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Abstract

Chase algorithms are indispensable in the domain of knowl-
edge base querying, which enable the extraction of implicit
knowledge from a given database via applications of rules
from a given ontology. Such algorithms have proved ben-
eficial in identifying logical languages which admit decid-
able query entailment. Within the discipline of proof the-
ory, sequent calculi have been used to write and design proof-
search algorithms to identify decidable classes of logics. In
this paper, we show that the chase mechanism in the con-
text of existential rules is in essence the same as proof-search
in an extension of Gentzen’s sequent calculus for first-order
logic. Moreover, we show that proof-search generates univer-
sal models of knowledge bases, a feature also exhibited by the
chase. Thus, we formally connect a central tool for establish-
ing decidability proof-theoretically with a central decidability
tool in the context of knowledge representation.

1 Introduction
Existential Rules and the Chase. The formalism of exis-
tential rules is a significant sub-discipline within the field of
knowledge representation, offering insightful results within
the domain of ontology-based query answering (Baget et al.
2009), data exchange and integration (Fagin et al. 2005), and
serving a central role in the study of generic decidability cri-
teria (Feller et al. 2023).1 Ontology-based query answering
is one of the principal problems studied within the context
of existential rules, and asks if a query is logically entailed
by a given knowledge base (KB) K = (D,R), where D is
a database and R is a finite set of existential rules (Baget
et al. 2011). Databases generally consist of positive atomic
facts such as Female(Marie) or Mother(Zuza,Marie),
while existential rules—which are first-order formulae of the
form ∀xyβ(x,y) → ∃zα(y, z) with β and α conjunctions
of atoms—are used to encode a logical theory or ontology
that permits the extraction of implicit knowledge from the
encompassing KB.

The primary tool for studying query answering within this
setting is the so-called chase, an algorithm that iteratively
saturates a given database under applications of existential

1Existential rules are also referred to as a tuple-generating de-
pendencies (Abiteboul, Hull, and Vianu 1995), conceptual graph
rules (Salvat and Mugnier 1996), Datalog± (Gottlob 2009), and
∀∃-rules (Baget et al. 2011) in the literature.

rules (Beeri and Vardi 1984). The chase is useful in that it
generates a universal model satisfying exactly those queries
entailed by a KB, and thus, allows for the reduction of query
entailment to query checking over the constructed universal
model (Deutsch, Nash, and Remmel 2008). In this paper,
we show how the chase corresponds to proof-search in an
extension of Gentzen’s sequent calculus, establishing a con-
nection between a central tool in the theory of existential
rules with the primary decidability tool in proof theory.

Sequent Calculi and Proof-Search. Since its introduc-
tion, Gentzen’s sequent formalism (Gentzen 1935a; Gentzen
1935b) has become one of the preferred proof-theoretic
frameworks for the creation and study of proof calculi. A
sequent is an object of the form Γ ⊢ ∆ such that Γ and
∆ are finite (multi)sets of logical formulae, and a sequent
calculus is a set of inference rules that operate over such.
Sequent systems, and generalizations thereof, have proved
beneficial in establishing (meta)logical properties with a di-
verse number of applications, being used to write decision
algorithms (Dyckhoff 1992; Slaney 1997), to calculate in-
terpolants (Maehara 1960; Lyon et al. 2020), and have even
been applied in knowledge intergation scenerios (Lyon and
Gómez Álvarez 2022).

It is well-known that geometric implications, i.e. first-
order formula of the form ∀x(φ → ∃y1ψ1 ∨ · · · ∨ ∃ynψn)
with φ and ψi conjunctions of atoms, can be converted into
an inference rules in a sequent calculus (Simpson 1994,
p. 24). Since such formulae subsume the class of existen-
tial rules, we may leverage this insight to extend Gentzen’s
sequent calculus for first-order logic with such rules to carry
out existential rule reasoning. When we do so, we find that
sequent systems mimic existential rule reasoning and proof-
search (described below) simulates the chase.

Proof-search is the central means by which decidability
is obtained with a sequent calculus, and usually operates by
applying the inference rules of a sequent calculus bottom-
up on an input sequent with the goal of constructing a proof
thereof. If a proof of the input is found, the input is con-
firmed to be valid, and if a proof of the input is not found, a
counter-model can typically be extracted witnessing the in-
validity of the input. We make the novel observation that
counter-models extracted from proof-search (in the context
of existential rules) are universal, being homomorphically



equivalent to the universal model generated by the chase.

Contributions. Our contributions in this paper are as fol-
lows: (1) We establish a strong connection between tools
in the domain of existential rules with that of proof the-
ory; in particular, we show how to transform derivations
with existential rules into sequent calculus proofs and vice
versa. (2) We establish a correspondence between the chase
and sequent-based proof-search, and (3) we recognize that
proof-search, like the chase, generates universal models for
knowledge bases, which is a novel, previously unknown in-
sight regarding the capability of sequent systems.

Organization. The preliminaries are located in Section 2.
In Section 3, we present the sequent calculus framework
and write a proof-search algorithm that simulates the chase.
Correspondences between existential rule reasoning and
sequent-based reasoning are explicated in Section 4, and in
Section 5, we conclude and discuss future research. We note
that most proofs have been deferred to the appendix.

