that
the k–loosening construction is concept preserving but it can be concluded from Definition 25
(of bisimulation) and from Lemma 36.

Lemma 38. For any k ∈ N, if I 6|= q then I [k] 6|= q.

Proof. Assume that I 6|= q, but I [k] |= q. In this case there exists a match π of q on I [k]. By
using the same ideas as for Lemma 32 we argue that in this case π′ with π′(x) = last(π(x))
would be a match of q on I, which contradicts with I 6|= q. Thus I→ 6|= q holds.

For a given interpretation J , an anonymous cycle is simply a word w ∈ (∆J )+ · (∆J \
∆Jnamed) · (∆J )+, where first and the last element are the same, and for any two consecutive
elements di, di+1 of w there exists a role r witnessing (di, di+1) ∈ rJ . The girth of J is the
length of the smallest anonymous cycle in J if such a cycle exists or ∞ otherwise. The main
feature of the k–loosening I [k] is that the girth of I [k] is at least k, as proven below.

Lemma 39. For any k ∈ N and any finite interpretation I, the girth of I [k] is at least k.

Proof. We will prove inductively over immediate structures J0 = I→,J1, . . . ,Jn = I [k] pro-
duced in Definition 33 that each of them have girth greater than k. For i = 0 it is clear that J0

has girth at least k (actually its girth is ∞). Assume that for all i < m the girth of each Ji
for i < m is at least k. We will show that the girth of Im is at least k.

For contradiction assume that the girth of Jm is smaller than k. We recall that vm is the m–
th minimally k–blocked elements from Bl

[k]
I→ and v′m is the element k–blocking vm. Since Jm

was obtained from Jm−1 and the girth of Jm−1 is at least k then the only possibility of a
anonymous cycle of length at least k to be present in Jm is to contain a freshly added edge
between predecessors w of vm and v′m, namely (w, v′m) for some r ∈ NR as a replacement for
an original edge (w, vm).

Let ρ be an arbitrary shortest anonymous cycle in Jm−1. As we already discussed it contains
an edge (w, vm) between some domain element w. Hence ρ is in the form (w, v′m)ρ′ where ρ′ is
some path from v′m to w. But note that due the definition of k–blocked element the distance
between vm and v′m is at least k. Hence ρ′ is of length at least k. Thus ρ is not shorter than k,
which contradict our initial assumption. Hence the girth of Jm is at least k, which allows us
to conclude that the girth of Jn = I [k] is also at least k.

Once k is greater than the number of atoms in q (denoted with |q|), the k–loosening of a
model is still “locally acyclic enough” so the query matches only in a “forest-shaped” manner. We
will exploit this property when designing an algorithm for deciding conjunctive query entailment
in Section 7.2.
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Lemma 40. For every conjunctive query q, a positive integer k > |q| and a finite interpreta-
tion I, the following equivalence I→ |= q ⇔ I [k] |= q holds.

Proof. Let suffs(w) be a function which for an input word w ∈ (∆I)+ returns w if |w| ≤ s
or its suffix of length s otherwise. Moreover let I→k be the substructure of I→ with domain
restricted to sequences of length at most k only. Note that h(w) = suffk(w) is a homomorphism
from I→ to I→ (since w ≡fb suffk(w), see the proof of Lemma 31). Hence if there is a match π
of q in I→, there is also a match π′ of q in I→k . Since I→k is a substructure of I [k] (due to the
definition of minimally k–blocked elements and Definition 33), hence π′ is also a match in I [k].

For the opposite way, that i.e., I [k] |= q implies I→ |= q, it is sufficient to show (since k > |q|)
that there is a homomorphism from any substructure of the size k of I [k] to I→. Take an
arbitrary element w ∈ ∆I

[k]

and take a interpretation I [k]
w be an interpretation obtained by

restricting the domain to elements reachable from w in at most k steps. More formally we
define the sets Ri(w) of those elements reachable from w in at most i steps, i.e. R0(w) = {w},
and Ri(w) = Ri−1(w) ∪ {v ∈ ∆I

[k] | ∃r ∈ NR (u, v) ∈ rI[k] ∧ u ∈ Ri−1(w)} for all i > 0. We
set ∆I

[k]

w = Rk(w). First see that I [k]
w is a tree-shaped. Indeed if it would contain an anonymous

cycle of length at most k it would contradict the fact that the girth of I [k] is at least k (by
Lemma 39). Hence we take a homomorphism h : I [k]

w → I→ defined as h(x) = suffk(x) and see
that if there is a mathc π of q in I [k], then π′ = (h ◦ π) would also be a match of q in I→.

