# **Finite and Algorithmic Model Theory** Lecture 5 (Dresden 09.11.22, Long version with Errors)

Lecturer: Bartosz "Bart" Bednarczyk

TECHNISCHE UNIVERSITÄT DRESDEN & UNIWERSYTET WROCŁAWSKI











European Research Council Established by the European Commission

Goal: Prove that Ehrenfeucht-Fraïssé games works + Simplification of E-F games with Hanf's locality

Goal: Prove that Ehrenfeucht-Fraïssé games works + Simplification of E-F games with Hanf's locality

Goal: Prove that Ehrenfeucht-Fraïssé games works + Simplification of E-F games with Hanf's locality

- 1. Recap of Ehrenfeucht-Fraïssé games.
- **2.** Back-and-Forth Equivalence with threshold *m*.

Goal: Prove that Ehrenfeucht-Fraïssé games works + Simplification of E-F games with Hanf's locality

1. Recap of Ehrenfeucht-Fraïssé games.

**2.** Back-and-Forth Equivalence with threshold *m*. Notation:  $(\mathfrak{A} \simeq_m \mathfrak{B})$ .

Goal: Prove that Ehrenfeucht-Fraïssé games works + Simplification of E-F games with Hanf's locality

- 1. Recap of Ehrenfeucht-Fraïssé games.
- **2.** Back-and-Forth Equivalence with threshold *m*. Notation:  $(\mathfrak{A} \simeq_m \mathfrak{B})$ .

 $\mathfrak{A} \simeq_m \mathfrak{B}$  iff Duplic  $\forall$  or has winning strategy in *m*-round E-F games on  $\mathfrak{A}$  and  $\mathfrak{B}$ .

Goal: Prove that Ehrenfeucht-Fraïssé games works + Simplification of E-F games with Hanf's locality

- 1. Recap of Ehrenfeucht-Fraïssé games.
- **2.** Back-and-Forth Equivalence with threshold *m*. Notation:  $(\mathfrak{A} \simeq_m \mathfrak{B})$ .

 $\mathfrak{A} \simeq_m \mathfrak{B}$  iff Duplic  $\forall$  or has winning strategy in *m*-round E-F games on  $\mathfrak{A}$  and  $\mathfrak{B}$ .

3. Hintikka formulae

Goal: Prove that Ehrenfeucht-Fraïssé games works + Simplification of E-F games with Hanf's locality

- 1. Recap of Ehrenfeucht-Fraïssé games.
- **2.** Back-and-Forth Equivalence with threshold *m*. Notation:  $(\mathfrak{A} \simeq_m \mathfrak{B})$ .

 $\mathfrak{A} \simeq_m \mathfrak{B}$  iff Duplic  $\forall$  or has winning strategy in *m*-round E-F games on  $\mathfrak{A}$  and  $\mathfrak{B}$ .

**3.** Hintikka formulae, i.e. describing the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>m</sub>[ $\tau$ ] formula.

Goal: Prove that Ehrenfeucht-Fraïssé games works + Simplification of E-F games with Hanf's locality

- 1. Recap of Ehrenfeucht-Fraïssé games.
- **2.** Back-and-Forth Equivalence with threshold *m*. Notation:  $(\mathfrak{A} \simeq_m \mathfrak{B})$ .

 $\mathfrak{A} \simeq_m \mathfrak{B}$  iff Duplic  $\forall$  or has winning strategy in *m*-round E-F games on  $\mathfrak{A}$  and  $\mathfrak{B}$ .

**3.** Hintikka formulae, i.e. describing the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>m</sub>[ $\tau$ ] formula.

Goal: Prove that Ehrenfeucht-Fraïssé games works + Simplification of E-F games with Hanf's locality

- 1. Recap of Ehrenfeucht-Fraïssé games.
- **2.** Back-and-Forth Equivalence with threshold *m*. Notation:  $(\mathfrak{A} \simeq_m \mathfrak{B})$ .

 $\mathfrak{A} \simeq_m \mathfrak{B}$  iff Duplic  $\forall$  or has winning strategy in *m*-round E-F games on  $\mathfrak{A}$  and  $\mathfrak{B}$ .

**3.** Hintikka formulae, i.e. describing the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>m</sub>[ $\tau$ ] formula.

 $\mathfrak{A} \simeq_m \mathfrak{B}$  iff  $\mathfrak{B} \models \varphi^{\mathfrak{A},m}_{\mathsf{Hintikka}}$ .

**4.** Gaifman Graphs and *r*-neighbourhoods

Goal: Prove that Ehrenfeucht-Fraïssé games works + Simplification of E-F games with Hanf's locality

- 1. Recap of Ehrenfeucht-Fraïssé games.
- **2.** Back-and-Forth Equivalence with threshold *m*. Notation:  $(\mathfrak{A} \simeq_m \mathfrak{B})$ .

 $\mathfrak{A} \simeq_m \mathfrak{B}$  iff Duplic  $\forall$  or has winning strategy in *m*-round E-F games on  $\mathfrak{A}$  and  $\mathfrak{B}$ .

**3.** Hintikka formulae, i.e. describing the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>m</sub>[ $\tau$ ] formula.

- **4.** Gaifman Graphs and *r*-neighbourhoods
- **5.** Examples of Hanf(r, t)-equivalent structures.

Goal: Prove that Ehrenfeucht-Fraïssé games works + Simplification of E-F games with Hanf's locality

- 1. Recap of Ehrenfeucht-Fraïssé games.
- **2.** Back-and-Forth Equivalence with threshold *m*. Notation:  $(\mathfrak{A} \simeq_m \mathfrak{B})$ .

 $\mathfrak{A} \simeq_m \mathfrak{B}$  iff Duplic  $\forall$  or has winning strategy in *m*-round E-F games on  $\mathfrak{A}$  and  $\mathfrak{B}$ .

**3.** Hintikka formulae, i.e. describing the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>m</sub>[ $\tau$ ] formula.

- **4.** Gaifman Graphs and *r*-neighbourhoods
- **5.** Examples of Hanf(r, t)-equivalent structures.
- **6.** Hanf's theorem + applications to inexpressivity in FO.

Goal: Prove that Ehrenfeucht-Fraïssé games works + Simplification of E-F games with Hanf's locality

- 1. Recap of Ehrenfeucht-Fraïssé games.
- **2.** Back-and-Forth Equivalence with threshold *m*. Notation:  $(\mathfrak{A} \simeq_m \mathfrak{B})$ .

 $\mathfrak{A} \simeq_m \mathfrak{B}$  iff Duplic  $\forall$  or has winning strategy in *m*-round E-F games on  $\mathfrak{A}$  and  $\mathfrak{B}$ .

**3.** Hintikka formulae, i.e. describing the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>m</sub>[ $\tau$ ] formula.

- **4.** Gaifman Graphs and *r*-neighbourhoods
- **5.** Examples of Hanf(r, t)-equivalent structures.
- **6.** Hanf's theorem + applications to inexpressivity in FO.
- 7. Proof of Hanf's theorem.

Goal: Prove that Ehrenfeucht-Fraïssé games works + Simplification of E-F games with Hanf's locality

- 1. Recap of Ehrenfeucht-Fraïssé games.
- **2.** Back-and-Forth Equivalence with threshold *m*. Notation:  $(\mathfrak{A} \simeq_m \mathfrak{B})$ .

 $\mathfrak{A} \simeq_m \mathfrak{B}$  iff Duplic  $\forall$  or has winning strategy in *m*-round E-F games on  $\mathfrak{A}$  and  $\mathfrak{B}$ .

**3.** Hintikka formulae, i.e. describing the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>m</sub>[ $\tau$ ] formula.

 $\mathfrak{A} \simeq_m \mathfrak{B}$  iff  $\mathfrak{B} \models \varphi_{\mathsf{Hintikka}}^{\mathfrak{A},m}$ .

- **4.** Gaifman Graphs and *r*-neighbourhoods
- **5.** Examples of Hanf(r, t)-equivalent structures.
- **6.** Hanf's theorem + applications to inexpressivity in FO.
- 7. Proof of Hanf's theorem.

Lecture based on

Chapter 3.5 of [Libkin's Book]

Slides 29-33, 43-51 of [Montanari]

19:23-24:32 of lecture by [Anuj Dawar]

Slides 80-110 by [Diego Figueira]

Goal: Prove that Ehrenfeucht-Fraïssé games works + Simplification of E-F games with Hanf's locality

- 1. Recap of Ehrenfeucht-Fraïssé games.
- **2.** Back-and-Forth Equivalence with threshold *m*. Notation:  $(\mathfrak{A} \simeq_m \mathfrak{B})$ .

 $\mathfrak{A} \simeq_m \mathfrak{B}$  iff Duplic  $\forall$  or has winning strategy in *m*-round E-F games on  $\mathfrak{A}$  and  $\mathfrak{B}$ .

**3.** Hintikka formulae, i.e. describing the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>m</sub>[ $\tau$ ] formula.

 $\mathfrak{A} \simeq_m \mathfrak{B}$  iff  $\mathfrak{B} \models \varphi^{\mathfrak{A},m}_{\mathsf{Hintikka}}$ .

- **4.** Gaifman Graphs and *r*-neighbourhoods
- **5.** Examples of Hanf(r, t)-equivalent structures.
- **6.** Hanf's theorem + applications to inexpressivity in FO.
- 7. Proof of Hanf's theorem.

Lecture based on

Chapter 3.5 of [Libkin's Book]

Slides 29-33, 43-51 of [Montanari]

19:23-24:32 of lecture by [Anuj Dawar]

Slides 80-110 by [Diego Figueira]

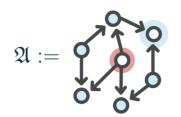


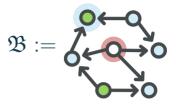
Feel free to ask questions and interrupt me!

Don't be shy! If needed send me an email (bartosz.bednarczyk@cs.uni.wroc.pl) or approach me after the lecture! Reminder: this is an advanced lecture. Target: people that had fun learning logic during BSc studies!

• Duration: *m* rounds.

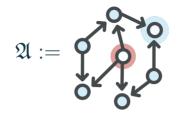
- Duration: *m* rounds.
- Playground: two  $\tau$ -structures  $\mathfrak{A}$  and  $\mathfrak{B}$ .

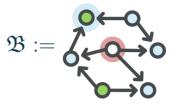




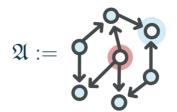
- Duration: *m* rounds.
- Playground: two  $\tau$ -structures  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- Two players: Spoil∃r

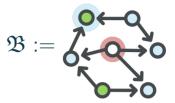






- Duration: *m* rounds.
- Playground: two  $\tau$ -structures  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- Two players: Spoil r (D vil/ loise / ve/ Player I)



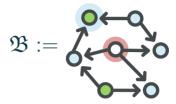




- Duration: *m* rounds.
- Playground: two  $\tau$ -structures  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- Two players: Spoil $\exists r (D \exists vil / \exists loise / \exists ve / Player I) vs Duplic \forall tor$









 $\mathfrak{A} :=$ 

- Duration: *m* rounds.
- Playground: two  $\tau$ -structures  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- Two players: Spoil∃r (D∃vil/∃loise/∃ve/Player I) vs Duplic∀tor (∀ngel/∀belard/∀dam/Player II)







 $\mathfrak{A} :=$ 

- Duration: *m* rounds.
- Playground: two  $\tau$ -structures  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- Two players: Spoil∃r (D∃vil/∃loise/∃ve/Player I) vs Duplic∀tor (∀ngel/∀belard/∀dam/Player II)









 $\mathfrak{A} :=$ 

- Duration: *m* rounds.
- Playground: two  $\tau$ -structures  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- Two players: Spoil∃r (D∃vil/∃loise/∃ve/Player I) vs Duplic∀tor (∀ngel/∀belard/∀dam/Player II)







Goal of  $\forall$ :  $\mathfrak{A}, \mathfrak{B}$  "look the same".

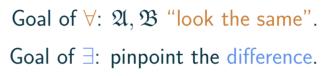
 $\mathfrak{A} :=$ 

- Duration: *m* rounds.
- Playground: two  $\tau$ -structures  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- Two players: Spoil∃r (D∃vil/∃loise/∃ve/Player I) vs Duplic∀tor (∀ngel/∀belard/∀dam/Player II)









 $\mathfrak{A} :=$ 

- Duration: *m* rounds.
- Playground: two  $\tau$ -structures  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- Two players: Spoil∃r (D∃vil/∃loise/∃ve/Player I) vs Duplic∀tor (∀ngel/∀belard/∀dam/Player II)







Goal of  $\forall$ :  $\mathfrak{A}, \mathfrak{B}$  "look the same". Goal of  $\exists$ : pinpoint the difference.

 $\mathfrak{B} :=$ 

• During the *i*-th round:

 $\mathfrak{A} :=$ 

- Duration: *m* rounds.
- Playground: two  $\tau$ -structures  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- Two players: Spoil $\exists r (D \exists vil / \exists loise / \exists ve / Player I) vs Duplic \forall tor (<math>\forall ngel / \forall belard / \forall dam / Player II)$







Goal of  $\forall$ :  $\mathfrak{A}, \mathfrak{B}$  "look the same". Goal of  $\exists$ : pinpoint the difference.