2 Preliminaries and Existential Rules
Formulae and Syntax. We let C and V be two disjoint de-
numerable sets of constants and variables. We use a, b, c, . . .
to denote constants and x, y, z, . . . to denote variables. We
define the set of terms to be T = C ∪ V, and we denote
terms by t and annotated versions thereof. Moreover, we let
P = {p, q, r, . . .} be a denumerable set of predicates con-
taining denumerably many predicates of each arity n ∈ N,
and use ar(p) = n to denote that p ∈ P is of arity n.
An atom is a formula of the form p(t1, . . . , tn) such that
t1, . . . , tn ∈ T and ar(p) = n. We will often write atoms
as p(t) with t = t1, . . . , tn. The first-order language L is
defined via the following grammar in Backus–Naur form:

φ ::= p(t) | ¬φ | φ ∧ φ | ∃xφ

such that p ∈ P, t ∈ T, and x ∈ V. We use φ, ψ, χ, . . . to
denote formulae from L, and define φ∨ψ := ¬(¬φ∧¬ψ),
φ → ψ := ¬φ ∨ ψ, and ∀xφ := ¬∃x¬φ. The occurrence
of a variable is free in a formula φ when it does not occur
within the scope of a quantifier. We let φ(t/x) represent the
formula obtained by substituting the term t for every free
occurrence of the variable x in φ. We use Γ, ∆, Σ, . . . to de-
note sets of formulae from L, let V(Γ) denote the set of free
variables in the formulae of Γ, and let T(Γ) denote the set
of free variables and constants occurring in the formulae of
Γ. We let i ∈ [n] represent 1 ≤ i ≤ n, and define a ground
atom to be an atom p(t1, . . . , tn) such that for each i ∈ [n],
ti ∈ C. An instance I is defined to be a (potentially infinite)
set of atoms, and a database D is defined to be a finite set
of ground atoms. We let ⊤ be a special unary predicate and
define I⊤ = I ∪ {⊤(c) | c ∈ C}. An instance I is referred
to as an interpretation iff I⊤ = I.

Substitutions. A substitution σ is defined to be a par-
tial function over T. A homomorphism from an instance
I to an instance J is a substitution π from the terms of
I to the terms of J such that (1) if p(t1, . . . , tn) ∈ I,
then p(π(t1), . . . , π(tn)) ∈ J , and (2) π(a) = a, for
each a ∈ C. We say that an instance I homomorphically

maps into an instance J iff a homomorphism exists from I
to J . Two instances I and J are defined to be homomor-
phically equivalent, written I ≡ J , iff each instance can be
homomorphically mapped into the other. An I-assignment
is defined to be a substitution µ such that (1) µ(x) ∈ T(I),
for each x ∈ V, and (2) µ(a) = a, for each a ∈ C. For
an I-assignment µ, we let µ(φ) denote the formula obtained
by replacing each free variable of φ with its value under µ,
and we let µ[t/x] be the same as µ, but where the variables
x are respectively mapped to t ∈ T.

Models and Satisfaction. Given an interpretation I and an
I-assignment µ, we recursively define satisfaction |= as:
(1) I, µ |= p(t1, . . . , tn) iff p(µ(t1), . . . , µ(tn)) ∈ I;
(2) I, µ |= ¬φ iff I, µ ̸|= φ;
(3) I, µ |= φ ∧ ψ iff I, µ |= φ and I, µ |= ψ;
(4) I, µ |= ∃xφ iff t ∈ T(I) exists and I, µ[t/x] |= φ.
We say that I is a model of Γ and write I |= Γ iff for every
φ ∈ Γ and I-assignment µ, we have I, µ |= φ. We define
an instance I to be a universal model of Γ iff for any model
J of Γ there exists a homomorphism from I to J .

Existential Rules. An existential rule is a first-order for-
mula ρ = ∀xy β(x,y) → ∃z α(y, z) such that β(x,y) =
body(ρ) (called the body) and α(y, z) = head(ρ) (called
the head) are conjunctions of atoms over constants and the
variables x,y and y, z, respectively. We call a finite set R
of existential rules a rule set. We define Γ to be R-valid iff
for every interpretation I, if I |= R, then I |= Γ.

Derivations and the Chase. We say that an existential
rule ρ is applicable to an instance I iff there exists an I-
assignment µ such that µ(β(x,y)) ⊆ I, and when this
is the case, we say that τ = (ρ, µ) is a trigger in I.
Given a trigger τ = (ρ, µ) in I we define an applica-
tion of the trigger τ to the instance I to be the instance
τ(I) = I ∪α(µ(y), z) where z is a tuple of fresh variables.
We define a chase derivation (Ii, τi)i∈[n] to be a sequence
(I1, τ1), . . . , (In, τn), (In+1, ∅) such that for every i ∈ [n],
τi is a trigger in Ii and τi(Ii) = Ii+1. For an instance I and
a rule set R, we define the one-step chase to be:

Ch1(I,R) =
⋃

τ is a trigger in I
τ(I).

