Decidability and Computability

Review: A language is

- recognisable (or semi-decidable, or recursively enumerable) if it is the language of all words recognised by some Turing machine
- decidable (or recursive) if it is the language of a Turing machine that allways halts, even on inputs that are not accepted
- undedicable if it is not decidable

Instead of acceptance of words, we can also consider other computations:
Definition 3.1: A TM \mathcal{M} computes a partial function $f_{\mathcal{M}}: \Sigma^{*} \rightarrow \Sigma^{*}$ as follows. We have $f_{\mathcal{M}}(w)=v$ for a word $w \in \Sigma^{*}$ if \mathcal{M} halts on input w with a tape that contains only the word $v \in \Sigma^{*}$ (followed by blanks). In this case, the function $f_{\mathcal{M}}$ is called computable.
Total, computable functions are called recursive.
TU Dresden, 17th Oct 2017

Undecidability is Real

A fundamental insight of computer science and mathematics is that there are undecidable languages:

Theorem 3.2: There are undecidable languages over every alphabet Σ.
Proof: See exercise.

Analoguously, there are uncomputable functions.

Functions may therefore be computable or uncomputable.
Markus Krötzsch, 17th Oct 2017
Complexity Theory
slide 2 of 26

Unknown = Undecidable

How do we find concrete undecidable problems?
It is not enough to not know how to solve a problem algorithmically!

Example 3.3: Let \mathbf{L}_{π} be the set of all finite number sequences, that occur in the decimal representation of π. For example, $14159265 \in \mathbf{L}_{\pi}$ and $41 \in$ \mathbf{L}_{π}.

We do not know if the language \mathbf{L}_{π} is decidable, but it might be (e.g., if every finite sequence of digits occured in π, which, however, is not known to be true today).

Unknown $=$ Undecidable (2)

There are even case, where we are sure that a problem is decidable without knowning how to solve it.

Example 3.4 (after Uwe Schöning): Let $\mathbf{L}_{\pi 7}$ be the set of all number sequences of the form 7^{n} that occur in the decimal representation of π.
$\mathbf{L}_{\pi 7}$ is decidable:

- Option 1: π contains sequences of arbitrary many 7. Then $\mathbf{L}_{\pi 7}$ is decided by a TM that accepts all words of the form 7^{n}.
- Option 2: π contains sequences of 7 s only up to a certain maxima length ℓ. Then $\mathbf{L}_{\pi 7}$ is decided by a TM that accepts all words of the form 7^{n} with $n \leq \ell$.

In each possible case, we have a practical algorithm - we just don't know which one is correct

Busy Beaver

A small variation of the step counter function leads to the Busy-Beaver Problem:

Tibor Radó, BB inventor

Definition 3.6: The Busy-Beaver function $\Sigma: \mathbb{N} \rightarrow \mathbb{N}$ is a total function, where $\boldsymbol{\Sigma}(n)$ is the maximal number of \mathbf{x} that a DTM with at most n states and tape alphabet $\Gamma=\{\mathrm{x}, \square\}$ can write when starting on the empty tape an dbefore it eventually halts.

Note: The exact value of $\boldsymbol{\Sigma}(n)$ depends on details of the TM definition.
Most works in this area assume a two-sided infinite tape that can be extended to the left and to the right if necessary.

Computing Busy-Beaver?

How hard could this possibly be?
Theorem 3.7: The Busy-Beaver function is not computable.

Proof sketch: Suppose for a contradiction that $\boldsymbol{\Sigma}$ is computable.

- Then we can define a TM $\mathcal{M}_{\mathbf{\Sigma}}$ with tape alphabet $\{\mathrm{x}, \square\}$ that computes $\mathrm{x}^{n} \mapsto \mathrm{x}^{\mathrm{\Sigma}(n)}$.
- Let \mathcal{M}_{+1} be a TM that computes $\mathrm{x}^{n} \mapsto \mathrm{x}^{n+1}$.
- Let $\mathcal{M}_{\times 2}$ be a TM that computes $\mathrm{x}^{n} \mapsto \mathrm{x}^{2 n}$.
- Let k be the total number of states in $\mathcal{M}_{\mathbf{\Sigma}}, \mathcal{M}_{+1}$, and $\mathcal{M}_{\times 2}$. There is a TM \mathcal{I}_{k} with k states that writes the word x^{k} to the empty tape.
- When executing $\mathcal{I}_{k}, \mathcal{M}_{\times 2}, \mathcal{M}_{\Sigma}$, and \mathcal{M}_{+1} after another, the result is a TM with $2 k$ states that writes $\Sigma(2 k)+1$ times x before halting.
- Hence $\boldsymbol{\Sigma}(2 k) \geq \boldsymbol{\Sigma}(2 k)+1$ - contradiction.