- During the *i*-th round:
- **1.**  $\exists$  selects a structure (say  $\mathfrak{A}$ ) and picks an element (say  $a_i \in A$ )

 $\mathfrak{A} :=$ 

- Duration: *m* rounds.
- Playground: two  $\tau$ -structures  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- Two players: Spoil∃r (D∃vil/∃loise/∃ve/Player I) vs Duplic∀tor (∀ngel/∀belard/∀dam/Player II)

- During the *i*-th round:
- **1.**  $\exists$  selects a structure (say  $\mathfrak{A}$ ) and picks an element (say  $a_i \in A$ )
- **2.**  $\forall$  replies with an element (say  $b_i \in B$ ) in the other structure (in this case  $\mathfrak{B}$ )









 $\mathfrak{A} :=$ 

- Duration: *m* rounds.
- Playground: two  $\tau$ -structures  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- Two players: Spoil $\exists r (D \exists vil/\exists loise/\exists ve/Player I) vs Duplic \forall tor (\forall ngel/\forall belard/\forall dam/Player II)$

- During the *i*-th round:
- **1.**  $\exists$  selects a structure (say  $\mathfrak{A}$ ) and picks an element (say  $a_i \in A$ )
- **2.**  $\forall$  replies with an element (say  $b_i \in B$ ) in the other structure (in this case  $\mathfrak{B}$ )

so that  $(a_1 \mapsto b_1, \ldots, a_i \mapsto b_i)$  is a partial isomorphism between  $\mathfrak{A}$  and  $\mathfrak{B}$ .



Goal of  $\forall: \mathfrak{A}, \mathfrak{B}$  "look the same".

Goal of  $\exists$ : pinpoint the difference.





 $\mathfrak{A} :=$ 

- Duration: *m* rounds.
- Playground: two  $\tau$ -structures  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- Two players: Spoil $\exists r (D \exists vil / \exists loise / \exists ve / Player I) vs Duplic \forall tor (<math>\forall ngel / \forall belard / \forall dam / Player II)$

- During the *i*-th round:
- **1.**  $\exists$  selects a structure (say  $\mathfrak{A}$ ) and picks an element (say  $a_i \in A$ )
- **2.**  $\forall$  replies with an element (say  $b_i \in B$ ) in the other structure (in this case  $\mathfrak{B}$ )

so that  $(a_1 \mapsto b_1, \ldots, a_i \mapsto b_i)$  is a partial isomorphism between  $\mathfrak{A}$  and  $\mathfrak{B}$ .

•  $\exists$  wins if  $\forall$  cannot reply with a suitable element.







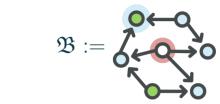
 $\mathfrak{A} :=$ 

- Duration: *m* rounds.
- Playground: two  $\tau$ -structures  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- Two players: Spoil $\exists r (D \exists vil / \exists loise / \exists ve / Player I) vs Duplic \forall tor (<math>\forall ngel / \forall belard / \forall dam / Player II)$

- During the *i*-th round:
- **1.**  $\exists$  selects a structure (say  $\mathfrak{A}$ ) and picks an element (say  $a_i \in A$ )
- **2.**  $\forall$  replies with an element (say  $b_i \in B$ ) in the other structure (in this case  $\mathfrak{B}$ )

so that  $(a_1 \mapsto b_1, \ldots, a_i \mapsto b_i)$  is a partial isomorphism between  $\mathfrak{A}$  and  $\mathfrak{B}$ .

•  $\exists$  wins if  $\forall$  cannot reply with a suitable element.  $\forall$  wins if he survives *m* rounds.







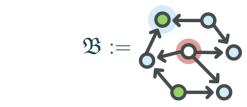
 $\mathfrak{A} :=$ 

- Duration: *m* rounds.
- Playground: two  $\tau$ -structures  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- Two players: Spoil $\exists r (D \exists vil / \exists loise / \exists ve / Player I) vs Duplic \forall tor (<math>\forall ngel / \forall belard / \forall dam / Player II)$

- During the *i*-th round:
- **1.**  $\exists$  selects a structure (say  $\mathfrak{A}$ ) and picks an element (say  $a_i \in A$ )
- **2.**  $\forall$  replies with an element (say  $b_i \in B$ ) in the other structure (in this case  $\mathfrak{B}$ )
  - so that  $(a_1 \mapsto b_1, \ldots, a_i \mapsto b_i)$  is a partial isomorphism between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- $\exists$  wins if  $\forall$  cannot reply with a suitable element.  $\forall$  wins if he survives *m* rounds.

## Theorem (Fraïssé 1954 & Ehrenfeucht 1961)

 $\forall$  has a winning strategy in *m*-round Ehrenfeucht-Fraïssé game on  $\tau$ -structures  $\mathfrak{A}$  and  $\mathfrak{B}$  iff  $\mathfrak{A} \equiv_m^{\tau} \mathfrak{B}$ .







Back and Forth Equivalence (a.k.a. Bisimulations)

# Back and Forth Equivalence (a.k.a. Bisimulations)

### Back and Forth Equivalence (a.k.a. Bisimulations)

We define an FO-*m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$  as

We define an FO-*m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$  as the relation  $\mathcal{Z} \subseteq \bigcup_{i=0}^{m} A^{i} \times B^{i}$ 

We define an FO-*m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$  as the relation  $\mathcal{Z} \subseteq \bigcup_{i=0}^{m} A^{i} \times B^{i}$  with  $(\varepsilon, \varepsilon) \in \mathcal{Z}$  fulfilling:

We define an FO-*m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$  as the relation  $\mathcal{Z} \subseteq \bigcup_{i=0}^{m} A^{i} \times B^{i}$  with  $(\varepsilon, \varepsilon) \in \mathcal{Z}$  fulfilling: • (atomic harmony):  $\mathfrak{A}|_{\overline{a}} \cong \mathfrak{B}|_{\overline{b}}$ 

We define an FO-*m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$  as the relation  $\mathcal{Z} \subseteq \bigcup_{i=1}^{m} A^{i} \times B^{i}$  with  $(\varepsilon, \varepsilon) \in \mathcal{Z}$  fulfilling:

- (atomic harmony):  $\mathfrak{A}_{\overline{a}} \cong \mathfrak{B}_{\overline{b}}$
- (forth): if  $|\overline{a}| < m$ , then for all  $c \in A$ ,

We define an FO-*m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$  as the relation  $\mathcal{Z} \subseteq \bigcup_{i=0}^{m} A^{i} \times B^{i}$  with  $(\varepsilon, \varepsilon) \in \mathcal{Z}$  fulfilling:

- (atomic harmony):  $\mathfrak{A}_{\overline{a}} \cong \mathfrak{B}_{\overline{b}}$
- (forth): if  $|\overline{a}| < m$ , then for all  $c \in A$ , there is  $d \in B$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .

We define an FO-*m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$  as the relation  $\mathcal{Z} \subseteq \bigcup_{i=1}^{m} A^{i} \times B^{i}$  with  $(\varepsilon, \varepsilon) \in \mathcal{Z}$  fulfilling:

- (atomic harmony):  $\mathfrak{A}_{\overline{a}} \cong \mathfrak{B}_{\overline{b}}$
- (forth): if  $|\overline{a}| < m$ , then for all  $c \in A$ , there is  $d \in B$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .
- (back): if  $|\overline{b}| < m$ , then for all  $d \in B$ ,

We define an FO-*m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$  as the relation  $\mathcal{Z} \subseteq \bigcup_{i=0}^{m} A^{i} \times B^{i}$  with  $(\varepsilon, \varepsilon) \in \mathcal{Z}$  fulfilling:

- (atomic harmony):  $\mathfrak{A}_{\overline{a}} \cong \mathfrak{B}_{\overline{b}}$
- (forth): if  $|\overline{a}| < m$ , then for all  $c \in A$ , there is  $d \in B$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .
- (back): if  $|\overline{b}| < m$ , then for all  $d \in B$ , there is  $c \in A$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .

We define an FO-*m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$  as the relation  $\mathcal{Z} \subseteq \bigcup_{i=0}^{m} A^{i} \times B^{i}$  with  $(\varepsilon, \varepsilon) \in \mathcal{Z}$  fulfilling:

- (atomic harmony):  $\mathfrak{A}_{\overline{a}} \cong \mathfrak{B}_{\overline{b}}$
- (forth): if  $|\overline{a}| < m$ , then for all  $c \in A$ , there is  $d \in B$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .
- (back): if  $|\overline{b}| < m$ , then for all  $d \in B$ , there is  $c \in A$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .

We define an FO-*m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$  as the relation  $\mathcal{Z} \subseteq \bigcup_{i=0}^{m} A^{i} \times B^{i}$  with  $(\varepsilon, \varepsilon) \in \mathcal{Z}$  fulfilling:

- (atomic harmony):  $\mathfrak{A}\!\upharpoonright_{\overline{a}}\cong \mathfrak{B}\!\upharpoonright_{\overline{b}}$
- (forth): if  $|\overline{a}| < m$ , then for all  $c \in A$ , there is  $d \in B$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .
- (back): if  $|\overline{b}| < m$ , then for all  $d \in B$ , there is  $c \in A$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .

## From *m*-round E-F Games to *m*-bisimulations

We define an FO-*m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$  as the relation  $\mathcal{Z} \subseteq \bigcup_{i=0}^{m} A^{i} \times B^{i}$  with  $(\varepsilon, \varepsilon) \in \mathcal{Z}$  fulfilling:

- (atomic harmony):  $\mathfrak{A}_{\overline{a}} \cong \mathfrak{B}_{\overline{b}}$
- (forth): if  $|\overline{a}| < m$ , then for all  $c \in A$ , there is  $d \in B$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .
- (back): if  $|\overline{b}| < m$ , then for all  $d \in B$ , there is  $c \in A$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .

## From *m*-round E-F Games to *m*-bisimulations

Take  $\mathcal{Z} := \left\{ (\overline{a}_{1...i}, \overline{b}_{1...i}) \mid 1 \leq i \leq m, \text{ and } (\overline{a}, \overline{b}) \text{ is a history of the winning play of } \forall \text{ in } m \text{-round E-F game} \right\}.$ 

We define an FO-*m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$  as the relation  $\mathcal{Z} \subseteq \bigcup_{i=0}^{m} A^{i} \times B^{i}$  with  $(\varepsilon, \varepsilon) \in \mathcal{Z}$  fulfilling:

- (atomic harmony):  $\mathfrak{A}_{\overline{a}} \cong \mathfrak{B}_{\overline{b}}$
- (forth): if  $|\overline{a}| < m$ , then for all  $c \in A$ , there is  $d \in B$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .
- (back): if  $|\overline{b}| < m$ , then for all  $d \in B$ , there is  $c \in A$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .

## From *m*-round E-F Games to *m*-bisimulations

Take  $\mathcal{Z} := \left\{ (\overline{a}_{1...i}, \overline{b}_{1...i}) \mid 1 \leq i \leq m, \text{ and } (\overline{a}, \overline{b}) \text{ is a history of the winning play of } \forall \text{ in } m \text{-round E-F game} \right\}.$ 

We define an FO-*m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$  as the relation  $\mathcal{Z} \subseteq \bigcup_{i=0}^{m} A^{i} \times B^{i}$  with  $(\varepsilon, \varepsilon) \in \mathcal{Z}$  fulfilling:

- (atomic harmony):  $\mathfrak{A}_{\overline{a}} \cong \mathfrak{B}_{\overline{b}}$
- (forth): if  $|\overline{a}| < m$ , then for all  $c \in A$ , there is  $d \in B$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .
- (back): if  $|\overline{b}| < m$ , then for all  $d \in B$ , there is  $c \in A$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .

## From *m*-round E-F Games to *m*-bisimulations

Take  $\mathcal{Z} := \left\{ (\overline{a}_{1...i}, \overline{b}_{1...i}) \mid 1 \leq i \leq m, \text{ and } (\overline{a}, \overline{b}) \text{ is a history of the winning play of } \forall \text{ in } m \text{-round E-F game} \right\}.$ 

#### From *m*-bisimulations to *m*-round E-F Games

We define an FO-*m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$  as the relation  $\mathcal{Z} \subseteq \bigcup_{i=0}^{m} A^{i} \times B^{i}$  with  $(\varepsilon, \varepsilon) \in \mathcal{Z}$  fulfilling:

- (atomic harmony):  $\mathfrak{A}_{\overline{a}} \cong \mathfrak{B}_{\overline{b}}$
- (forth): if  $|\overline{a}| < m$ , then for all  $c \in A$ , there is  $d \in B$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .
- (back): if  $|\overline{b}| < m$ , then for all  $d \in B$ , there is  $c \in A$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .

## From *m*-round E-F Games to *m*-bisimulations

Take  $\mathcal{Z} := \left\{ (\overline{a}_{1...i}, \overline{b}_{1...i}) \mid 1 \leq i \leq m, \text{ and } (\overline{a}, \overline{b}) \text{ is a history of the winning play of } \forall \text{ in } m \text{-round E-F game} \right\}.$ 

#### From *m*-bisimulations to *m*-round E-F Games

Play as Duplicator, employing witnesses guaranteed by (forth) and (back) conditions.