7.1.3 Making ERCBoxes be satisfied again

We next consider how to adjust a k-loosening such that it again satisfies the initial ERCBox.
Since role inverses are not expressible in ALCSCC, creating multiple copies of a single element
and forward-linking them to other elements precisely in the same way as the original element,
can be done without any harm to modelhood nor query-non-entailment. We formalize this
intuition below.

Definition 41. For any interpretation I and any sets S ⊆ (∆I × N+) we define the S–
duplication of I as the interpretation I+S = (∆I+S , ·I+S ) with:

• ∆I+S = ∆I ∪
⋃

(v,n)∈S{v
(i)
cpy | 1 ≤ i ≤ n},

• aI+S = aI for each individual name a ∈ IndA,

• For concept names A ∈ NC and role names r ∈ NR we set:

– AI+S = AI ∪
⋃

(v,n)∈S

{
v

(i)
cpy | 1 ≤ i ≤ n ∧ v ∈ AI

}
, and,

– rI+S = rI ∪
⋃

(v,n)∈S

{
(v

(i)
cpy , w) | 1 ≤ i ≤ n ∧ (v, w) ∈ rI

}
.

As in the case of previous constructions, one can show that the S–duplication of I preserves
satisfaction of ABoxes and TBoxes.

Lemma 42. For any finite I and normalized ABox A and normalized TBox T , if I |= (A, T ),
then for any S ⊆ (∆I × N+), the S–duplication I+S of I is also a model of (A, T ).

Proof. Since I is a submodel of I+S we conclude that I+S |= A. To see that S–duplication does
not violate the TBox T , it is sufficient to see that for any i ∈ N+ and v ∈ ∆I an element v(i)

cpy

is bisimilar to v (which follows immediately from Definition 41). Hence I+S |= (A, T ).

Moreover a conjunctive query q has a match in I if and only if it has a match in I+S .
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v

v
(1)
cpy

I

Figure 2: The interpretation I+{(v,1)} obtained from I by duplicating a node v.

Lemma 43. For any conjunctive query q and any S ⊆ (∆I × N+) and any interpretation I,
the equivalence I |= q ⇔ I+S |= q holds.

Proof. Without loss of generality we assume all concepts appearing in q are atomic. If I has
a match π of q, then trivially π is also a match in I+S (due to the fact that I is a submodel
of I+S). For the second direction, assume that there is a query match π of q in I+S . Let
us define h : I+S → I as h

(
v

(i)
cpy

)
= v for freshly copied elements and as h(v) = v otherwise.

It is easy to see that h is a homomorphism, and hence h ◦ π is a match of q in I. Thus the
equivalence I |= q ⇔ I+S |= q holds.

From Lemma 43 and Lemma 40 we can immediately conclude:

Lemma 44. For any conjunctive query q, any positive integer k > |q| and any finite interpre-
tation I the following equivalence holds: I→ |= q ⇔ I [k]

+S |= q.

Note that for any finite I being a model of a normalized K = (A, T ,R) it could be the
case that I [k] does not satisfy the ERCBox R anymore. However, the inequalities from R have
the convenient property that if a vector ~x containing the cardinalities of all atomic concepts’
extensions is a solution to R, then also a vector c · ~x, i.e., the vector obtained by multiplying
each entry of ~x by a constant c, is a solution to R. Thus there is also a solution to R in the
shape (1 + |∆I[k] |) · ~xI , where ~xI is the solution to R describing the atomic concept extensions’
cardinalities in I. Since I [k] preserves (non-)emptiness of all concepts from I, we can simply
duplicate an appropriate number of elements from I [k], until the ERCBox R will be satisfied
again. The whole procedure is described in the forthcoming lemma.

Lemma 45. For any consistent normalized ALCSCC knowledge base K = (A, T ,R) and for
any of its finite models I there exists a finite S ⊆ (∆I ×N+) such that I [k]

+S |= (A, T ,R) holds.

Proof. Let C be the set of all atomic concepts appearing in normalized K = (A, T ,R). In this
proof, a type means a conjunction of (possibly negated) concepts from C. With TC we denote
the set of all possible types.