We let Ch0(I,R) = I as well as let Chn+1(I,R) =
Ch1(Chn(I,R),R). Finally, we define the chase to be
Ch∞(I,R) = (

⋃
i∈N Chi(I,R))⊤, which serves as a uni-

versal model of I ∪R (Deutsch, Nash, and Remmel 2008).2

Queries and Entailment. A Boolean conjunctive query (or,
BCQ) is a formula ∃xq(x) such that q(x) is a conjunction
of atoms over the variables x and constants. We define a
knowledge base (or, KB) to be an ordered pair K = (D,R)
with D a database and R a rule set, and let I be a model of
K, written I |= K, iff I |= D ∪ R. We write K |= ∃xq(x)
to mean that for every I, if I |= K, then I |= ∃xq(x). A
chase derivation (Ii, τi)i∈[n] witnesses (D,R) |= ∃xq(x)
iff I1 = D, only rules from R are applied, and there exists

2We use a restricted variant of the chase; cf. (Fagin et al. 2005).



(id)
Γ, p(t) ⊢ p(t),∆

Γ ⊢ φ,∆
(¬L)

Γ,¬φ ⊢ ∆

Γ, φ ⊢ ∆
(¬R)

Γ ⊢ ¬φ,∆
Γ, φ, ψ ⊢ ∆

(∧L)
Γ, φ ∧ ψ ⊢ ∆

Γ ⊢ φ,∆ Γ ⊢ ψ,∆
(∧R)

Γ ⊢ φ ∧ ψ,∆
Γ, φ(y/x) ⊢ ∆

(∃L) y fresh
Γ,∃xφ ⊢ ∆

Γ ⊢ ∃xφ, φ(t/x),∆
(∃R) t ∈ T

Γ ⊢ ∃xφ,∆

Figure 1: The sequent calculus G3 for first-order logic.

an In+1-assignment µ such that µ(q(x)) ⊆ In+1.

3 Sequent Systems and Proof-Search
We define a sequent to be an object of the form Γ ⊢ ∆
such that Γ and ∆ are finite sets of formulae from L. Typ-
ically, multisets are used in sequents rather than sets, how-
ever, we are permitted to use sets in the setting of classical
logic; cf. (Kleene 1952). For a sequent Γ ⊢ ∆, we call Γ the
antecedent and ∆ the consequent. We define the formula
interpretation of a sequent to be f(Γ ⊢ ∆) =

∧
Γ →

∨
∆.

The sequent calculus G3 (Kleene 1952) for first-order
logic is defined to be the set of inference rules presented
in Figure 1. It consists of the initial rule (id) along with log-
ical rules that introduce complex logical formulae in either
the antecedent or consequent of a sequent. The (∃L) rule is
subject to a side condition, stating that the rule is applicable
only if y is fresh, i.e. y does not occur in the surrounding
context Γ,∆. The (∃R) rule allows for the bottom-up in-
stantiation of an existentially quantified formula with a term
t. An application of a rule is obtained by instantiating the
rule with formulae from L. We call an application of rule
top-down (bottom-up) whenever the conclusion (premises)
is (are) obtained from the premises (conclusion).

It is well-known that every geometric implication, which
is a formula of the form ∀x(φ → ∃y1ψ1 ∨ · · · ∨ ∃ynψn)
with φ and ψi conjunctions of atoms, can be converted into
an inference rule; see (Simpson 1994, p. 24) for a discus-
sion. We leverage this insight to transform existential rules
(which are special instances of geometric implications) into
inference rules that can be added to the sequent calculus G3.
For an existential rule ρ = ∀xyβ(x,y) → ∃zα(y, z), we
define its corresponding sequent rule s(ρ) to be:

Γ, β(x,y), α(y,z) ⊢ ∆
s(ρ) z fresh

Γ, β(x,y) ⊢ ∆

Note that we take the body β(x,y) and head α(y, z) to be
sets of atoms, rather than conjunctions of atoms, and we note
that x,y may be instantiated with terms in rule applications.
Also, s(ρ) is subject to the side condition that the rule is
applicable only if all variables z are fresh. We define the
sequent calculus G3(R) = G3 ∪ {s(ρ) | ρ ∈ R}. We define
a derivation to be any sequence of applications of rules in
G3(R) to arbitrary sequents, define an R-derivation to be
a derivation that only applies s(ρ) rules, and define a proof
to be a derivation starting from applications of the (id) rule.
An example of a proof is shown on the left side of Figure 3.
Theorem 1 (Soundness and Completeness). f(Γ ⊢ ∆) is
R-valid iff there exists a proof of Γ ⊢ ∆ in G3(R).

We now define a proof-search algorithm that decides (un-
der certain conditions) if a BCQ is entailed by a knowledge

Algorithm: Prove
Input: A sequent Γ ⊢ ∆.
Output: A Boolean True and False.