We define an FO-*m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$  as the relation  $\mathcal{Z} \subseteq \bigcup_{i=0}^{m} A^{i} \times B^{i}$  with  $(\varepsilon, \varepsilon) \in \mathcal{Z}$  fulfilling:

- (atomic harmony):  $\mathfrak{A}_{\overline{a}} \cong \mathfrak{B}_{\overline{b}}$
- (forth): if  $|\overline{a}| < m$ , then for all  $c \in A$ , there is  $d \in B$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .
- (back): if  $|\overline{b}| < m$ , then for all  $d \in B$ , there is  $c \in A$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .

#### From *m*-round E-F Games to *m*-bisimulations

Take  $\mathcal{Z} := \left\{ (\overline{a}_{1...i}, \overline{b}_{1...i}) \mid 1 \leq i \leq m, \text{ and } (\overline{a}, \overline{b}) \text{ is a history of the winning play of } \forall \text{ in } m \text{-round E-F game} \right\}.$ 

#### From *m*-bisimulations to *m*-round E-F Games

Play as Duplicator, employing witnesses guaranteed by (forth) and (back) conditions.

We define an FO-*m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$  as the relation  $\mathcal{Z} \subseteq \bigcup_{i=0}^{m} A^{i} \times B^{i}$  with  $(\varepsilon, \varepsilon) \in \mathcal{Z}$  fulfilling:

- (atomic harmony):  $\mathfrak{A}_{\overline{a}} \cong \mathfrak{B}_{\overline{b}}$
- (forth): if  $|\overline{a}| < m$ , then for all  $c \in A$ , there is  $d \in B$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .
- (back): if  $|\overline{b}| < m$ , then for all  $d \in B$ , there is  $c \in A$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .

### From *m*-round E-F Games to *m*-bisimulations

Take  $\mathcal{Z} := \left\{ (\overline{a}_{1...i}, \overline{b}_{1...i}) \mid 1 \leq i \leq m, \text{ and } (\overline{a}, \overline{b}) \text{ is a history of the winning play of } \forall \text{ in } m \text{-round E-F game} \right\}.$ 

#### From *m*-bisimulations to *m*-round E-F Games

Play as Duplicator, employing witnesses guaranteed by (forth) and (back) conditions.

We define an FO-*m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$  as the relation  $\mathcal{Z} \subseteq \bigcup_{i=0}^{m} A^{i} \times B^{i}$  with  $(\varepsilon, \varepsilon) \in \mathcal{Z}$  fulfilling:

- (atomic harmony):  $\mathfrak{A}_{\overline{a}} \cong \mathfrak{B}_{\overline{b}}$
- (forth): if  $|\overline{a}| < m$ , then for all  $c \in A$ , there is  $d \in B$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .
- (back): if  $|\overline{b}| < m$ , then for all  $d \in B$ , there is  $c \in A$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .

## From *m*-round E-F Games to *m*-bisimulations

Take  $\mathcal{Z} := \left\{ (\overline{a}_{1...i}, \overline{b}_{1...i}) \mid 1 \leq i \leq m, \text{ and } (\overline{a}, \overline{b}) \text{ is a history of the winning play of } \forall \text{ in } m \text{-round E-F game} \right\}.$ 

#### From *m*-bisimulations to *m*-round E-F Games

Play as Duplicator, employing witnesses guaranteed by (forth) and (back) conditions.

### Bisimulation as a more general concept

• One can define bisimulations  $\simeq_{\omega}^{\mathsf{L}}$  (for  $\omega$  rounds) for any logic L,

We define an FO-*m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$  as the relation  $\mathcal{Z} \subseteq \bigcup_{i=0}^{m} A^{i} \times B^{i}$  with  $(\varepsilon, \varepsilon) \in \mathcal{Z}$  fulfilling:

- (atomic harmony):  $\mathfrak{A}_{\overline{a}} \cong \mathfrak{B}_{\overline{b}}$
- (forth): if  $|\overline{a}| < m$ , then for all  $c \in A$ , there is  $d \in B$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .
- (back): if  $|\overline{b}| < m$ , then for all  $d \in B$ , there is  $c \in A$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .

## From *m*-round E-F Games to *m*-bisimulations

Take  $\mathcal{Z} := \left\{ (\overline{a}_{1...i}, \overline{b}_{1...i}) \mid 1 \leq i \leq m, \text{ and } (\overline{a}, \overline{b}) \text{ is a history of the winning play of } \forall \text{ in } m \text{-round E-F game} \right\}.$ 

#### From *m*-bisimulations to *m*-round E-F Games

Play as Duplicator, employing witnesses guaranteed by (forth) and (back) conditions.

### Bisimulation as a more general concept

• One can define bisimulations  $\simeq_{\omega}^{\mathsf{L}}$  (for  $\omega$  rounds) for any logic L, e.g. Modal/Descr./Temporal logics.

We define an FO-*m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$  as the relation  $\mathcal{Z} \subseteq \bigcup_{i=1}^{m} A^{i} \times B^{i}$  with  $(\varepsilon, \varepsilon) \in \mathcal{Z}$  fulfilling:

- (atomic harmony):  $\mathfrak{A}_{\overline{a}} \cong \mathfrak{B}_{\overline{b}}$
- (forth): if  $|\overline{a}| < m$ , then for all  $c \in A$ , there is  $d \in B$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .
- (back): if  $|\overline{b}| < m$ , then for all  $d \in B$ , there is  $c \in A$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .

# From *m*-round E-F Games to *m*-bisimulations

Take  $\mathcal{Z} := \left\{ (\overline{a}_{1...i}, \overline{b}_{1...i}) \mid 1 \leq i \leq m, \text{ and } (\overline{a}, \overline{b}) \text{ is a history of the winning play of } \forall \text{ in } m \text{-round E-F game} \right\}.$ 

#### From *m*-bisimulations to *m*-round E-F Games

Play as Duplicator, employing witnesses guaranteed by (forth) and (back) conditions.

- One can define bisimulations  $\simeq_{\omega}^{\mathsf{L}}$  (for  $\omega$  rounds) for any logic L, e.g. Modal/Descr./Temporal logics.
- An abstract categorical and comonadic approaches: [Joyal et al.'1994] and [Abramsky'2022].

We define an FO-*m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$  as the relation  $\mathcal{Z} \subseteq \bigcup_{i=0}^{m} A^{i} \times B^{i}$  with  $(\varepsilon, \varepsilon) \in \mathcal{Z}$  fulfilling:

- (atomic harmony):  $\mathfrak{A}_{\overline{a}} \cong \mathfrak{B}_{\overline{b}}$
- (forth): if  $|\overline{a}| < m$ , then for all  $c \in A$ , there is  $d \in B$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .
- (back): if  $|\overline{b}| < m$ , then for all  $d \in B$ , there is  $c \in A$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .

# From *m*-round E-F Games to *m*-bisimulations

Take  $\mathcal{Z} := \left\{ (\overline{a}_{1...i}, \overline{b}_{1...i}) \mid 1 \leq i \leq m, \text{ and } (\overline{a}, \overline{b}) \text{ is a history of the winning play of } \forall \text{ in } m \text{-round E-F game} \right\}.$ 

### From *m*-bisimulations to *m*-round E-F Games

Play as Duplicator, employing witnesses guaranteed by (forth) and (back) conditions.

- One can define bisimulations  $\simeq_{\omega}^{\mathsf{L}}$  (for  $\omega$  rounds) for any logic L, e.g. Modal/Descr./Temporal logics.
- An abstract categorical and comonadic approaches: [Joyal et al.'1994] and [Abramsky'2022].
- Van-Benthem Theorems for  $L \subseteq FO$ :

We define an FO-*m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$  as the relation  $\mathcal{Z} \subseteq \bigcup_{i=0}^{m} A^{i} \times B^{i}$  with  $(\varepsilon, \varepsilon) \in \mathcal{Z}$  fulfilling:

- (atomic harmony):  $\mathfrak{A}_{\overline{a}} \cong \mathfrak{B}_{\overline{b}}$
- (forth): if  $|\overline{a}| < m$ , then for all  $c \in A$ , there is  $d \in B$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .
- (back): if  $|\overline{b}| < m$ , then for all  $d \in B$ , there is  $c \in A$  such that  $(\overline{a}c, \overline{b}d) \in \mathbb{Z}$ .

# From *m*-round E-F Games to *m*-bisimulations

Take  $\mathcal{Z} := \left\{ (\overline{a}_{1...i}, \overline{b}_{1...i}) \mid 1 \leq i \leq m, \text{ and } (\overline{a}, \overline{b}) \text{ is a history of the winning play of } \forall \text{ in } m \text{-round E-F game} \right\}.$ 

### From *m*-bisimulations to *m*-round E-F Games

Play as Duplicator, employing witnesses guaranteed by (forth) and (back) conditions.

- One can define bisimulations  $\simeq_{\omega}^{\mathsf{L}}$  (for  $\omega$  rounds) for any logic L, e.g. Modal/Descr./Temporal logics.
- An abstract categorical and comonadic approaches: [Joyal et al.'1994] and [Abramsky'2022].
- Van-Benthem Theorems for L  $\subseteq$  FO:  $\varphi$  is preserved under  $\simeq^{\mathsf{L}}_{\omega}$  iff  $\varphi$  is equiv. to some  $\psi \in \mathcal{L}$ .

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

Fix a structure  $\mathfrak{A}$ ,

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

Fix a structure  $\mathfrak{A}$ , a *k*-tuple  $\overline{a}$  from *A*,

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

Fix a structure  $\mathfrak{A}$ , a *k*-tuple  $\overline{a}$  from *A*, and a *k*-tuple of variables  $\overline{x}$ .

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

Fix a structure  $\mathfrak{A}$ , a k-tuple  $\overline{a}$  from A, and a k-tuple of variables  $\overline{x}$ . Define  $\varphi_{(\mathfrak{A},\overline{a})}^{k}(\overline{x})$  inductively as

• (Base):

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

Fix a structure  $\mathfrak{A}$ , a k-tuple  $\overline{a}$  from A, and a k-tuple of variables  $\overline{x}$ . Define  $\varphi_{(\mathfrak{A},\overline{a})}^{k}(\overline{x})$  inductively as

• (Base): 
$$\varphi_{(\mathfrak{A},\overline{a})}^{0}(\overline{x}) := \bigwedge_{\substack{\text{atomic } \lambda(\overline{x}), \ \mathfrak{A} \models \lambda(\overline{a})}} \lambda(\overline{x}) \wedge \bigwedge_{\substack{\text{atomic } \lambda(\overline{x}), \ \mathfrak{A} \not\models \lambda(\overline{a})}} \neg \lambda(\overline{x})$$

atomic harmony

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

Fix a structure  $\mathfrak{A}$ , a k-tuple  $\overline{a}$  from A, and a k-tuple of variables  $\overline{x}$ . Define  $\varphi_{(\mathfrak{A},\overline{a})}^{k}(\overline{x})$  inductively as

• (Base): 
$$\varphi_{(\mathfrak{A},\overline{a})}^{0}(\overline{x}) := \bigwedge_{\substack{\text{atomic }\lambda(\overline{x}), \ \mathfrak{A}\models\lambda(\overline{a})}} \lambda(\overline{x}) \wedge \bigwedge_{\substack{\text{atomic }\lambda(\overline{x}), \ \mathfrak{A}\not\models\lambda(\overline{a})}} \neg\lambda(\overline{x})$$

atomic harmony

• (Step):

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

• (Base): 
$$\varphi_{(\mathfrak{A},\overline{a})}^{0}(\overline{x}) := \bigwedge_{\substack{\text{atomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ atomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ tom$$

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

• (Base): 
$$\varphi_{(\mathfrak{A},\overline{a})}^{0}(\overline{x}) := \bigwedge_{\substack{\text{atomic }\lambda(\overline{x}), \ \mathfrak{A}\models\lambda(\overline{a}) \\ \text{stomic }\lambda(\overline{x}), \ \mathfrak{A}\models\lambda(\overline{a}) \\ \text{stomic harmony}}}^{\wedge} \wedge \bigwedge_{\substack{\text{atomic }\lambda(\overline{x}), \ \mathfrak{A}\not\models\lambda(\overline{a}) \\ \text{stomic harmony}}}^{\wedge} \circ (\mathsf{Step}): \varphi_{(\mathfrak{A},\overline{a})}^{k}(\overline{x}) := \bigwedge_{\substack{c \in A \\ c \in A \\ \text{forth: responses for challenges in }\mathfrak{A}}}^{\wedge} \wedge \bigvee_{\substack{c \in A \\ \text{back: responses for challenges in }\mathfrak{B}}}^{\vee} \varphi_{(\mathfrak{A},\overline{a}c)}^{k-1}(\overline{x}, x_{k})}^{k-1} \circ (\mathsf{A}, \mathsf{A}) = \mathsf{A}_{k} \circ (\mathsf{A}, \mathsf{A}) \circ \mathsf{A}_{k} \circ \mathsf{$$