The ERCBox R′ is obtained from R by replacing each inequality ε from R of the form:

ε = N1|C1|+ . . .+Nk|Ck|+B ≤ Nk+1|Ck+1|+ . . .+Nk+`|Ck+`|

with the corresponding inequality ε′:

ε = Σki=1Nk
(
ΣC∈C,C|=Ci

|C|
)

+B ≤ Σk+`
i=k+1Nk

(
ΣC∈C,C|=Ci

|C|
)
.

Note that any model I |= (A, T ,R) is also a model of (A, T ,R′) and vice versa.

31



DLs with Global and Local Cardinality Constraints Baader, Bednarczyk, and Rudolph

Let ~xI be the solution to R′ describing the types’ cardinalities in I (such solution exists
since I |= R′). As we have already mentioned before, the inequalities from R have the conve-
nient property that if a vector ~x is a solution to R′, then also a vector c × ~x, i.e., the vector
obtained by multiplying each entry of ~x by a constant c, is a solution to R′. Thus there is also
a solution ~y to R′ in the shape ~y = (1 + |∆I[k] |) · ~xI .

The desired set S ⊆ N×∆I
[k]

is defined as follows. It is composed of all pairs (c−|tI[k] |, wt)
for each type t ∈ TC having a non-zero entry c in ~y (where wt is an arbitrary fixed domain
element from I [k] having a type t). Note that such an element wt exists since the k–loosening
and forward-unravelings preserve types (see e.g proofs of Lemma 37 and Lemma 31).

It remains to argue that I [k]
+S |= (A, T ,R) holds. To see that I [k]

+S |= R it is enough to see
that I [k]

+S |= R holds due to the fact that the vector describing the types’ cardinalities in I [k]
+S is

equal to ~y (and ~y was obtained by multiplying each entry of the initial solution ~xI). Moreover
we conclude I [k]

+S |= (A, T ) holds from Lemma 42. Hence I [k]
+S |= (A, T ,R).

This concludes our construction, the core result of which can be informally stated as follows:
For any ALCSCC knowledge base K and every CQ q holds: if K |= q then there is a forest-
shaped query match of q into every model of K. This follows from the fact that the any model
of K not admitting such a match would allow us to construct a model without any query
matches, contradicting the assumption. We make this statement more formal by introducing
the forthcoming notion of n–acyclic models.

7.1.4 The notion of n–acyclic models

Given a finite interpretation J we say that it is k–acyclic, if there exists a finite interpretation I
such that J = I [k]

+S holds for some finite set S ⊆ (∆I × N+).
The next lemma states that to falsify conjunctive query we do not need to look for arbitrary

finite counter-models but it is enough to consider the class of (|q|+ 1)–acyclic models. Indeed:

Lemma 46. For any normalized ALCSCC knowledge base K = (A, T ,R) and any conjunctive
query q, if there is a finite interpretation such that I |= K but I 6|= q, then there is a (|q|+ 1)–
acyclic model I ′ such that I ′ |= K and I ′ 6|= q.

Proof. It is enough to take J = I [(|q|+1)]
+S for S given in 45. The modelhood preservation follows

from Lemma 37 and Lemma 42. Query non entailment is due to Lemma 38 and Lemma 40.

Moreover conjunctive query entailment over (|q|+ 1)–acyclic models is equivalent to entail-
ment over their forward-unravelings. This fact follows directly from Lemma 44.

Lemma 47. For any interpretation I being a (|q| + 1)–acyclic model of an ALCSCC knowl-
edge base K = (A, T ,R) composed of a normalized ABox A, TBox T and ERCBox R the
equivalence I |= q ⇔ I→ |= q holds.