If Γ ⊢ ∆ is saturated, Return False;
If there exists a p(t) ∈ Γ ∩∆, Return True;
If φ ∧ ψ ∈ ∆, but φ,ψ ̸∈ ∆,

Set ∆1 := φ,∆ and ∆2 := ψ,∆;
If Prove(Γ ⊢ ∆i) = False for some i ∈ {1, 2},

Return False;
Else

Return True;
If ∃xφ ∈ ∆ and t ∈ T(Γ), but φ(t/x) ̸∈ ∆,

Set ∆ := φ(t/x),∆;
Return Prove(Γ ⊢ ∆)

Let ρ = ∀xy β(x,y) → ∃z α(y,z) be the next rule accord-
ing to ≺ (if no rule has yet been picked, choose one in R);

If a Γ-assignment µ exists such that µ(β(x,y)) ⊆ Γ, but no
terms t ∈ T(Γ) exist such that µ[t/z](α(y,z)) ⊆ Γ;
Set Γ := α(µ(y),z),Γ with z fresh;
Return Prove(Γ ⊢ ∆);

Figure 2: The proof-search algorithm Prove.

base. The algorithm Prove (shown in Figure 2) takes a se-
quent of the form D ⊢ ∃xq(x) as input and bottom-up ap-
plies inference rules from G3(R) with the goal of construct-
ing a proof thereof. Either, Prove returns a proof witnessing
that (D,R) |= ∃xq(x), or a counter-model to this claim can
be extracted from failed proof search. The functionality of
this algorithm depends on certain saturation conditions, de-
fined in Definition 2 below, and which determine when a
rule from G3(R) is bottom-up applicable. Due to the shape
of the input D ⊢ ∃xq(x), only (id), (∧R), (∃R), and s(ρ)
rules are applicable during proof search. Moreover, we let
≺ be an arbitrary cyclic order over R = {ρ1, . . . , ρn}, that
is, ρ1 ≺ ρ2 · · · ρn−1 ≺ ρn ≺ ρ1. We use ≺ to ensure the
fair application of s(ρ) rules during proof-search, meaning
that no bottom-up rule application is delayed indefinitely.
Definition 2 (Saturation). Let Γ ⊢ ∆ be a sequent. We say
that Γ ⊢ ∆ is saturated iff it satisfies the following:
id. if p(t) ∈ Γ, then p(t) ̸∈ ∆;
∧R. If φ ∧ ψ ∈ ∆, then either φ ∈ ∆ or ψ ∈ ∆;
∃R. If ∃xφ ∈ ∆, then for every t ∈ T(Γ), φ(t/x) ∈ ∆;
er. For each ρ ∈ R, if a Γ-assignment µ exists such that
µ(body(ρ)) ⊆ Γ, then there exist t ∈ T(Γ) such that
µ[t/z](head(ρ)) ⊆ Γ holds.

Theorem 3. Let R be a rule set, D be a database, and
∃xq(x) be a BCQ. Then,

1. If Prove(D ⊢ ∃xq(x)) = True, then a proof in G3(R)
can be constructed witnessing that (D,R) |= ∃xq(x);

2. If Prove(D ⊢ ∃xq(x)) ̸= True, then a universal model
can be constructed witnessing that (D,R) ̸|= ∃xq(x).



(id)
Γ ⊢ ∃x(A(x, a) ∧ F(x)), A(c, a)

(id)
Γ ⊢ ∃x(A(x, a) ∧ F(x)), F(c)

(∧R)
Γ ⊢ ∃x(A(x, a) ∧ F(x)), A(c, a) ∧ F(c)

(∃R)
M(b, a), A(b, a), F(b), M(c, b), A(c, b), F(c), A(c, a) ⊢ ∃x(A(x, a) ∧ F(x))

s(ρ2)
M(b, a), A(b, a), F(b), M(c, b), A(c, b), F(c) ⊢ ∃x(A(x, a) ∧ F(x))

s(ρ1)
M(b, a), A(b, a), F(b), M(c, b) ⊢ ∃x(A(x, a) ∧ F(x))

s(ρ1)
M(b, a), M(c, b) ⊢ ∃x(A(x, a) ∧ F(x))

a

b F

c
F

M

MA

A

A

x
F

a

A

µ

µ

Figure 3: Above left is a proof in G3(R) witnessing that K |= ∃x(A(x, a) ∧ F(x)), where K = (D,R) is as defined in Example 11 and
Γ = M(b, a), A(b, a), F(b), M(c, b), A(c, b), F(c), A(c, a). Above right is an illustration showing that the BCQ ∃x(A(x, a)∧ F(x)) (to the right)
can be mapped into the chase Ch∞(D,R) (to the left) via the Ch∞(D,R) -assignment µ (dotted arrows).

We refer to the universal model of (D,R) stated in the
second claim of Theorem 3 as the witnessing counter-model.

4 Simulations and Equivalences
We present a sequence of results which culminate in the es-
tablishment of two main theorems: (1) Theorem 9, which
confirms that chase derivations are mutually transformable
with certain proofs in G3(R), and (2) Theorem 10, which
confirms the equivalence of Prove and the chase. We end
the section by providing an example illustrating the latter
correspondence between proofs and the chase.

Observation 4. Let R be a rule set. If ρ ∈ R, then any
application of (∧R) and (∃R) permute above s(ρ).

Proof. It is straightforward to confirm the permutation of
such rules as the s(ρ) rules operate on the antecedent of a
sequent, and (∧R) and (∃R) operate on the consequent.

Observation 5. If I is an instance, then only s(ρ) rules of
G3(R) can be bottom-up applied to I ⊢ ∅. Moreover, such
an application yields a sequent I ′ ⊢ ∅ with I ′ an instance.