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

• (Base): 
$$\varphi_{(\mathfrak{A},\overline{a})}^{0}(\overline{x}) := \bigwedge_{\substack{\text{atomic }\lambda(\overline{x}), \ \mathfrak{A}\models\lambda(\overline{a}) \\ \text{atomic }\lambda(\overline{x}), \ \mathfrak{A}\models\lambda(\overline{a}) \\ \hline x \text{ brich harmony}}}^{\wedge} \wedge \bigwedge_{\substack{\text{atomic }\lambda(\overline{x}), \ \mathfrak{A}\not\models\lambda(\overline{a}) \\ \text{atomic harmony}}}^{\wedge} \wedge \bigvee_{\substack{c\in A \\ c\in A \\ \text{forth: responses for challenges in }\mathfrak{A}}}^{\vee} \wedge \bigvee_{\substack{c\in A \\ \text{back: responses for challenges in }\mathfrak{B}}}^{\vee} \varphi_{(\mathfrak{A},\overline{a}c)}^{k-1}(\overline{x}, x_k)}^{\wedge} \wedge \bigvee_{\substack{c\in A \\ \text{back: responses for challenges in }\mathfrak{B}}}^{\vee} \mathcal{A}_{\text{back: responses for challenges in }\mathfrak{B}}}^{\vee}$$

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

• (Base): 
$$\varphi_{(\mathfrak{A},\overline{a})}^{0}(\overline{x}) := \bigwedge_{\substack{\text{atomic }\lambda(\overline{x}), \ \mathfrak{A}\models\lambda(\overline{a}) \\ \text{atomic }\lambda(\overline{x}), \ \mathfrak{A}\models\lambda(\overline{a}) \\ \text{atomic harmony}}}^{\wedge} \wedge \bigwedge_{\substack{\text{atomic }\lambda(\overline{x}), \ \mathfrak{A}\not\models\lambda(\overline{a}) \\ \text{atomic harmony}}}^{\neg} \lambda(\overline{x})$$
  
• (Step):  $\varphi_{(\mathfrak{A},\overline{a})}^{k}(\overline{x}) := \bigwedge_{\substack{c \in A \\ \text{forth: responses for challenges in }\mathfrak{A}}}^{\wedge} \wedge \bigvee_{\substack{c \in A \\ \text{back: responses for challenges in }\mathfrak{B}}}^{\forall} \psi_{(\mathfrak{A},\overline{a}c)}^{k-1}(\overline{x}, x_{k})} \\ \sum_{\substack{c \in A \\ \text{forth: responses for challenges in }\mathfrak{A}}}^{m} \psi_{\substack{c \in A \\ \text{forth: responses for challenges in }\mathfrak{B}}}^{\vee} \psi_{(\mathfrak{A},\overline{a}c)}^{k-1}(\overline{x}, x_{k})}$   
Call  $\varphi_{(\mathfrak{A},\varepsilon)}^{m}$  the *m*-Hintikka formula. Goal:  $\mathfrak{B}\models\varphi_{(\mathfrak{A},\varepsilon)}^{m}$  iff there is an *m*-bisimulation  $\mathcal{Z}$  between  $\mathfrak{A}$  and  $\mathfrak{B}$ .

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

• (Base): 
$$\varphi_{(\mathfrak{A},\overline{a})}^{0}(\overline{x}) := \bigwedge_{\substack{\text{atomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \text{atomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \neq \lambda(\overline{a})}^{\lambda(\overline{x})} \land \qquad \bigwedge_{\substack{\text{atomic }\lambda(\overline{x}), \mathfrak{A} \not\models \lambda(\overline{a}) \\ \text{atomic harmony}}^{\lambda(\overline{x})} \land \qquad \bigwedge_{\substack{\text{atomic }\lambda(\overline{x}), \mathfrak{A} \not\models \lambda(\overline{a}) \\ \hline x \neq \gamma_{(\mathfrak{A},\overline{a})}^{k-1}(\overline{x}, x_k) \\ \hline x \neq \gamma_{(\mathfrak{A},\overline{a}$$

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

• (Base): 
$$\varphi_{(\mathfrak{A},\overline{a})}^{0}(\overline{x}) := \bigwedge_{\substack{\text{atomic }\lambda(\overline{x}), \ \mathfrak{A}\models\lambda(\overline{a}) \\ \text{atomic }\lambda(\overline{x}), \ \mathfrak{A}\models\lambda(\overline{a}) \\ \text{atomic harmony}}}^{\lambda(\overline{x}) := \bigwedge_{\substack{\text{c}\in A \\ \text{forth: responses for challenges in \ \mathfrak{A} \\ \text{forth: responses for challenge in \ \mathfrak{A} \\ \text{forth: responses for challenge in \ \mathfrak{A} \\ \text{forth: response for challenge in \ \mathfrak{A} \\ \text{forth: response for challenge in \ \mathfrak{A} \\ \text{forth: response for \ here in \ \mathfrak{A} \\ \text{forth: response for \ here in \ here$$

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

• (Base): 
$$\varphi_{(\mathfrak{A},\overline{a})}^{0}(\overline{x}) := \bigwedge_{\substack{\text{atomic }\lambda(\overline{x}), \ \mathfrak{A} \models \lambda(\overline{a}) \\ \text{atomic }\lambda(\overline{x}), \ \mathfrak{A} \models \lambda(\overline{a}) \\ \text{atomic harmony}}}^{\wedge} \bigwedge_{\substack{\text{atomic }\lambda(\overline{x}), \ \mathfrak{A} \not\models \lambda(\overline{a}) \\ \text{atomic harmony}}}^{\vee} \wedge \bigwedge_{\substack{c \in A \\ c \in A \\ \text{forth: responses for challenges in }\mathfrak{A}}}^{\vee} \wedge \bigvee_{\substack{c \in A \\ c \in A \\ \text{forth: responses for challenges in }\mathfrak{B}}}^{\vee} \wedge \bigvee_{\substack{c \in A \\ c \in A \\ \text{forth: responses for challenges in }\mathfrak{B}}}^{\vee} \wedge \bigwedge_{\substack{c \in A \\ c \in A \\ \text{forth: responses for challenges in }\mathfrak{B}}}^{\vee} \wedge \bigwedge_{\substack{c \in A \\ c \in A \\ \text{forth: responses for challenges in }\mathfrak{B}}}^{\vee} \wedge \bigwedge_{\substack{c \in A \\ c \in A \\ \text{forth: responses for challenges in }\mathfrak{B}}}^{\vee} \wedge \bigwedge_{\substack{c \in A \\ c \in A \\ \text{forth: responses for challenges in }\mathfrak{B}}}^{\vee} \wedge \bigwedge_{\substack{c \in A \\ c \in A \\ \text{forth: responses for challenges in }\mathfrak{B}}}^{\vee} \wedge \bigwedge_{\substack{c \in A \\ c \in A \\ \text{forth: responses for challenges in }\mathfrak{B}}}^{\vee} \wedge \bigwedge_{\substack{c \in A \\ c \in A \\ \text{forth: responses for challenges in }\mathfrak{B}}}^{\vee} \wedge \bigwedge_{\substack{c \in A \\ c \in A \\ \text{forth: responses for challenges in }\mathfrak{B}}}^{\vee} \wedge \bigwedge_{\substack{c \in A \\ c \in A \\ \text{forth: responses for challenges in }\mathfrak{B}}}^{\vee} \wedge \bigwedge_{\substack{c \in A \\ c \in A \\ \text{forth: responses for challenges in }\mathfrak{B}}}^{\vee} \wedge \bigwedge_{\substack{c \in A \\ c \in A \\ \text{forth: responses for challenges in }\mathfrak{B}}}^{\vee} \wedge \bigwedge_{\substack{c \in A \\ c \in A \\ \text{forth: responses for challenges in }\mathfrak{B}}}^{\vee} \wedge \bigwedge_{\substack{c \in A \\ c \in A \\ \text{forth: responses for challenges in }\mathfrak{B}}}^{\vee} \wedge \bigwedge_{\substack{c \in A \\ c \in A \\ \text{forth: responses for challenges in }\mathfrak{B}}}^{\vee} \wedge \bigwedge_{\substack{c \in A \\ c \in A \\ \text{forth: responses for challenges in }\mathfrak{B}}}^{\vee} \wedge \bigwedge_{\substack{c \in A \\ c \in A \\ \text{forth: responses for challenges in }\mathfrak{B}}}^{\vee} \wedge \bigwedge_{\substack{c \in A \\ c \in A \\ \text{forth: responses for challenges in }\mathfrak{B}}}}^{\vee} \wedge \bigwedge_{\substack{c \in A \\ c \in A \\ \text{forth: response for challenges in }\mathfrak{B}}}^{\vee} \wedge \bigwedge_{\substack{c \in A \\ c \in A \\ \text{forth: response for challenges in }\mathfrak{B}}}}^{\vee} \wedge \bigwedge_{\substack{c \in A \\ \text{forth: response for challenges in }\mathfrak{B}}}^{\vee} \wedge \bigwedge_{\substack{c \in A \\ \text{forth: response for challenges in }\mathfrak{B}}}^{\vee} \wedge \bigwedge_{\substack{c \in A \\ \text{forth: response for challenges in }\mathfrak{B}}}}^{\vee} \wedge \bigwedge_{\substack{c \in A \\ \text{forth: response for challenges in }\mathfrak{B}}}$$

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

Fix a structure  $\mathfrak{A}$ , a *k*-tuple  $\overline{a}$  from *A*, and a *k*-tuple of variables  $\overline{x}$ . Define  $\varphi_{(\mathfrak{A},\overline{a})}^{k}(\overline{x})$  inductively as • (Base):  $\varphi_{(\mathfrak{A},\overline{a})}^{0}(\overline{x}) := \bigwedge_{\substack{\text{atomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ atomic \\\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x + \lambda(\overline{a})$ 

Call  $\varphi_{(\mathfrak{A},\varepsilon)}^m$  the *m*-Hintikka formula. Goal:  $\mathfrak{B} \models \varphi_{(\mathfrak{A},\varepsilon)}^m$  iff there is an *m*-bisimulation  $\mathcal{Z}$  between  $\mathfrak{A}$  and  $\mathfrak{B}$ .

**Proof** ( $\Leftarrow$ ) [We leave ( $\Rightarrow$ ) as an exercise.]

Induction over k. Assumption:

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

Fix a structure  $\mathfrak{A}$ , a k-tuple  $\overline{a}$  from A, and a k-tuple of variables  $\overline{x}$ . Define  $\varphi_{(\mathfrak{A},\overline{a})}^{k}(\overline{x})$  inductively as • (Base):  $\varphi_{(\mathfrak{A},\overline{a})}^{0}(\overline{x}) := \bigwedge_{\substack{\text{atomic }\lambda(\overline{x}), \ \mathfrak{A}\models\lambda(\overline{a})}} \lambda(\overline{x}) \wedge \bigwedge_{\substack{\text{atomic }\lambda(\overline{x}), \ \mathfrak{A}\not\models\lambda(\overline{a})}} \neg\lambda(\overline{x})$ atomic harmony • (Step):  $\varphi_{(\mathfrak{A},\overline{a})}^{k}(\overline{x}) := \bigwedge_{\substack{c \in A}} \exists x_{k} \varphi_{(\mathfrak{A},\overline{a}c)}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \bigvee_{\substack{c \in A}} \varphi_{(\mathfrak{A},\overline{a}c)}^{k-1}(\overline{x}, x_{k})$ forth: responses for challenges in  $\mathfrak{A}$ back: responses for challenges in  $\mathfrak{B}$ Call  $\varphi_{(\mathfrak{A},\varepsilon)}^m$  the *m*-Hintikka formula. Goal:  $\mathfrak{B} \models \varphi_{(\mathfrak{A},\varepsilon)}^m$  iff there is an *m*-bisimulation  $\mathcal{Z}$  between  $\mathfrak{A}$  and  $\mathfrak{B}$ . **Proof** ( $\Leftarrow$ ) [We leave ( $\Rightarrow$ ) as an exercise.] Induction over k. Assumption: For any  $(\overline{a}, \overline{b}) \in \mathbb{Z}$  with  $|\overline{a}| = |\overline{b}| = m - k$  we have  $\mathfrak{B} \models \varphi^{i}_{(\mathfrak{A},\overline{a})}(\overline{b})$ .