Due to Lemma 47 we can restrict our attention to query matches over the unfolding
of (|q| + 1)–acyclic models only. it allow us to use a machinery of spoilers, splittings and
fork rewrittings from [18], developed for deciding unrestricted CQ entailment, to the case of
finite query entailment with only some minor modifications.
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7.2 Deciding query entailment in exponential time
Now we are ready to employ the announced exponential time method for deciding conjunctive
query entailment from [18]. For a given K = (A, T ,R) and a query q, we enumerate a set
of ALCH∩ knowledge bases Ks = (A′, T ′) called spoilers and check whether K ∪ Ks is con-
sistent. Spoilers are modeled to prevent forest-shaped query matches. They are constructed
by, on the one hand, rolling-up tree-shaped partial query matches into concepts and forbidding
existence of such concept in a model and, on the other hand, forbidding certain behaviour of
the Abox part of a model. Lutz [18] shows that one can restrict ones attention to exponentially
many spoilers and that the size of each such spoiler is only polynomial in |K| and |q|. The al-
gorithm for CQ entailment is then obtained by simply replacing Lutz’s satisfiability algorithm
for ALCH∩ knowledge bases6 by our finite satisfiability algorithm for ALCSCC knowledge bases
from the previous sections. We derive correctness of the procedure as follows: K ∪ Ks is satis-
fiable for some spoiler Ks exactly if there is a model of K without forest-shaped matches of q
and hence – thanks to our above argument – there is a model without any match of q.

Let q be a conjunctive query and let Var(q) be the set of variables appearing in q. Through
this Section we always assume that q contains only atomic concepts and no answer variables.
Note that q can be seen as a directed graph Gq = (Vq, Eq), where vertices from Vq are simply
variables from Var(q) and for any two nodes x, y there exists an edge (x, y) ∈ Eq between them
if and only ifs r(x, y) ∈ q for some r ∈ Nr. We say that q is tree-shaped if Gq is a directed tree.

We start by introducing a notion of forks and splittings from [18].

Forks. For a conjunctive query q we say that a conjunctive query q′ is obtained from q by fork
elimination, if q′ is obtained from q by selecting two atoms r(y, x) and s(x, z) and identifying
variables y and z. A query qfr is a fork rewriting of q if qfr is obtained from q by applying
fork elimination (possibly multiple times). A maximal fork rewriting fork rewriting of q is a
query qmfr obtained by exhaustively application of fork elimination. It is known from [18] that
maximal fork rewriting is unique (up to variable renaming), thus we speak about the maximal
fork rewriting.

x

y z

t

r r

rs

y z

xt

r ∩ t r

Figure 3: A query q = r(x, y) ∧ r(x, z) ∧ r(t, z) ∧ s(t, y) (left) and its fork-rewriting (right)
obtained by identifying variables x and t.

Splittings. The next definition speaks about the abstract way how a conjunctive query can
match a model, without making reference to a concrete model nor a concrete match.

6Note that ALCH∩ is a sub-logic of ALCSCC.
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Let K = (A, T ,R) be a normalized ALCSCC knowledge base composed of an Abox A,
Tbox T and an ERCBox R. A splitting of a conjunctive query q w.r.t K is a tuple

Π = (R, T, S1, S2, . . . , Sn, µ, ν),

where the sets R, T, Si induce a partition of the set Var(q), the function µ : {1, 2, . . . , n} → R
assigns to each set Si a variable µ(i) ∈ R, and the function ν : R→ IndA assigns to each variable
from R a named individual from A. A splitting Π has to satisfy the following conditions:7

• the query q
∣∣
T
is a variable disjoint union of tree-shaped queries,

• queries q
∣∣
Si

for all i ∈ {1, 2, . . . , n} are tree-shaped,

• for any atom r(x, y) ∈ q the variables x, y either belong to the same set R, T, S1, S2, . . . , Sn
or x ∈ R, y ∈ Si with x being the root of a tree q

∣∣
Si
, and

• for any i ∈ {1, 2, . . . , n} there is an atom r(µ(i), x0) ∈ q with x0 the root of q
∣∣
Si
.

It might be easier to think that a splitting Π actually consists of “roots” R (corresponding
to the Abox part of the model) named by the function ν), together with their “subtrees” Si and
of some arbitrary trees T somewhere far in a model.

Rolling up concepts. We employ a known technique [11, 18, 12] of rolling-up a tree-shaped
query into a concept. For a given conjunctive query q we define an ALCH∩ concept Cq,x (for
each variable x ∈ Var(q)) as follows. If x is a leaf in Gq then

Cq,x =
l

C(x)∈q

C.

Otherwise we set
Cq,x =

l

C(x)∈q

C u
l

(x,y)∈Eq

∃(
⋂

s(x,y)∈q

s).Cq,y.

The forthcoming lemma links together all presented notions.