Observation 6. The inference shown below left is a correct
application of s(ρ) iff the inference shown below right is:

Γ′ ⊢ ∅
s(ρ)

Γ ⊢ ∅
Γ′ ⊢ ∆ s(ρ)
Γ ⊢ ∆

Observation 7. Let I and I ′ be instances with τ = (ρ, µ)
a trigger on I. Then, (I, τ), (I ′, ∅) is a chase derivation iff
the following is a correct application of s(ρ):

I′ ⊢ ∅
s(ρ)

I ⊢ ∅
Lemma 8. For every rule set R, n ∈ N, and instances
I1, . . . , In there exists a chase derivation (Ii, τi)i∈[n−1] iff
there exists an R-derivation of I1 ⊢ ∅ from In ⊢ ∅.

In the proof of the following theorem, one shows that
every chase derivation can be transformed into a proof in
G3(R) and vice-versa, showing how existential rule reason-
ing and proofs in G3(R) simulate one another.

Theorem 9. Let R be a rule set. A chase derivation
(Ii, τi)i∈[n] witnessing (D,R) |= ∃xq(x) exists iff a proof
in G3(R) of D ⊢ ∃xq(x) exists.

Leveraging Theorems 3 and 9, it is straightforward to
prove the first claim of the theorem below. The second claim
is immediate as I and Ch∞(D,R) are universal models.

We note that the following theorem expresses a correspon-
dence between proof-search and the chase.

Theorem 10. Let R be a rule set, D be a database, and
∃xq(x) be a BCQ. Then,

1. Prove(D ⊢ ∃xq(x)) = True iff there is an n ∈ N such
that Chn(D,R) |= ∃xq(x) iff Ch∞(D,R) |= ∃xq(x);

2. If Prove(D ⊢ ∃xq(x)) ̸= True , then I ≡ Ch∞(D,R)
with I the witnessing counter-model.

Example 11. We provide an example demonstrating the re-
lationship between a proof and the chase. We read F(x) as
‘x is female’, M(x, y) as ‘x is the mother of y’ and A(x, y) as
‘x is the ancestor of y’. We let K = (D,R) be a knowledge
base such that D = {M(b, a), M(c, b)}, R = {ρ1, ρ2}, and

ρ1 = ∀xy(M(x, y) → A(x, y) ∧ F(x));
ρ2 = ∀xy(A(x, y) ∧ A(y, z) → A(x, z)).

In Figure 3, K |= ∃x(A(x, a) ∧ F(x)) is witnessed and
verified by the proof shown left. The graph shown right
demonstrates that the BCQ ∃x(A(x, a)∧ F(x)) (to the right)
can be mapped into the chase Ch∞(D,R) (to the left) via
a Ch∞(D,R)-assignment µ (depicted as dotted arrows).
(NB. We have omitted the points {⊤(c) | c ∈ C} in the
picture of Ch∞(D,R) for simplicity.)

5 Concluding Remarks
We have formally established an equivalence between ex-
istential rule reasoning and sequent calculus proofs, effec-
tively showing that proof-search simulates the chase. This
work is meaningful as it uncovers and connects two central
reasoning tasks and tools in the domain of existential rules
and proof theory. Moreover, we have found that the counter-
models extracted from failed proof-search are universal, im-
plying their homomorphic equivalence to the chase—a pre-
viously unrecognized observation.

For future work, we aim to examine the relationship
between the disjunctive chase (Bourhis et al. 2016) and
proof-search in sequent calculi with disjunctive inference
rules. It may additionally be worthwhile to investigate if
our sequent systems can be adapted to facilitate reason-
ing with non-classical variants or extensions of existential
rules. For example, we could merge our sequent calculi
with those of (Lyon and Gómez Álvarez 2022) for stand-
point logic—a modal logic used in knowledge integration
to reason with diverse and potentially conflicting knowledge



sources (Gómez Álvarez and Rudolph 2021). Finally, as this
paper presents a sequent calculus for querying with existen-
tial rules, we plan to further explore its utility; e.g. by identi-
fying admissible rules or applying loop checking techniques
to uncover new classes of existential rules with decidable
query entailment.
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A Proofs for Section 3
Lemma 12 (Soundness). If there exists a proof of Γ ⊢ ∆ in
G3(R), then f(Γ ⊢ ∆) is R-valid.

Proof. We prove the result by induction on the number of
inferences in the proof of Γ ⊢ ∆.

Base case. If Γ ⊢ ∆ is an instance of (id), then p(t) ∈
Γ ∩ ∆. Let Γ = Γ′, p(t) and ∆ = ∆′, p(t). Suppose I is
an interpretation and µ is an I-assignment such that I, µ |=∧
Γ′ ∧ p(t). Then, µ(p(t)) ∈ I, which shows that I, µ |=∨
∆′∨p(t). Hence, I |=

∧
Γ →

∨
∆ for any interpretation

I, including any interpretation I such that I |= R. This
shows that f(Γ ⊢ ∆) is R-valid.