Busy Beaver in Practice

"Maybe the theoretical uncomputability is not really relevant after all - in practice, we surely can find values for practically relevant sizes of TMs, no?"

Well, progress since the 1960s has been rather modest:

$n:$	1	2	3	4	5	6	7	8
$\boldsymbol{\Sigma}(n):$	1	4	6	13	≥ 4098	$\geq 3,5 \times 10^{18267}$	gigantic	insane

For $n=10$, one has found a lower bound of the form $\Sigma(10)>3^{3^{3^{3}}}$, where the complete expression has more than 7.6×10^{12} occurrences of the number 3 .

Note 1: The proof involves an interesting idea of using TMs as "sub-routines" in other TMs. We will use this again later on.

Note 2: If a TM can compute $f: \mathbb{N} \rightarrow \mathbb{N}$ in the usual inary encoding, it is not hard to get a TM for $\mathrm{x}^{n} \mapsto \mathrm{X}^{f(n)}$ by just using unary encoding instead.

Note 3: Transforming an arbitrary TM into one that uses only symbols $\{x, \square\}$ on its tape is slightly more involved, but doable.

Proof Notes

Well, progress since the 1960s has been rather modest.

The Universal Machine

A first important observation of Turing was that TMs are powerful enough to simluate other TMs:

Step 1: Encode Turing Machines \mathcal{M} as words $\langle\mathcal{M}\rangle$
Step 2: Construct a universal Turing Machine \mathcal{U}, which gets $\langle\mathcal{M}\rangle$ as input and then simulates \mathcal{M}

Step 2: The Universal Turing Machine

We define the universal TM \mathcal{U} as multi-tape TM:
Tape 1: Input tape of \mathcal{U} : contains $\langle\mathcal{M}\rangle \# \#\langle w\rangle$
Tape 2: Working tape of \mathcal{U}
Tape 3: Stores the state of the simulated TM
Tape 4: Working tape of the simulated TM
The working principle of \mathcal{U} is easily sketched:

- \mathcal{U} validates the inpurt, copies $\langle w\rangle$ to Tape 4 , moves the head on Tape 4 to the start and initialises Tape 3 with $\operatorname{bin}(0)$ (i.e., $\left\langle q_{0}\right\rangle$).
- In each step \mathcal{U} reads an (encoded) symbol from the head position on Tape 4, and searches for the simulated state (Tape 3) a matching transition in $\langle\mathcal{M}\rangle$ on Tape 1 (w.lo.g. assume that the final states of the encoded TM have no transitions):
- Transition found: update state on Tape 3; replace the encoded symbol on Tape 4 by the new symbol; move the head on Tape 4 accordingly
- Transition not found: if the state on Tape 3 is $q_{\text {accept }}$, then go to the final accepting state; else go to the final rejecting state

Step 1: encoding Turing Machines

Any reasonable encxoding of a $\mathrm{TM} \mathcal{M}=\left\langle Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right\rangle$ is usable, e.g., the following (for DTMs):

- We use an alphabet $\{0,1, \#\}$
- States are enumerated in any order (beginning with q_{0}), and encoded in binary:

$$
Q=\left\{q_{0}, \ldots, q_{n}\right\} \leadsto\langle Q\rangle=\operatorname{bin}(0) \# \cdots \# \operatorname{bin}(n)
$$

- We also encode Γ and the directions $\{R, L\}$ in binary
- A transition $\delta\left(q_{i}, \sigma_{n}\right)=\left\langle q_{j}, \sigma_{m}, D\right\rangle$ is encoded as 5 -tuple: $\operatorname{enc}\left(q_{i}, \sigma_{n}\right)=\operatorname{bin}(i) \# \operatorname{bin}(n) \# \operatorname{bin}(j) \# \operatorname{bin}(m) \# \operatorname{bin}(D)$
- The transition function is encoded as a list of all these tuples, separated with $\#:\langle\delta\rangle=\left(\operatorname{enc}\left(q_{i}, \sigma_{n}\right) \#\right)_{q_{i} \in Q, \sigma_{i} \in \Gamma}$
- Combining everything, we set $\langle\mathcal{M}\rangle=\langle Q\rangle \# \#\langle\Sigma\rangle \# \#\langle\Gamma\rangle \# \#\langle\delta\rangle \# \#\left\langle q_{\text {accept }}\right\rangle \# \#\left\langle q_{\text {reject }}\right\rangle$