Definition 48. Let q be a conjunctive query and let K = (A, T ,R) be a (consistent) normal-
ized ALCSCC knowledge base with a model I. We say that a pair (qfr,Π), composed of a fork
rewriting qfr of q and a splitting Π = (R, T, S1, S2, . . . , Sn, µ, ν) w.r.t K, is compatible with I,
if:
• for each disconnected component q̂ of T , there is an element d ∈ ∆I with d ∈ (Cq̂)

I ,

• if C(x) ∈ qfr with x ∈ R, then ν(x)I ∈ CI ,

• if r(x, y) ∈ qfr with x, y ∈ R, then (ν(x)I , ν(y)I) ∈ rI , and

• for all 1 ≤ i ≤ n we have (for x0 being the root of qfr

∣∣
Si
):

ν(µ(i))I ∈

∃
 ⋂
s(µ(i),x0)∈qfr

s

 .C
qfr

∣∣∣
Si

,x0

I

7With q
∣∣
X

we denote the restriction of a query to the set of variables X
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Lemma 49. Take q and K as stated in Definition 48 and let I be any (|q|+ 1)–acyclic model
of K. Then I |= q if and only if there exists a pair (qfr,Π) of a fork rewriting and splitting such
that (qfr,Π) is compatible with I.
Proof. Let I→ be the forward-unraveling of I. A similar lemma was proven in [18] and its
proof without any changes at all can be seen as a proof that I→ |= q iff I→ is compatible with
some (qfr,Π).

Hence if I→ is compatible with some (qfr,Π) we can infer that I→ |= q holds and by
Corollary 47 we conclude that I |= q. For the opposite way, assume that I→ |= q holds.
Thus I→ is compatible with some (qfr,Π). The construction of forward-unravelings is concept
preserving (see e.g. the proof of Lemma 31), thus the first and the last item of Definition 48 are
satisfied by I. To conclude the satisfaction of the second and the third items of Definition 48
it is enough to see that forward-unravelings preserve Aboxes (namely Lemma 28). Hence I is
compatible with (qfr,Π).

Spoilers and super-spoilers. Let K = (A, T ,R) be normalized ALCSCC knowledge base,
let q be a conjunctive query and let Π = (R, T, S1, S2, . . . , Sn, µ, ν) be a splitting of q w.r.t K.
Moreover, let q1, . . . , qn be the tree-shaped disconnected components of q

∣∣
T
with roots x1, . . . , xn.

We say that ALCH∩ knowledge base Ks = (As, Ts) is a spoiler for q, K and Π if one of the
following conditions hold:
•
(
> v ¬Cqi,xi

)
∈ Ts, for some 1 ≤ i ≤ k,

• there is an atom C(x) ∈ q with q ∈ R but ¬C(ν(x)) ∈ As
• there is an atom r(x, y) ∈ q with x, y ∈ R but ¬r(ν(x), ν(y)) ∈ As
• ¬D(ν(µ(i))) ∈ As for some 1 ≤ i ≤ n, where (for x0 being the root of q

∣∣
Si
):

D =

∃
 ⋂

(µ(i),x0)∈q

s

 .C
q
∣∣∣
Si

I

A super-spoiler for q and K is a minimal ALCH∩ knowledge base Ks = (As, Ts) such that for
any splitting Π of q w.r.t K, the knowledge base Ks is a spoiler for q, K and Π.

The following lemma describes the purpose of spoilers:

Lemma 50. Let K = (A, T ,R) be a normalized ALCSCC knowledge base and let q be a
conjunctive query. The query K 6|= q if and only if there exists a super-spoiler Ks = (As, Ts)
such that the knowledge base (A ∪As, T ∪ Ts,R) is consistent.

Proof. Note that a similar Lemma was proven in [18] for infinite tree-shaped models. Its proof
can be read without any changes as a proof of the following statement: for all unravelings I→ the
condition I→ 6|= q holds iff (A∪As, T ∪Ts,R) is consistent for some super-spoiler Ks = (As, Ts).

If K 6|= q then (from Lemma 46) there exists a (|q| + 1)–acyclic counter-model I for q,
i.e., a model I satisfying I 6|= q. Then also I→ 6|= q (follows from Corollary 47). From [18]
we infer that there exists a super-spoiler Ks = (As, Ts) for I→. Since I→ and I satisfy the
same ALCSCC formulae, we conclude that (A ∪As, T ∪ Ts,R) is consistent.