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

• (Base): 
$$\varphi_{(\mathfrak{A},\overline{a})}^{0}(\overline{x}) := \bigwedge_{\substack{atomic \ \lambda(\overline{x}), \ \mathfrak{A} \models \lambda(\overline{a}) \\ atomic \ \lambda(\overline{x}), \ \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x tomic \ harmony}}^{\lambda(\overline{x})}$$
  
• (Step):  $\varphi_{(\mathfrak{A},\overline{a})}^{k}(\overline{x}) := \bigwedge_{\substack{c \in A \\ c \in A \\ forth: responses for challenges in \ \mathfrak{A}}}^{\lambda(\overline{x})} \land \qquad \bigvee_{\substack{atomic \ \lambda(\overline{x}), \ \mathfrak{A} \models \lambda(\overline{a}) \\ back: responses for challenges in \ \mathfrak{B}}}^{\forall x_{k}} \bigvee_{\substack{c \in A \\ c \in A \\ c \in A \\ \hline c \in A \\ c \in A \\ \hline c \in A \\ c \in A \\ \hline c \in A \\ \hline c \in A \\ \hline c \in A \\ c \in A \\ \hline c \in A \\ c \in A \\ \hline c \in A \\ c \in A \\ \hline c \in A \\ c \in A \\ \hline c \in A \\ c \in A \\ \hline c \in A \\ c \in A$ 

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

Fix a structure  $\mathfrak{A}$ , a k-tuple  $\overline{a}$  from A, and a k-tuple of variables  $\overline{x}$ . Define  $\varphi_{(\mathfrak{A},\overline{a})}^{k}(\overline{x})$  inductively as

4 / 9

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

• (Base): 
$$\varphi_{(\mathfrak{A},\overline{a})}^{0}(\overline{x}) := \bigwedge_{\underline{atomic \ \lambda(\overline{x}), \ \mathfrak{A} \models \lambda(\overline{a})}} \lambda(\overline{x}) \land \bigwedge_{\underline{atomic \ \lambda(\overline{x}), \ \mathfrak{A} \not\models \lambda(\overline{a})}} \neg \lambda(\overline{x})$$
  
• (Step):  $\varphi_{(\mathfrak{A},\overline{a})}^{k}(\overline{x}) := \bigwedge_{\underline{c \in A}} \exists x_{k} \ \varphi_{(\mathfrak{A},\overline{a}c)}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{a}c)}^{k-1}(\overline{x}, x_{k})$   
forth: responses for challenges in  $\mathfrak{A}$   $\overset{\forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{a}c)}^{k-1}(\overline{x}, x_{k})}{back: responses for challenges in \mathfrak{B}}$   
Call  $\varphi_{(\mathfrak{A},\varepsilon)}^{m}$  the *m*-Hintikka formula. Goal:  $\mathfrak{B} \models \varphi_{(\mathfrak{A},\varepsilon)}^{m}$  iff there is an *m*-bisimulation  $\mathcal{Z}$  between  $\mathfrak{A}$  and  $\mathfrak{B}$ .  
**Proof** ( $\Leftarrow$ ) [We leave ( $\Rightarrow$ ) as an exercise.]  
Induction over *k*. Assumption: For any  $(\overline{a}, \overline{b}) \in \mathcal{Z}$  with  $|\overline{a}| = |\overline{b}| = m - k$  we have  $\mathfrak{B} \models \varphi_{(\mathfrak{A},\overline{a})}^{i}(\overline{b})$ .  
For  $k = 0$  we are done by (atomic harmony). For  $k > 0$ , take  $(\overline{a}, \overline{b}) \in \mathcal{Z}$  with  $|\overline{a}| = |\overline{b}| = m - k - 1$ .  
Take any  $c \in A$ .

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

• (Base): 
$$\varphi_{(\mathfrak{A},\bar{a})}^{0}(\bar{x}) := \bigwedge_{\substack{atomic \ \lambda(\bar{x}), \ \mathfrak{A} \models \lambda(\bar{a}) \\ atomic \ \lambda(\bar{x}), \ \mathfrak{A} \models \lambda(\bar{a}) \\ atomic \ harmony}}^{\lambda(\bar{x})} \land \bigwedge_{\substack{atomic \ \lambda(\bar{x}), \ \mathfrak{A} \not\models \lambda(\bar{a}) \\ atomic \ harmony}}^{\lambda(\bar{x})} \circ (\bar{x}, \bar{x}_{k}) \\ \bullet (\mathsf{Step}): \varphi_{(\mathfrak{A},\bar{a})}^{k}(\bar{x}) := \bigwedge_{\substack{c \in A \\ c \in A \\ forth: \ responses \ for \ challenges \ in \ \mathfrak{A}}}^{\lambda(\bar{x})} \land \bigwedge_{\substack{c \in A \\ c \in A \\ forth: \ responses \ for \ challenges \ in \ \mathfrak{A}}}^{\lambda(\bar{x})} \land \bigwedge_{\substack{c \in A \\ c \in A \\ forth: \ responses \ for \ challenges \ in \ \mathfrak{A}}}^{\lambda(\bar{x})} \land \bigwedge_{\substack{c \in A \\ c \in A \\ forth: \ responses \ for \ challenges \ in \ \mathfrak{A}}}^{\lambda(\bar{x})} \land \bigwedge_{\substack{c \in A \\ c \in A \\ forth: \ responses \ for \ challenges \ in \ \mathfrak{A}}}^{\lambda(\bar{x})} \land \bigwedge_{\substack{c \in A \\ c \in A \\ forth: \ responses \ for \ challenges \ in \ \mathfrak{A}}}^{\lambda(\bar{x})} \land \bigwedge_{\substack{c \in A \\ c \in A \\ forth: \ responses \ for \ challenges \ in \ \mathfrak{A}}}^{\lambda(\bar{x})} \land \bigwedge_{\substack{c \in A \\ c \in A \\ forth: \ responses \ for \ challenges \ in \ \mathfrak{B}}}^{\lambda(\bar{x}, x_k)} \land \underset{\substack{c \in A \\ p \in \mathcal{B} \\ p \in \mathcal{B}}}^{\lambda(\bar{x}, c)} \land \underset{\substack{c \in A \\ p \in \mathcal{B} \\ p$$

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

Fix a structure  $\mathfrak{A}$ , a k-tuple  $\overline{a}$  from A, and a k-tuple of variables  $\overline{x}$ . Define  $\varphi_{(\mathfrak{A},\overline{a})}^{k}(\overline{x})$  inductively as

• (Base): 
$$\varphi_{(\mathfrak{A},\overline{a})}^{0}(\overline{x}) := \bigwedge_{\substack{\text{atomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \text{atomic }\lambda(\overline{x}), \mathfrak{A} \models \lambda(\overline{a}) \\ \hline x \text{ bold harmony}}}^{\lambda(\overline{x})} \wedge \bigwedge_{\substack{\text{atomic }\lambda(\overline{x}), \mathfrak{A} \not\models \lambda(\overline{a}) \\ \hline x \text{ bold harmony}}}^{\lambda(\overline{x})} \circ (\overline{x}) := \bigwedge_{\substack{c \in A \\ c \in A \\ \text{forth: responses for challenges in }\mathfrak{A}}^{\lambda(\overline{x})} \wedge \bigwedge_{\substack{c \in A \\ c \in A \\ \hline x = 0 \\ \hline x = 0$$

4 / 9

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

• (Base): 
$$\varphi_{(\mathfrak{A},\overline{a})}^{0}(\overline{x}) := \bigwedge_{\underline{atomic \ \lambda(\overline{x}), \ \mathfrak{A} \models \lambda(\overline{a})}} \lambda(\overline{x}) \land \bigwedge_{\underline{atomic \ \lambda(\overline{x}), \ \mathfrak{A} \models \lambda(\overline{a})}} \neg \lambda(\overline{x})$$
  
• (Step):  $\varphi_{(\mathfrak{A},\overline{a})}^{k}(\overline{x}) := \bigwedge_{\underline{c \in A}} \exists x_{k} \ \varphi_{(\mathfrak{A},\overline{a}c)}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{a}c)}^{k-1}(\overline{x}, x_{k})$   
forth: responses for challenges in  $\mathfrak{A}$   $\qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{a}c)}^{k-1}(\overline{x}, x_{k})$   
back: responses for challenges in  $\mathfrak{B}$   
Call  $\varphi_{(\mathfrak{A},\varepsilon)}^{m}$  the *m*-Hintikka formula. Goal:  $\mathfrak{B} \models \varphi_{(\mathfrak{A},\varepsilon)}^{m}$  iff there is an *m*-bisimulation  $\mathcal{Z}$  between  $\mathfrak{A}$  and  $\mathfrak{B}$ .  
Proof ( $\Leftarrow$ ) [We leave ( $\Rightarrow$ ) as an exercise.]  
Induction over *k*. Assumption: For any  $(\overline{a}, \overline{b}) \in \mathcal{Z}$  with  $|\overline{a}| = |\overline{b}| = m - k$  we have  $\mathfrak{B} \models \varphi_{(\mathfrak{A},\overline{a})}^{i}(\overline{b})$ .  
For  $k = 0$  we are done by (atomic harmony). For  $k > 0$ , take  $(\overline{a}, \overline{b}) \in \mathcal{Z}$  with  $|\overline{a}| = |\overline{b}| = m - k - 1$ .  
Take any  $c \in A$ . By (forth) there is  $d \in B$  so that  $(\overline{a}c, \overline{b}d) \in \mathcal{Z}$ . By ind. ass.  $\mathfrak{B} \models \varphi_{(\mathfrak{A},\overline{a}c)}^{i}(\overline{b}d)$ .

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

• (Base): 
$$\varphi_{(\mathfrak{A},\overline{a})}^{0}(\overline{x}) := \bigwedge_{\underline{atomic \ \lambda(x), \ \mathfrak{A} \models \lambda(\overline{a})}} \lambda(\overline{x}) \land \bigwedge_{\underline{atomic \ \lambda(x), \ \mathfrak{A} \models \lambda(\overline{a})}} \neg \lambda(\overline{x})$$
  
• (Step):  $\varphi_{(\mathfrak{A},\overline{a})}^{k}(\overline{x}) := \bigwedge_{\underline{c \in A}} \exists x_{k} \ \varphi_{(\mathfrak{A},\overline{a}c)}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{c}c)}^{k-1}(\overline{x}, x_{k})$   
forth: responses for challenges in  $\mathfrak{A}$   $\overset{\forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{c}c)}^{k-1}(\overline{x}, x_{k})$   
back: responses for challenges in  $\mathfrak{B}$   
Call  $\varphi_{(\mathfrak{A},\varepsilon)}^{m}$  the *m*-Hintikka formula. Goal:  $\mathfrak{B} \models \varphi_{(\mathfrak{A},\varepsilon)}^{m}$  iff there is an *m*-bisimulation  $\mathcal{Z}$  between  $\mathfrak{A}$  and  $\mathfrak{B}$ .  
Proof ( $\Leftarrow$ ) [We leave ( $\Rightarrow$ ) as an exercise.]  
Induction over *k*. Assumption: For any  $(\overline{a}, \overline{b}) \in \mathcal{Z}$  with  $|\overline{a}| = |\overline{b}| = m - k$  we have  $\mathfrak{B} \models \varphi_{(\mathfrak{A},\overline{a})}^{i}(\overline{b})$ .  
For  $k = 0$  we are done by (atomic harmony). For  $k > 0$ , take  $(\overline{a}, \overline{b}) \in \mathcal{Z}$  with  $|\overline{a}| = |\overline{b}| = m - k - 1$ .  
Take any  $c \in A$ . By (forth) there is  $d \in B$  so that  $(\overline{a}c, \overline{b}d) \in \mathcal{Z}$ . By ind. ass.  $\mathfrak{B} \models \varphi_{(\mathfrak{A},\overline{a}c)}^{i}(\overline{b}d)$ .  
Thus  $\mathfrak{B} \models \exists x_{i} \ \varphi_{\overline{a}c}^{k}(\overline{b}, x_{i})$ . By the choice of  $c$ , we conclude  $\mathfrak{B} \models \bigwedge_{c \in A} \exists x_{i} \ \varphi_{\overline{a}c}^{k}(\overline{b}, x_{i})$ .

Goal: describe the *m*-isomorphism type of a  $\tau$ -structure  $\mathfrak{A}$  with an FO<sub>*m*</sub>[ $\tau$ ] formula.

• (Base): 
$$\varphi_{(\mathfrak{A},\overline{a})}^{0}(\overline{x}) := \bigwedge_{\underline{atomic \ \lambda(\overline{x}), \ \mathfrak{A} \models \lambda(\overline{a})}} \lambda(\overline{x}) \land \bigwedge_{\underline{atomic \ \lambda(\overline{x}), \ \mathfrak{A} \models \lambda(\overline{a})}} \neg \lambda(\overline{x})$$
  
• (Step):  $\varphi_{(\mathfrak{A},\overline{a})}^{k}(\overline{x}) := \bigwedge_{\underline{c \in A}} \exists x_{k} \ \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{(\mathfrak{A},\overline{ac})}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{\underline{c \in A}}^{k-1}(\overline{x}, x_{k}) \land \qquad \forall x_{k} \ \bigvee_{\underline{c \in A}} \varphi_{\underline{c \in A}}^{k-1}(\overline{x}, x_{k}) \land \end{matrix}$ 
Induction over  $k$ . Assumption: For any  $(\overline{a}, \overline{b}) \in \mathcal{Z}$  with  $|\overline{a}| = |\overline{b}| = m-k-1$ .  
For  $k = 0$  we are done by (atomic harmony). For  $k > 0$ , take  $(\overline{a}, \overline{b}) \in \mathcal{Z}$  with  $|\overline{a}| = |\overline{b}| = m-k-1$ .  
Take any  $c \in A$ . By (forth) there is  $d \in B$  so that  $(\overline{a}c, \overline{b}d) \in \mathcal{Z}$ .