We can also encode arbitrary words to match this encoding:

- For a word $w=a_{1} \cdots a_{\ell}$ we define $\langle w\rangle=\operatorname{bin}\left(a_{1}\right) \# \cdots \# \operatorname{bin}\left(a_{\ell}\right)$

Markus Krötzsch, 17th Oct 2017
Complexity Theory
slide 14 of 26

The Theory of Software

Theorem 3.8: There is a universal Turing Machine \mathcal{U}, that, when given an input $\langle\mathcal{M}\rangle \# \#\langle w\rangle$, simulates the behaviour of a DTM \mathcal{M} on w :

- If \mathcal{M} halts on w, then \mathcal{U} halts on $\langle\mathcal{M}\rangle \# \#\langle w\rangle$ with the same result
- If \mathcal{M} does not halt on w, then \mathcal{U} does not halt on $\langle\mathcal{M}\rangle \# \#\langle w\rangle$ either

Our construction is for DTMs that recognise languages ("Turing acceptors") DTMs that compute partila functions can be simulated in a similar fashion.

Practical consequences:

- Universal computers are possible
- We don't have to buy a new computer for every application
- Software exists

Undecidable Problems and Reductions

"'Proof"' by Intuition

Theorem 3.11: The Halting Problem $\mathbf{P}_{\text {Halt }}$ is undecidable.

"Proof:" The opposite would be too good to be true. Many unsolved problems could then be solved immediately.

Example 3.12: Goldbach's Conjecture (Christian Goldbach, 1742) states that every even number $n \geq 4$ is the sum of two primes. For instance, $4=$ $2+2$ and $100=47+53$.

On can easily give an algorithm \mathcal{A} that verifies Goldbach's conjecture systematically by testing it for every even number starting with 4 :

- Success: Test the next even number
- Failure: Terminate with output "Goldbach was wrong!"

The question "Will \mathcal{A} halt?" therefore is equivalent ot the question "Is Goldbach's conjecture wrong?"

The Halting Problem

A classical undecidable problem:

Definition 3.9: The Halting Problem consists in the following question:
Given a TM \mathcal{M} and a word w,
will \mathcal{M} ever halt on input w ?

We can fomulate the Halting Problem as a word problem by encoding \mathcal{M} and w :

Definition 3.10: The Halting Problem is the word problem for the language

$$
\mathbf{P}_{\text {Halt }}=\{\langle\mathcal{M}\rangle \# \#\langle w\rangle \mid \mathcal{M} \text { halts on input } w\},
$$

where $\langle\mathcal{M}\rangle$ und $\langle w\rangle$ are suitable encodings of \mathcal{M} and w, for which \#\# can be used as separator.

Remark: Wrongly encoded inputs are rejected.

Proof by "Diagonalisation"

Theorem 3.11: The Halting Problem $\mathbf{P}_{\text {Halt }}$ is undecidable.

Proof: By contradiction: Suppose there is a decider \mathcal{H} for the Halting Problem.
Then one can construct a TM \mathcal{D} that does the following:
(1) Check if the given input is a TM encoding $\langle\mathcal{M}\rangle$
(2) Simulate \mathcal{H} on input $\langle\mathcal{M}\rangle \# \#\langle\langle\mathcal{M}\rangle\rangle$, that is, check if \mathcal{M} halts on $\langle\mathcal{M}\rangle$
(3) If yes, enter an infinite loop;
if no, halt and accept

Will \mathcal{D} accept the input $\langle\mathcal{D}\rangle$?
\mathcal{D} halts and accepts if and only if \mathcal{D} does not halt
Contradiction.

Many other important open problems could be solved in this way.

Proof by Reduction

Theorem 3.11: The Halting Problem $\mathbf{P}_{\text {Halt }}$ is undecidable.
Proof: Suppose that the Halting Problem is decidable.

An algorithm:

- Input: natural number k (in binary)
- Iterate over all Turing machines \mathcal{M} that have k states and tape alphabet $\{\mathrm{x}, \square \mathrm{a}$:
- Decide if \mathcal{M} halts on the empty input ε (possible if the Halting problem is decidable)
- If yes, then simulate \mathcal{M} on the empty input and, when \mathcal{M} has halted, count the number of x on the tape (possible, since there are universal TMs)
- Output: the maximal number of x written.