For the opposite way assume that there exists a super-spoiler Ks = (As, Ts) such that K′ =
(A ∪ As, T ∪ Ts,R) is consistent. Then there is a (|q| + 1)–acyclic model I of K′. Aiming for
contradiction assume that K |= q. Hence there is a query match in I and from Corollary 47
we also know that I→ |= q. But it contradicts the Lutz’s Lemma [18] for infinite tree-shaped
models. Hence, I→ 6|= q. Thus I 6|= q which clearly implies that K 6|= q.
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The last ingredient for designing an exponential time algorithm for deciding query entailment
is to estimate the number of super-spoilers as well as their size. By showing that one can restrict
attention only to trees being subtrees of a maximal fork rewriting, Lutz [18] have shown that
(independently of the underlying DL formalism) the following lemma holds:

Lemma 51 ([18]). Let K = (A, T ,R) be a normalized ALCSCC knowledge base and let q be
a conjunctive query. Then the total number of super-spoilers for K and q is only exponential
in (|q|+ |K|) and the size of each super-spoiler is only polynomial in (|q|+ |K|). Moreover the
set of super-spoilers can be enumerated in exponential time.

Proof. Immediate conclusion from Lemma 4, Lemma 5 and Lemma 6 from [18].

The algorithm for deciding conjunctive query entailment for ALCSCC knowledge bases K =
(A, T ) w.r.t Aboxes, Tboxes and ERCBoxes is quite simple. We enumerate all super-spoilersKs =
(As, Ts) (from Lemma 51 we know that there are only exponentially many of them and the
enumeration process can be done in exponential time) and run a satisfiability test for K′ =
(A ∪ As, T ∪ Ts,R) by employing an algorithm described in Theorem 18. Since the size of Ks
is only polynomial in (|q|+ |K|) then the size of K′ is also only polynomial in (|q|+ |K|). Hence
the satisfiability check can be done in ExpT ime (by Theorem 18 again). We return the answer
that q is not entailed by K if K′ is satisfiable for some super-spoiler and that the query is
entailed otherwise. Correctness of the procedure is guaranteed by Lemma 50. Hence we obtain:

Theorem 52. Conjunctive query entailment from ALCSCC ERCBoxes wrt. ALCSCC ABoxes
is ExpT ime-complete.

Moreover, since ALCHQ is a sublogic of ALCSCC (in a sense that for every ALCHQ concept
we find an equisatisfiableALCSCC concept), as a corollary we obtain the first known exponential
time algorithm for deciding finite query entailment over ALCHQ knowledge bases.

Corollary 53. Conjunctive query entailment from ALCHQ TBoxes wrt. ALCHQ ABoxes
is ExpT ime-complete.

The ExpT ime lower bounds comes already from ALC concept satisfiability w.r.t TBoxes.

8 Conclusion
We have introduced the DL ALCSCC++, which allows to mixing local and global cardinality
constraints. Though being considerably more expressive than previously investigated DLs with
cardinality constraints, reasoning in ALCSCC++ has turned out to be not harder that reasoning
in ALC with very simple cardinality restrictions. However, extending ALCSCC++ with inverse
roles causes undecidability for the standard inference satisfiability, as does considering the non-
standard inference of query entailment inALCSCC++. We were able to show that decidability of
query entailment can be regained by considering restricted cardinality constraints (ERCBoxes)
in the sub-logic ALCSCC of ALCSCC++. The ExpTime upper bound proved for this task
depends on the ExpTime upper bound for ABox consistency in ALCSCC w.r.t. ERCBoxes
shown for the first time in the present paper.

Some of the results presented here have already been sketched in a paper at the DL work-
shop [3]. However, there the positive result for query entailment was restricted to a setting with-
out ABox since we did not yet have the result for ABox consistency, and only a 2ExpTime upper
bound for the complexity was shown. In addition, the undecidability result for ALCISCC++ is
also not contained in [3].
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Regarding future work, it would be interesting to investigate the impact that adding inverse
roles has on reasoning inALCSCC w.r.t. different kinds of terminological boxes (TBox, ERCBox,
ECBox), though this will probably be a very hard task. From an application point of view, as
a first step towards a more practical query answering algorithm, we intend to investigate the
ABox consistency problem in ALCSCC w.r.t. ERCBoxes. Since type elimination algorithms
are not only worst-case, but also best-case exponential, we will try to devise a tableau-based
algorithm for this problem, which may use numerical algorithms and satisfiability checkers for
QFBAPA as sub-procedures.
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