Inductive step. We consider the final inference in the
given proof and show that if the conclusion is not R-valid,
then the premise is not R-valid, establishing that the con-
clusion is R-valid as the premise is R-valid by the inductive
hypothesis. We argue the (∃L), (∃R), and s(ρ) cases as the
remaining cases are straightforward.

(∃L). Suppose an interpretation I and I-assignment µ
exist such that I |= R and I, µ ̸|= f(Γ,∃xφ ⊢ ∆). Then,
there exists a term t ∈ T(I) such that I, µ[t/x] |= φ. It
follows that I, µ[t/y] |= φ(y/x), showing that I, µ[t/y] ̸|=
f(Γ, φ(y/x) ⊢ ∆), which concludes the proof of the case.
(∃R). Suppose an interpretation I and I-assignment µ

exist such that I |= R and I, µ ̸|= f(Γ ⊢ ∃xφ,∆). It
follows that I, µ ̸|= ∃xφ, meaning that for every term t ∈
T(I), I, µ ̸|= φ(t/x). As I is an interpretation, T(I) =
T, showing that I, µ ̸|= φ(t/x). This implies that I, µ ̸|=
f(Γ ⊢ ∃xφ, φ(t/x),∆), i.e. the premise is not R-valid.
s(ρ). Let ρ = ∀xyβ(x,y) → ∃zα(y, z) ∈ R. Sup-

pose an interpretation I and I-assignment µ exist such that
I |= R and I, µ ̸|= f(Γ, β(x,y) ⊢ ∆). It follows that we
have I, µ |= β(x,y), implying I, µ |= ∃zα(y, z) as I |=
R. Therefore, there exist t ∈ T(I) such that I, µ[t/z] |=
α(y, z), showing that I, µ ̸|= f(Γ, β(x,y), α(y, z) ⊢ ∆),
i.e. the premise is not R-valid.

Lemma 13 (Completeness). If f(Γ ⊢ ∆) is R-valid, there
exists a proof of Γ ⊢ ∆ in G3(R).

Proof. Similar to the proof-search procedure Prove, we
take Γ ⊢ ∆ as input and apply rules from G3(R) bottom-up
with the goal of constructing a proof thereof. We bottom-up
apply the rules from G3(R) in a roundabout fashion, apply-
ing (id), (¬L), (¬R), (∧L), (∧R), (∃L), (∃R), s(ρ), and
then circling back to (id). When we consider a rule, we
bottom-up apply it in all possible ways to the derivation be-
ing constructed. Furthermore, if a path in the derivation ex-
ists such that it is not an instance of (id) and none of the
other rules are bottom-up applicable to the sequent at the
top of the path, then we copy it above itself. This strategy of
completeness is common in the proof theory literature; e.g.
see (Kripke 1959; Lyon and Karge 2022).

Let us suppose that no proof of Γ ⊢ ∆ exists in G3(R).
Then, the above described process will not terminate, imply-
ing that an infinite derivation of Γ ⊢ ∆ will be constructed,
which has the shape of an infinite tree with finite branching.
Therefore, by König’s lemma an infinite path

P = (Γ0 ⊢ ∆0), (Γ1 ⊢ ∆1), . . . , (Γn ⊢ ∆n), . . .

of sequents exists such that Γ0 = Γ and ∆0 = ∆. We define:

Γ =
⋃
i∈N

Γi ∆ =
⋃
i∈N

∆i

Using Γ, we define an interpretation I accordingly:

I = {p(t) | p(t) ∈ Γ}⊤

It is straightforward to argue that I |= R and is similar to
the argument given in Theorem 3 below. Let us now define
an I-assignment µ such that µ(t) = t for each term t ∈ T.
We now show by simultaneous induction on the number of

logical connectives in φ that (1) if φ ∈ Γ, then I, µ |= φ,
and (2) if φ ∈ ∆, then I, µ ̸|= φ. We only show the atomic,
negation, and existential cases below for claim (1) as the
remaining cases are simple or similar.

p(t) ∈ Γ. If p(t) ∈ Γ, then p(t) ∈ I by definition, showing
that µ(p(t)) ∈ I, which implies that I, µ |= p(t).

¬ψ ∈ Γ. If ¬ψ ∈ Γ, thenψ ∈ ∆ as the (¬L) rule will even-
tually be bottom-up applied in the procedure described
above, so by IH and claim (2), I, µ ̸|= ψ, which shows
that I, µ |= ¬ψ.

∃xψ ∈ Γ. If ∃xψ ∈ Γ, then at some stage (∃L) will be
applied bottom-up ensuring that ψ(y/x) ∈ Γ. By IH,
I, µ[y/y] |= ψ(y/x), and we know y ∈ T(I), showing
that I, µ |= ∃xψ.

Since Γ ⊆ Γ and ∆ ⊆ ∆, we have that I, µ |=
∧

Γ and
I, µ ̸|=

∨
∆, implying that I, µ ̸|=

∧
Γ →

∨
∆, which

demonstrates that f(Γ ⊢ ∆) is not R-valid.

Theorem 1 (Soundness and Completeness). f(Γ ⊢ ∆) is
R-valid iff there exists a proof of Γ ⊢ ∆ in G3(R).

Proof. Follows from Lemma 12 and Lemma 13 above.