This algorithm would compute the Busy-Beaver funktion $\Sigma: \mathbb{N} \rightarrow \mathbb{N}$.
We have already shown that this is impossible - contradiction.
Markus Krötzsch, 17th Oct 2017 Complexity Theory slide 21 of 26

Oracles

Definition 3.15: An Oracle Turing Machine (OTM) is a Turing machine \mathcal{M} with a special tape, called the oracle tape, and distinguished states $q_{\text {? }}, q_{\text {yes }}$, and q_{no}. For a language \mathbf{O}, the oracle machine $\mathcal{M}^{\mathbf{0}}$ can, in addition to the normal TM operations, do the following:

Whenever $\mathcal{M}^{\mathbf{0}}$ reaches $q_{\text {? }}$, its next state is $q_{\text {yes }}$ if the content of the oracle tape is in \mathbf{O}, and q_{no} otherwise.

- The word problem for \mathbf{O} might be very hard or even undecidable
- Nevertheless, asking the oracle always takes just one step
- For dramatic effect, we might assert that the contents of the oracle tape is consumed (emptied) during this mysterious operation. However, this does not usually make a difference to our results.

Definition 3.16: A problem \mathbf{P} is Turing reducible to a problem \mathbf{Q} (in Symbols: $\mathbf{P} \leq_{T} \mathbf{Q}$), if \mathbf{P} is decided by an OTM $\mathcal{M}^{\mathbf{Q}}$ with oracle \mathbf{Q}.

Turing Reductions

Our previous proof constructs an algorithm for one task (Busy Beaver) by calling subroutines for another task (the Halting Problem)

This idea can be generalised:
Informal Definition 3.13: A problem \mathbf{P} is Turing reducible to a problem \mathbf{Q} (in Symbols: $\mathbf{P} \leq_{T} \mathbf{Q}$), if \mathbf{P} can be solved by a program that may call \mathbf{Q} as a sub-program.

Example 3.14: Our proof uses a reduction of the Busy-Beaver computation to the Halting problem. Note that the subroutine might be called exponentially many times here.

To make this more formal, we need orcales.

Undecidability via Turing Reductions

One can use Turing recductions to show undecidability:
Theorem 3.17: If \mathbf{P} is undecidable and $\mathbf{P} \leq_{T} \mathbf{Q}$, then \mathbf{Q} is undecidable.
Proof: Via contrapositive: If $\mathbf{P} \leq_{T} \mathbf{Q}$ and \mathbf{Q} is decidable, then we can implement the OTM that shows $\mathbf{P} \leq_{T} \mathbf{Q}$ as a regular TM, which shows that \mathbf{P} is decidable.

Here is a small application:
Theorem 3.18: The language $\mathbf{P}_{\overline{\mathrm{Halt}}}=\{\langle\mathcal{M}\rangle \# \#\langle w\rangle \mid \mathcal{M}$ does not halt on $w\}$ (the "Non-Halting Problem") is undecidable.

Proof sketch: Decide Halting by using $\mathbf{P}_{\overline{\text { Halt }}}$ as an oracle and inverting the result. Check TM encoding first (wrong encodings are rejected by Halting and Non-Halting).

ε-Halting

Special cases of the Halting Problem are usually not simpler:

Definition 3.19: The ε-Halting Problem consists in the following question:
Given a TM \mathcal{M},
will \mathcal{M} ever halt on the empty input ε ?

Theorem 3.20: The ε-Halting Problem is undecidable.

Proof: We define an oracle machine for deciding Halting:

- Input: A Turing machine \mathcal{M} and a word w.
- Construct a TM \mathcal{M}_{w} that runs in two phases:
(1) Delete the input tape and write the word w instead
(2) Process the input like \mathcal{M}
- Solve the ε-Halting problem for \mathcal{M}_{w} (oracle).
- Output: output of the ε-Halting Problem

This Turing-reduces Halting to ε-halting, so the latter is also undecidable.

Summary and Outlook

Busy Beaver is uncomputable

Halting is undecidable (for many reasons)
Orcales and Turing reductions formalise the notion of a "subroutine" and help us to transfer our insights from one problem to another

What's next?

- Some more undecidability
- Recursion and self-referentiality
- Actual complexity classes