**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

**1.** Duplic  $\forall$  tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .

- **1.** Duplic  $\forall$  tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .

- **1.** Duplic  $\forall$  tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .

- **1.** Duplic $\forall$ tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $\mathrm{FO}_m[\tau]$  sentences.

**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic  $\forall$  tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $FO_m[\tau]$  sentences.

We've already seen that  $(1) \Leftrightarrow (2)$  and  $(2) \Leftrightarrow (3)$ .

**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic  $\forall$  tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $FO_m[\tau]$  sentences.

We've already seen that  $(1) \Leftrightarrow (2)$  and  $(2) \Leftrightarrow (3)$ . Clearly  $(4) \Rightarrow (3)$ , thus it suffices to show  $(2) \Rightarrow (4)$ .

**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic  $\forall$  tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $FO_m[\tau]$  sentences.

We've already seen that (1)  $\Leftrightarrow$  (2) and (2)  $\Leftrightarrow$  (3). Clearly (4)  $\Rightarrow$  (3), thus it suffices to show (2)  $\Rightarrow$  (4). **Proof** 

**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic $\forall$ tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $\mathrm{FO}_m[\tau]$  sentences.

We've already seen that (1)  $\Leftrightarrow$  (2) and (2)  $\Leftrightarrow$  (3). Clearly (4)  $\Rightarrow$  (3), thus it suffices to show (2)  $\Rightarrow$  (4). **Proof** 



**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic  $\forall$  tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $\mathrm{FO}_m[\tau]$  sentences.

We've already seen that (1)  $\Leftrightarrow$  (2) and (2)  $\Leftrightarrow$  (3). Clearly (4)  $\Rightarrow$  (3), thus it suffices to show (2)  $\Rightarrow$  (4). **Proof** [(2)  $\Rightarrow$  (4) by induction]



**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic  $\forall$  tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $FO_m[\tau]$  sentences.

We've already seen that  $(1) \Leftrightarrow (2)$  and  $(2) \Leftrightarrow (3)$ . Clearly  $(4) \Rightarrow (3)$ , thus it suffices to show  $(2) \Rightarrow (4)$ . **Proof**  $[(2) \Rightarrow (4)$  by induction] Let  $\mathcal{Z}$  be an *m*-bisimulation.



**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic  $\forall$  tor has the winning strategy in any *m*-round Ehrenfeucht-Fraissé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $FO_m[\tau]$  sentences.

We've already seen that (1)  $\Leftrightarrow$  (2) and (2)  $\Leftrightarrow$  (3). Clearly (4)  $\Rightarrow$  (3), thus it suffices to show (2)  $\Rightarrow$  (4). **Proof** [(2)  $\Rightarrow$  (4) by induction] Let  $\mathcal{Z}$  be an *m*-bisimulation. The case  $m = 0 \rightsquigarrow$ 



**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic  $\forall$  tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $FO_m[\tau]$  sentences.

We've already seen that (1)  $\Leftrightarrow$  (2) and (2)  $\Leftrightarrow$  (3). Clearly (4)  $\Rightarrow$  (3), thus it suffices to show (2)  $\Rightarrow$  (4). **Proof** [(2)  $\Rightarrow$  (4) by induction] Let  $\mathcal{Z}$  be an *m*-bisimulation. The case  $m = 0 \rightsquigarrow$ 



**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic  $\forall$  tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $FO_m[\tau]$  sentences.

We've already seen that  $(1) \Leftrightarrow (2)$  and  $(2) \Leftrightarrow (3)$ . Clearly  $(4) \Rightarrow (3)$ , thus it suffices to show  $(2) \Rightarrow (4)$ . **Proof**  $[(2) \Rightarrow (4)$  by induction] Let  $\mathcal{Z}$  be an *m*-bisimulation. The case  $m = 0 \rightsquigarrow$  (atomic harmony).



**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic $\forall$ tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $FO_m[\tau]$  sentences.

We've already seen that  $(1) \Leftrightarrow (2)$  and  $(2) \Leftrightarrow (3)$ . Clearly  $(4) \Rightarrow (3)$ , thus it suffices to show  $(2) \Rightarrow (4)$ . **Proof**  $[(2) \Rightarrow (4)$  by induction] Let  $\mathcal{Z}$  be an *m*-bisimulation. The case  $m = 0 \rightsquigarrow$  (atomic harmony).



**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic  $\forall$  tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $FO_m[\tau]$  sentences.

We've already seen that (1)  $\Leftrightarrow$  (2) and (2)  $\Leftrightarrow$  (3). Clearly (4)  $\Rightarrow$  (3), thus it suffices to show (2)  $\Rightarrow$  (4). **Proof** [(2)  $\Rightarrow$  (4) by induction] Let  $\mathcal{Z}$  be an *m*-bisimulation. The case  $m = 0 \rightsquigarrow$  (atomic harmony). Note that every  $FO_m[\tau]$  formula is



**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic  $\forall$  tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $FO_m[\tau]$  sentences.

We've already seen that (1)  $\Leftrightarrow$  (2) and (2)  $\Leftrightarrow$  (3). Clearly (4)  $\Rightarrow$  (3), thus it suffices to show (2)  $\Rightarrow$  (4). **Proof** [(2)  $\Rightarrow$  (4) by induction] Let  $\mathcal{Z}$  be an *m*-bisimulation. The case  $m = 0 \rightsquigarrow$  (atomic harmony). Note that every  $FO_m[\tau]$  formula is a boolean combination of formulae



**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic  $\forall$  tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $FO_m[\tau]$  sentences.

We've already seen that (1)  $\Leftrightarrow$  (2) and (2)  $\Leftrightarrow$  (3). Clearly (4)  $\Rightarrow$  (3), thus it suffices to show (2)  $\Rightarrow$  (4). **Proof** [(2)  $\Rightarrow$  (4) by induction] Let  $\mathcal{Z}$  be an *m*-bisimulation. The case  $m = 0 \rightsquigarrow$  (atomic harmony). Note that every  $FO_m[\tau]$  formula is a boolean combination of formulae of the form  $\exists x \ \psi$ .



**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic  $\forall$  tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $FO_m[\tau]$  sentences.

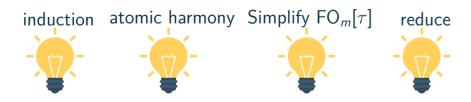
We've already seen that (1)  $\Leftrightarrow$  (2) and (2)  $\Leftrightarrow$  (3). Clearly (4)  $\Rightarrow$  (3), thus it suffices to show (2)  $\Rightarrow$  (4). **Proof** [(2)  $\Rightarrow$  (4) by induction] Let  $\mathcal{Z}$  be an *m*-bisimulation. The case  $m = 0 \rightsquigarrow$  (atomic harmony). Note that every  $FO_m[\tau]$  formula is a boolean combination of formulae of the form  $\exists x \ \psi$ .



**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic  $\forall$  tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $FO_m[\tau]$  sentences.

We've already seen that (1)  $\Leftrightarrow$  (2) and (2)  $\Leftrightarrow$  (3). Clearly (4)  $\Rightarrow$  (3), thus it suffices to show (2)  $\Rightarrow$  (4). **Proof** [(2)  $\Rightarrow$  (4) by induction] Let  $\mathcal{Z}$  be an *m*-bisimulation. The case  $m = 0 \rightsquigarrow$  (atomic harmony). Note that every  $FO_m[\tau]$  formula is a boolean combination of formulae of the form  $\exists x \psi$ . So it suffices to show the lemma for  $\exists x \psi$  with  $qr(\varphi) \leq m-1$ .



**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic $\forall$ tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $FO_m[\tau]$  sentences.

We've already seen that (1)  $\Leftrightarrow$  (2) and (2)  $\Leftrightarrow$  (3). Clearly (4)  $\Rightarrow$  (3), thus it suffices to show (2)  $\Rightarrow$  (4). **Proof** [(2)  $\Rightarrow$  (4) by induction] Let  $\mathcal{Z}$  be an *m*-bisimulation. The case  $m = 0 \rightsquigarrow$  (atomic harmony). Note that every  $FO_m[\tau]$  formula is a boolean combination of formulae of the form  $\exists x \psi$ . So it suffices to show the lemma for  $\exists x \psi$  with  $qr(\varphi) \leq m-1$ .



**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic $\forall$ tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $FO_m[\tau]$  sentences.

We've already seen that (1)  $\Leftrightarrow$  (2) and (2)  $\Leftrightarrow$  (3). Clearly (4)  $\Rightarrow$  (3), thus it suffices to show (2)  $\Rightarrow$  (4). **Proof** [(2)  $\Rightarrow$  (4) by induction] Let  $\mathcal{Z}$  be an *m*-bisimulation. The case  $m = 0 \rightsquigarrow$  (atomic harmony). Note that every  $FO_m[\tau]$  formula is a boolean combination of formulae of the form  $\exists x \psi$ . So it suffices to show the lemma for  $\exists x \psi$  with  $qr(\varphi) \leq m-1$ . Let  $\mathfrak{A} \models \exists x \psi$ .



**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic  $\forall$  tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $\mathrm{FO}_m[\tau]$  sentences.

We've already seen that (1)  $\Leftrightarrow$  (2) and (2)  $\Leftrightarrow$  (3). Clearly (4)  $\Rightarrow$  (3), thus it suffices to show (2)  $\Rightarrow$  (4). **Proof** [(2)  $\Rightarrow$  (4) by induction] Let  $\mathcal{Z}$  be an *m*-bisimulation. The case  $m = 0 \rightsquigarrow$  (atomic harmony). Note that every  $FO_m[\tau]$  formula is a boolean combination of formulae of the form  $\exists x \psi$ . So it suffices to show the lemma for  $\exists x \psi$  with  $qr(\varphi) \leq m-1$ . Let  $\mathfrak{A} \models \exists x \psi$ . (Case with  $\mathfrak{B}$  is symmetric).



**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic  $\forall$ tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $\mathrm{FO}_m[\tau]$  sentences.

We've already seen that (1)  $\Leftrightarrow$  (2) and (2)  $\Leftrightarrow$  (3). Clearly (4)  $\Rightarrow$  (3), thus it suffices to show (2)  $\Rightarrow$  (4). **Proof** [(2)  $\Rightarrow$  (4) by induction] Let  $\mathcal{Z}$  be an *m*-bisimulation. The case  $m = 0 \rightsquigarrow$  (atomic harmony). Note that every  $FO_m[\tau]$  formula is a boolean combination of formulae of the form  $\exists x \psi$ . So it suffices to show the lemma for  $\exists x \psi$  with  $qr(\varphi) \leq m-1$ . Let  $\mathfrak{A} \models \exists x \psi$ . (Case with  $\mathfrak{B}$  is symmetric).



**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic  $\forall$ tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $FO_m[\tau]$  sentences.

We've already seen that  $(1) \Leftrightarrow (2)$  and  $(2) \Leftrightarrow (3)$ . Clearly  $(4) \Rightarrow (3)$ , thus it suffices to show  $(2) \Rightarrow (4)$ . **Proof**  $[(2) \Rightarrow (4)$  by induction] Let  $\mathcal{Z}$  be an *m*-bisimulation. The case  $m = 0 \rightsquigarrow$  (atomic harmony). Note that every  $FO_m[\tau]$  formula is a boolean combination of formulae of the form  $\exists x \psi$ . So it suffices to show the lemma for  $\exists x \psi$  with  $qr(\varphi) \le m-1$ . Let  $\mathfrak{A} \models \exists x \psi$ . (Case with  $\mathfrak{B}$  is symmetric). Take  $a \in A$  such that  $\mathfrak{A} \models \psi(a)$ .



**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic  $\forall$ tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $FO_m[\tau]$  sentences.

We've already seen that  $(1) \Leftrightarrow (2)$  and  $(2) \Leftrightarrow (3)$ . Clearly  $(4) \Rightarrow (3)$ , thus it suffices to show  $(2) \Rightarrow (4)$ . **Proof**  $[(2) \Rightarrow (4)$  by induction] Let  $\mathcal{Z}$  be an *m*-bisimulation. The case  $m = 0 \rightsquigarrow$  (atomic harmony). Note that every  $FO_m[\tau]$  formula is a boolean combination of formulae of the form  $\exists x \psi$ . So it suffices to show the lemma for  $\exists x \psi$  with  $qr(\varphi) \le m-1$ . Let  $\mathfrak{A} \models \exists x \psi$ . (Case with  $\mathfrak{B}$  is symmetric). Take  $a \in A$  such that  $\mathfrak{A} \models \psi(a)$ .



**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic  $\forall$  tor has the winning strategy in any *m*-round Ehrenfeucht-Fraissé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $FO_m[\tau]$  sentences.