Theorem 3. Let R be a rule set, D be a database, and
∃xq(x) be a BCQ. Then,

1. If Prove(D ⊢ ∃xq(x)) = True, then a proof in G3(R)
can be constructed witnessing that (D,R) |= ∃xq(x);

2. If Prove(D ⊢ ∃xq(x)) ̸= True, then a universal model
can be constructed witnessing that (D,R) ̸|= ∃xq(x).

Proof. The first claim is immediate since if Prove(D ⊢
∃xq(x)) = True, then Prove constructs a proof of D ⊢
∃xq(x) as every recursive call of Prove corresponds to a
bottom-up application of (∧R), (∃R), or s(ρ). This implies
that (D,R) |= ∃xq(x) as G3(R) is sound. Let us therefore
argue that the second claim holds.

We assume w.l.o.g. that Prove does not terminate
and show how to extract a counter-model witnessing that
(D,R) ̸|= ∃xq(x). Since Prove does not terminate, it
generates an infinite derivation in the form of a tree with
D ⊢ ∃xq(x) root and which is finite branching (as G3(R)
only consists of unary and binary rules). Hence, by König’s
lemma there exists an infinite path

P = (Γ0 ⊢ ∆0), (Γ1 ⊢ ∆1), . . . , (Γn ⊢ ∆n), . . .

of sequents in the infinite derivation such that Γ0 = D and
∆0 = ∃xq(x). We use this path to construct an interpre-
tation I such that I |= D and I ̸|= ∃xq(x). Let us now
define:

I = (
⋃
i∈N

Γi)
⊤ ∆ =

⋃
i∈N

∆i

We now argue (1) I |= (D,R), and (2) if φ ∈ ∆, then
I ̸|= φ. We argue claim (1) first: Since D = Γ0 ⊆ I,
we know that I, µ |= D for any I-assignment µ as all I-
assignments map constants in the same way and D con-
tains only constants; hence, I |= D. Let us now argue that
I |= R as well. Let µ be an arbitrary I-assignment and
ρ ∈ R with ρ = ∀xy β(x,y) → ∃z α(y, z). Suppose



that I, µ |= β(x,y). It follows that for some Γi ⊢ ∆i in
P , µ(β(x,y)) ⊆ Γi. If Γi, µ ̸|= ∃z α(y, z), then due
to the cyclic order ≺ (ensuring fairness) imposed during
proof-search, eventually ρ will be considered and s(ρ) ap-
plied bottom-up. This ensures that α(µ(y), z) ∈ I with z
fresh in the application of s(ρ). Hence, I, µ |= ρ, showing
that I |= ρ as µ was assumed arbitrary, establishing claim
(1).

Let us now argue (2) by induction on the number of log-
ical operators in φ. Note that due to the shape of the input
D ⊢ ∃xq(x) and the rules applied during proof-search, only
atomic formulae, conjunctions, and existentials will occur in
∆. We define µ(t) = t for each t ∈ T.

p(t) ∈ ∆. If p(t) ∈ I, then there exists some i such that
p(t) ∈ Γi ∩∆i, meaning that Prove would terminate and
return True contrary to our assumption. Thus, p(t) ̸∈ I,
implying that I, µ ̸|= p(t).

ψ ∧ χ ∈ ∆. If ψ ∧ χ ∈ ∆, then there exists a minimal i
such that ψ ∧ χ ∈ ∆i. Therefore, by the conjunction
step of Prove, we know that at some stage j ≥ i either
ψ ∈ ∆j or χ ∈ ∆j . By IH, either ψ ∈ ∆ or χ ∈ ∆,
meaning either I, µ ̸|= ψ or I, µ ̸|= χ, showing that
I, µ ̸|= ψ ∧ χ regardless of which case holds.

∃xψ ∈ ∆. Let t ∈ T(I). Since ∃xψ ∈ ∆, there exists
some minimal i, ∃xψ ∈ ∆i. By the existential step of
Prove, we know that ψ(t/x) ∈ ∆j for some j ≥ i. By
IH, I ̸|= ψ(t/x), and since t was chosen arbitrarily, we
have that for all t ∈ T(I), I, µ ̸|= ψ(t/x), showing that
I, µ ̸|= ∃xψ.

This concludes the proof of claim (2). As a consequence,
since ∃xq(x) ∈ ∆, it follows that I, µ ̸|= ∃xq(x).
This fact, in conjunction with claim (1), establishes that
(D,R) ̸|= ∃xq(x). Last, we argue that I is a univer-
sal model for (D,R). Let J be any model of (D,R). We
first define a sequence s′ = ⟨Γ′

i⟩i∈N relative to the sequence
s = ⟨Γi⟩i∈N of antecedents from the path P accordingly:
(1) Γ′