We've already seen that  $(1) \Leftrightarrow (2)$  and  $(2) \Leftrightarrow (3)$ . Clearly  $(4) \Rightarrow (3)$ , thus it suffices to show  $(2) \Rightarrow (4)$ . **Proof**  $[(2) \Rightarrow (4)$  by induction] Let  $\mathcal{Z}$  be an *m*-bisimulation. The case  $m = 0 \rightsquigarrow$  (atomic harmony). Note that every  $FO_m[\tau]$  formula is a boolean combination of formulae of the form  $\exists x \psi$ . So it suffices to show the lemma for  $\exists x \psi$  with  $qr(\varphi) \leq m-1$ . Let  $\mathfrak{A} \models \exists x \psi$ . (Case with  $\mathfrak{B}$  is symmetric). Take  $a \in A$  such that  $\mathfrak{A} \models \psi(a)$ . By (forth) we get  $b \in B$  for which  $(a, b) \in \mathcal{Z}$ .



**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic  $\forall$  tor has the winning strategy in any *m*-round Ehrenfeucht-Fraissé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $FO_m[\tau]$  sentences.

We've already seen that (1)  $\Leftrightarrow$  (2) and (2)  $\Leftrightarrow$  (3). Clearly (4)  $\Rightarrow$  (3), thus it suffices to show (2)  $\Rightarrow$  (4). **Proof** [(2)  $\Rightarrow$  (4) by induction] Let  $\mathcal{Z}$  be an *m*-bisimulation. The case  $m = 0 \rightsquigarrow$  (atomic harmony). Note that every  $FO_m[\tau]$  formula is a boolean combination of formulae of the form  $\exists x \psi$ . So it suffices to show the lemma for  $\exists x \psi$  with  $qr(\varphi) \leq m-1$ . Let  $\mathfrak{A} \models \exists x \psi$ . (Case with  $\mathfrak{B}$  is symmetric). Take  $a \in A$  such that  $\mathfrak{A} \models \psi(a)$ . By (forth) we get  $b \in B$  for which  $(a, b) \in \mathcal{Z}$ .



**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic  $\forall$  tor has the winning strategy in any *m*-round Ehrenfeucht-Fraissé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $FO_m[\tau]$  sentences.

We've already seen that  $(1) \Leftrightarrow (2)$  and  $(2) \Leftrightarrow (3)$ . Clearly  $(4) \Rightarrow (3)$ , thus it suffices to show  $(2) \Rightarrow (4)$ . **Proof**  $[(2) \Rightarrow (4)$  by induction] Let  $\mathcal{Z}$  be an *m*-bisimulation. The case  $m = 0 \rightsquigarrow$  (atomic harmony). Note that every  $FO_m[\tau]$  formula is a boolean combination of formulae of the form  $\exists x \psi$ . So it suffices to show the lemma for  $\exists x \psi$  with  $qr(\varphi) \leq m-1$ . Let  $\mathfrak{A} \models \exists x \psi$ . (Case with  $\mathfrak{B}$  is symmetric). Take  $a \in A$  such that  $\mathfrak{A} \models \psi(a)$ . By (forth) we get  $b \in B$  for which  $(a, b) \in \mathcal{Z}$ . By ind. ass. *b* in  $\mathfrak{B}$  satisfies the same qr(m-1)-sentences as *a* in  $\mathfrak{A}$ .

induction atomic harmony Simplify  $FO_m[\tau]$  reduce intro witness forth ind. ass.

**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic  $\forall$  tor has the winning strategy in any *m*-round Ehrenfeucht-Fraissé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $FO_m[\tau]$  sentences.

We've already seen that  $(1) \Leftrightarrow (2)$  and  $(2) \Leftrightarrow (3)$ . Clearly  $(4) \Rightarrow (3)$ , thus it suffices to show  $(2) \Rightarrow (4)$ . **Proof**  $[(2) \Rightarrow (4)$  by induction] Let  $\mathcal{Z}$  be an *m*-bisimulation. The case  $m = 0 \rightsquigarrow$  (atomic harmony). Note that every  $FO_m[\tau]$  formula is a boolean combination of formulae of the form  $\exists x \psi$ . So it suffices to show the lemma for  $\exists x \psi$  with  $qr(\varphi) \le m-1$ . Let  $\mathfrak{A} \models \exists x \psi$ . (Case with  $\mathfrak{B}$  is symmetric). Take  $a \in A$  such that  $\mathfrak{A} \models \psi(a)$ . By (forth) we get  $b \in B$  for which  $(a, b) \in \mathcal{Z}$ . By ind. ass. *b* in  $\mathfrak{B}$  satisfies the same qr(m-1)-sentences as *a* in  $\mathfrak{A}$ .



**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic  $\forall$ tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $\mathrm{FO}_m[\tau]$  sentences.

We've already seen that (1)  $\Leftrightarrow$  (2) and (2)  $\Leftrightarrow$  (3). Clearly (4)  $\Rightarrow$  (3), thus it suffices to show (2)  $\Rightarrow$  (4). **Proof** [(2)  $\Rightarrow$  (4) by induction] Let  $\mathcal{Z}$  be an *m*-bisimulation. The case  $m = 0 \rightsquigarrow$  (atomic harmony). Note that every  $FO_m[\tau]$  formula is a boolean combination of formulae of the form  $\exists x \ \psi$ . So it suffices to show the lemma for  $\exists x \ \psi$  with  $qr(\varphi) \leq m-1$ . Let  $\mathfrak{A} \models \exists x \ \psi$ . (Case with  $\mathfrak{B}$  is symmetric). Take  $a \in A$  such that  $\mathfrak{A} \models \psi(a)$ . By **(forth)** we get  $b \in B$  for which  $(a, b) \in \mathcal{Z}$ . By ind. ass. b in  $\mathfrak{B}$  satisfies the same qr(m-1)-sentences as a in  $\mathfrak{A}$ . So  $\mathfrak{B} \models \psi(b)$ . Thus induction atomic harmony Simplify  $FO_m[\tau]$ reduce intro witness ind. ass. forth conclude -

**Lemma:** For any  $\tau$ -structures  $\mathfrak{A}, \mathfrak{B}$  and  $m \in \mathbb{N}$ , the following are equivalent:

- **1.** Duplic  $\forall$  tor has the winning strategy in any *m*-round Ehrenfeucht-Fraïssé game played on  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **2.** There exists an *m*-bisimulation between  $\mathfrak{A}$  and  $\mathfrak{B}$ .
- **3.**  $\mathfrak{B}$  satisfies the *m*-Hintikka formulae constructed from  $\mathfrak{A}$ .
- **4.**  $\mathfrak{A}$  and  $\mathfrak{B}$  agree on all  $\mathrm{FO}_m[\tau]$  sentences.

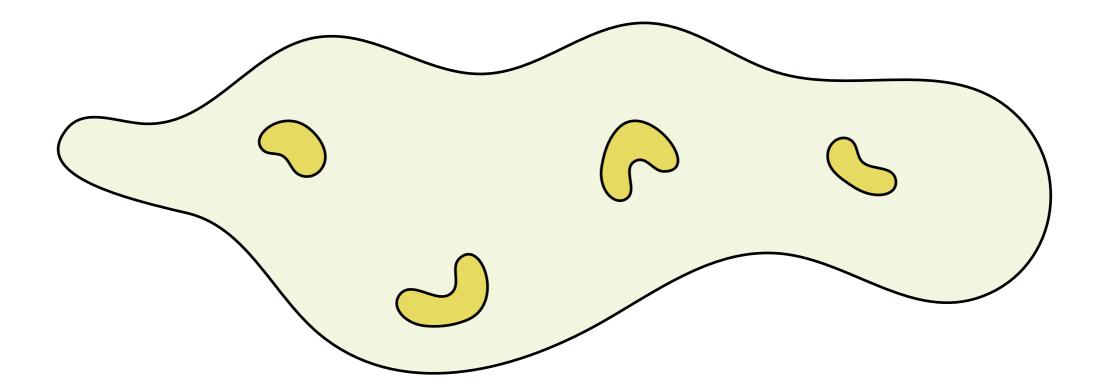
We've already seen that (1)  $\Leftrightarrow$  (2) and (2)  $\Leftrightarrow$  (3). Clearly (4)  $\Rightarrow$  (3), thus it suffices to show (2)  $\Rightarrow$  (4). **Proof** [(2)  $\Rightarrow$  (4) by induction] Let  $\mathcal{Z}$  be an *m*-bisimulation. The case  $m = 0 \rightsquigarrow$  (atomic harmony). Note that every  $FO_m[\tau]$  formula is a boolean combination of formulae of the form  $\exists x \ \psi$ . So it suffices to show the lemma for  $\exists x \ \psi$  with  $qr(\varphi) \leq m-1$ . Let  $\mathfrak{A} \models \exists x \ \psi$ . (Case with  $\mathfrak{B}$  is symmetric). Take  $a \in A$  such that  $\mathfrak{A} \models \psi(a)$ . By **(forth)** we get  $b \in B$  for which  $(a, b) \in \mathcal{Z}$ . By ind. ass. b in  $\mathfrak{B}$  satisfies the same qr(m-1)-sentences as a in  $\mathfrak{A}$ . So  $\mathfrak{B} \models \psi(b)$ . Thus  $\mathfrak{B} \models \exists x \ \psi$ .  $\Box$ induction atomic harmony Simplify  $FO_m[\tau]$ reduce intro witness forth ind. ass. conclude 

We will now go through slides 78-110 from ESSLI 2016 by [Diego Figueira].

Idea: First order logic can only express "local" properties

# Idea: First order logic can only express "local" properties

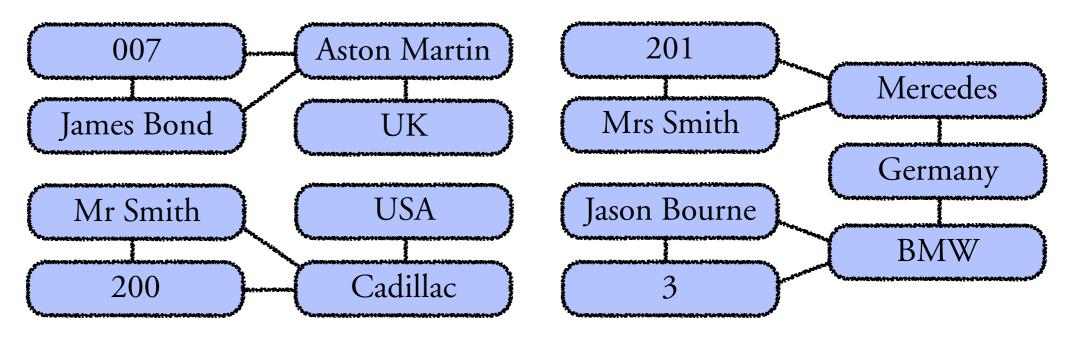
Local = properties of nodes which are close to one another



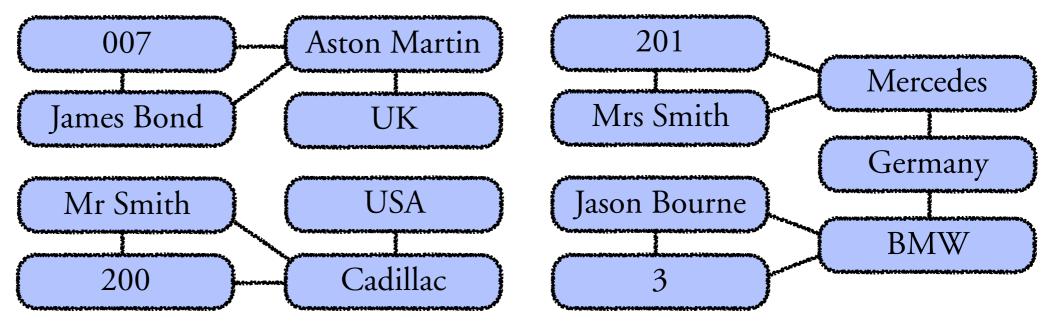
| Agent | Name         | Drives       |
|-------|--------------|--------------|
| 007   | James Bond   | Aston Martin |
| 200   | Mr Smith     | Cadillac     |
| 201   | Mrs Smith    | Mercedes     |
| 3     | Jason Bourne | BMW          |

| Car          | Country |  |
|--------------|---------|--|
| Aston Martin | UK      |  |
| Cadillac     | USA     |  |
| Mercedes     | Germany |  |
| BMW          | Germany |  |

| Agent | Name         | Drives       | Car          | Country |
|-------|--------------|--------------|--------------|---------|
| 007   | James Bond   | Aston Martin | Aston Martin | UK      |
| 200   | Mr Smith     | Cadillac     | Cadillac     | USA     |
| 201   | Mrs Smith    | Mercedes     | Mercedes     | Germany |
| 3     | Jason Bourne | BMW          | BMW          | Germany |