0 = Γ0 = D, (2) Γ′
n+1 = min{Γk | Γk ̸= Γ′

n, n ≤ k}.
We inductively build an increasing sequence of homomor-

phisms ⟨hi : Γ′
i → J ⟩i∈N. By the definition of s′, we

have that Γ′
0 = Γ0 = D. As D ⊆ J , we simply define

h0 to be an identity on the domain of D. Now, assume
that hi is a homomorphism from Γ′

i → J . We will build
a homomorphism hi+1 : Γ′

i+1 → J . Observe, Γ′
i+1 can

only be obtained from Γ′
i by an application of s(ρ) with

ρ = ∀xy β(x,y) → ∃z α(y, z). Thus, from Observa-
tion 7, a trigger τ = (ρ, µ) exists in Γ′

i. Let µ(x,y) = t, t′

where x,y is the tuple of universally quantified variables
in body(ρ). Note that there exists a trigger (ρ, µ′) in J
such that µ′(x,y) = hi(t, t

′). However, as J is a model of
(D,R) we know that there exists a J -assignment µ′′ map-
ping head(ρ) into J that agrees on y with µ′. As Γ′

i+1 is
created by applying the trigger τ to Γ′

i, we know that there
exists a Γ′

i-assignment µ′′′ that maps head(ρ) to Γ′
i+1 which

agrees with µ on y. From those facts we can see that hi+1

can be constructed from hi by ensuring that hi+1 ◦ µ′′′ is

identical to µ′′ when restricted to z. Note that hi+1 ◦ µ′′′

already agrees on x and y with µ′′. Finally, as the homo-
morphisms hi form an ascending sequence, we take the limit⋃

i∈N hi as the homomorphism from I to J .

B Proofs for Section 4
Lemma 8. For every rule set R, n ∈ N, and instances
I1, . . . , In there exists a chase derivation (Ii, τi)i∈[n−1] iff
there exists an R-derivation of I1 ⊢ ∅ from In ⊢ ∅.

Proof. (⇒) Follows from Observation 7. (⇐) Let Π be a
bottom-up R-derivation of I1 ⊢ ∅ from In ⊢ ∅. By the def-
inition of an R-derivation, only s(ρ) rules are applied in Π.
We may transform Π into the chase derivation (Ii, τi)i∈[n−1]

by Observation 7.

Theorem 9. Let R be a rule set. A chase derivation
(Ii, τi)i∈[n] witnessing (D,R) |= ∃xq(x) exists iff a proof
in G3(R) of D ⊢ ∃xq(x) exists.

Proof. (⇒) By assumption, an In+1-assignment µ exists
such that In+1, µ |= q(x). It follows that In+1 |= ∃xq(x),
which implies that a proof Π of In+1 ⊢ ∃xq(x) can be con-
structed in G3(R) by completeness (Theorem 1). By our as-
sumption and Lemma 8, we obtain a derivation Π′ of D ⊢ ∅
from In+1 ⊢ ∅. Moreover, by Observation 5 we know that
Π′ uses only s(ρ) rules, and by repeated application of Ob-
servation 6, we may transform Π′ into a new derivation Π′′

of D ⊢ ∃xq(x) from In+1 ⊢ ∃xq(x). By affixing Π atop
Π′′ we obtain a proof in G3(R) of D ⊢ ∃xq(x).
(⇐) Suppose Π is a proof of D ⊢ ∃xq(x) in G3(R).

Observe that Π can only use s(ρ), (∧R), and (∃R) rules as
D is an instance and ∃xq(x) is a BCQ. By Observation 4,
we may transform Π into a new proof which consists of two
fragments: a top proof Π′ of I ⊢ ∃xq(x) consisting only of
(∧R) and (∃R) applications, and a bottom derivation Π′′ of
D ⊢ ∃xq(x) from I ⊢ ∃xq(x) consisting only of s(ρ) ap-
plications. By the soundness of G3(R) (Theorem 1), there
exists an I-assignment µ such that µ(q(x)) ⊆ I. By Ob-
servation 6 and Lemma 8, we can transform Π′′ into a chase
derivation (Ii, τi)i∈[n] with In+1 = I. As µ(q(x)) ⊆ I,
this chase derivation witnesses (D,R) |= ∃xq(x).

Theorem 10. Let R be a rule set, D be a database, and
∃xq(x) be a BCQ. Then,

1. Prove(D ⊢ ∃xq(x)) = True iff there is an n ∈ N such
that Chn(D,R) |= ∃xq(x) iff Ch∞(D,R) |= ∃xq(x);

2. If Prove(D ⊢ ∃xq(x)) ̸= True , then I ≡ Ch∞(D,R)
with I the witnessing counter-model.

Proof. We note that claim (2) is straightforward as both I
and Ch∞(D,R) are universal models of (D,R). Regarding
(1), we argue the first equivalence as the second equivalence
is trivial.

(⇒) By assumption, a proof Π of D ⊢ ∃xq(x) exists in
G3(R). By Theorem 9, a chase derivation (Ii, τi)i∈[n] wit-
nessing (D,R) |= ∃xq(x) can be constructed from Π. At
some step n ∈ N of the chase an instance I will be generated
such that In+1 ⊆ I, showing that Chn(D,R) |= ∃xq(x).



(⇐) If Chn(D,R) |= ∃xq(x), then Chn(D,R) can
be linearized into a chase derivation (Ii, τi)i∈[n] witnessing
(D,R) |= ∃xq(x), from which a proof Π of D ⊢ ∃xq(x)
can be constructed in G3(R) by Theorem 9. By Theorem 3,
Prove(D ⊢ ∃xq(x)) = True.
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