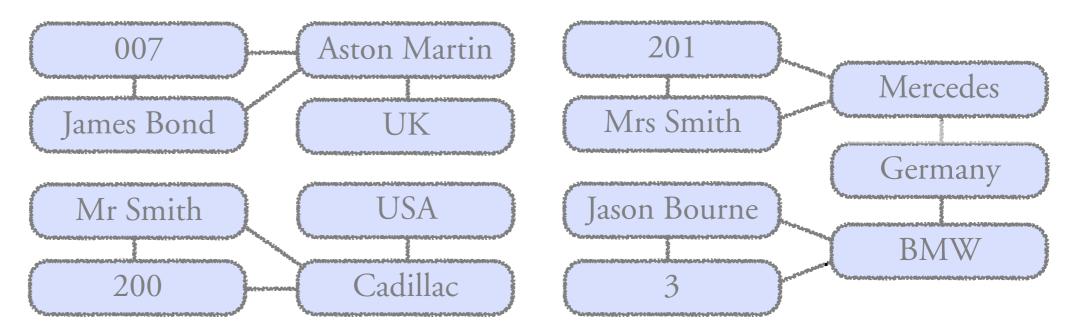
| Agent | Name         | Drives   |                                                | Country |
|-------|--------------|----------|------------------------------------------------|---------|
| 007   | James Bond   |          | Gaifman graph of<br><i>G</i> is the underlying | UK      |
| 200   | Mr Smith     | Cadh, un | directed graph.                                | USA     |
| 201   | Mrs Smith    | Mercedes | Mercedes                                       | Germany |
| 3     | Jason Bourne | BMW      | BMW                                            | Germany |



- dist (u, v) = distance between u and v in the Gaifman graph
- $S[u,r] = \text{sub-structure induced by } \{v \mid \text{dist}(u,v) \le r\} = \text{ball around } u \text{ of radius } r$

| Agent | Name         | Drives       |
|-------|--------------|--------------|
| 007   | James Bond   | Aston Martin |
| 200   | Mr Smith     | Cadillac     |
| 201   | Mrs Smith    | Mercedes     |
| 3     | Jason Bourne | BMW          |

| Car          | Country |  |  |
|--------------|---------|--|--|
| Aston Martin | UK      |  |  |
| Cadillac     | USA     |  |  |
| Mercedes     | Germany |  |  |
| BMW          | Germany |  |  |



• dist (u, v) = distance between u and v in the Gaifman graph

Mr Smith

200

•  $S[u,r] = \text{sub-structure induced by } \{v \mid \text{dist}(u,v) \le r\} = \text{ball around } u \text{ of radius } r$ 

| Agent | Name              | Drives                      | Car              | Country                         |
|-------|-------------------|-----------------------------|------------------|---------------------------------|
| 007   | James Bond        | Aston Martin                | Aston Martin     | UK                              |
| 200   | Mr Smith          | Cadillac                    | Cadillac         | USA                             |
| 201   | Mrs Smith         | Mercedes ${}^{\mathcal{U}}$ | $u_{Mercedes}$   | Germany                         |
| 3     | Jason Bourne      | BMW                         | BMW              | Germany                         |
|       | 007<br>James Bond | Aston Marti<br>UK           | 201<br>Mrs Smith | <i>U</i><br>Mercedes<br>Germany |

USA

Cadillac

Jason Bourne

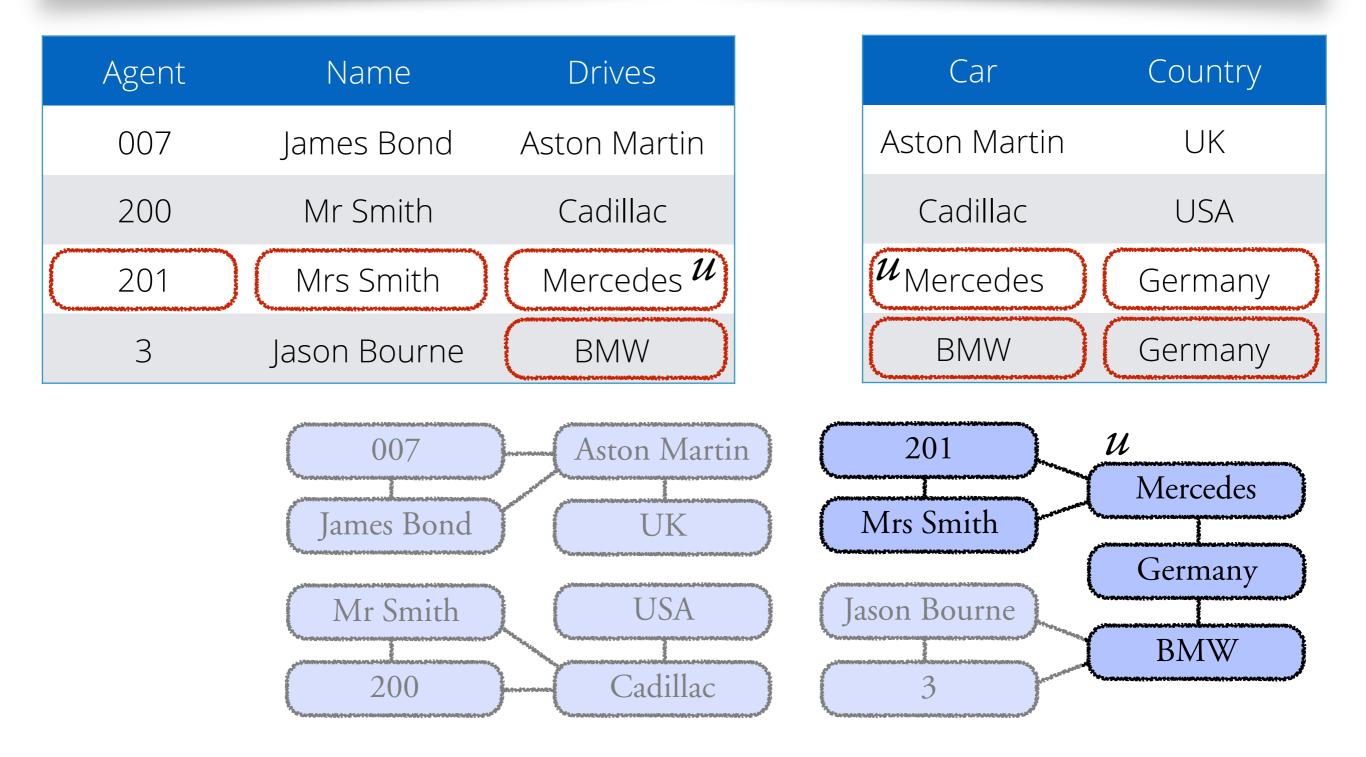
3

BMW

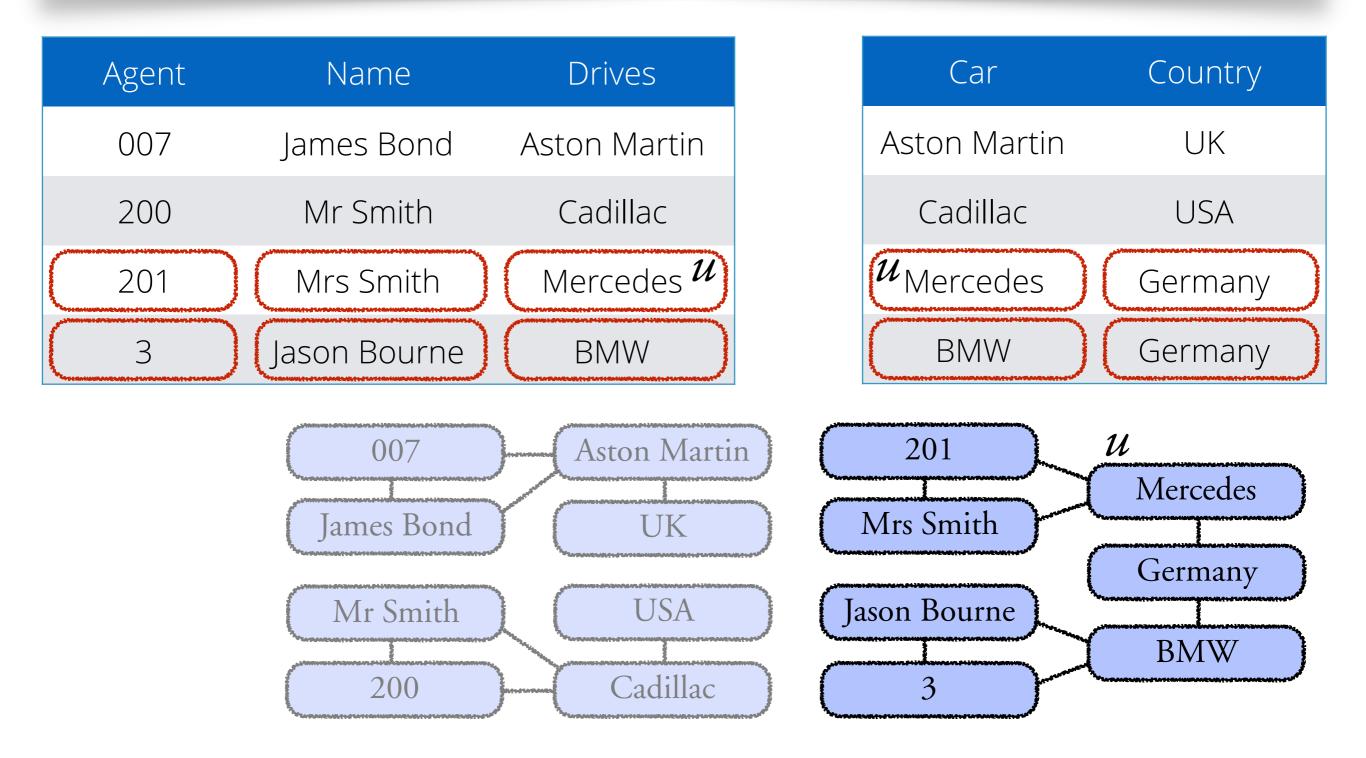
- dist (u, v) = distance between u and v in the Gaifman graph
- $S[u,r] = \text{sub-structure induced by } \{v \mid \text{dist}(u,v) \le r\} = \text{ball around } u \text{ of radius } r$

| Ag | ent | Name                                 | Drives                                | Car                                  | Country                         |
|----|-----|--------------------------------------|---------------------------------------|--------------------------------------|---------------------------------|
| 00 | 07  | James Bond                           | Aston Martin                          | Aston Martin                         | UK                              |
| 20 | 00  | Mr Smith                             | Cadillac                              | Cadillac                             | USA                             |
| 20 | 01  | Mrs Smith                            | Mercedes ${}^{\mathcal{U}}$           | $u_{Mercedes}$                       | Germany                         |
|    | 3   | Jason Bourne                         | BMW                                   | BMW                                  | Germany                         |
|    |     | 007<br>James Bond<br>Mr Smith<br>200 | Aston Martin<br>UK<br>USA<br>Cadillac | 201<br>Mrs Smith<br>ason Bourne<br>3 | и<br>Mercedes<br>Germany<br>BMW |

- dist (u, v) = distance between u and v in the Gaifman graph
- $S[u,r] = \text{sub-structure induced by } \{v \mid \text{dist}(u,v) \le r\} = \text{ball around } u \text{ of radius } r$



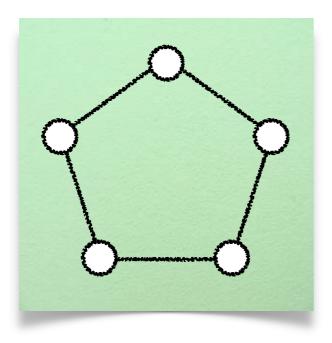
- dist (u, v) = distance between u and v in the Gaifman graph
- $S[u,r] = \text{sub-structure induced by } \{v \mid \text{dist}(u,v) \le r\} = \text{ball around } u \text{ of radius } r$

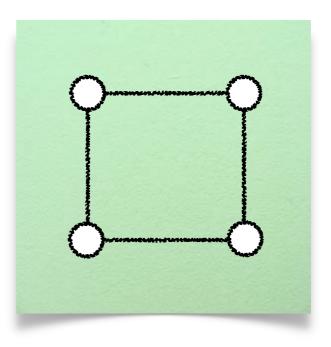


Definition. Two structures  $S_1$  and  $S_2$  are Hanf(r, t) - equivalent iff for each structure B, the two numbers #u s.t.  $S_1[u,r] \cong B$  #v s.t.  $S_2[v,r] \cong B$ are either the same or both  $\ge t$ .

Definition. Two structures  $S_1$  and  $S_2$  are Hanf(r, t) - equivalent iff for each structure B, the two numbers #u s.t.  $S_1[u,r] \cong B$  #v s.t.  $S_2[v,r] \cong B$ are either the same or both  $\ge t$ .

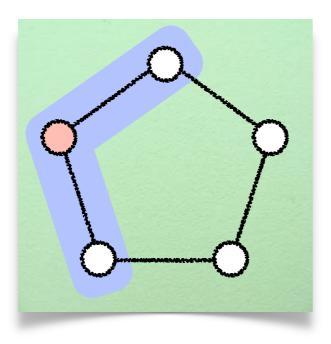
Example.  $S_1$ ,  $S_2$  are Hanf(1, 1) - equivalent iff they have the same balls of radius 1

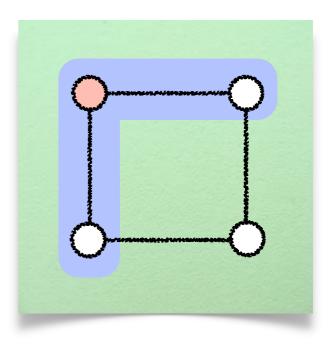




Definition. Two structures  $S_1$  and  $S_2$  are Hanf(r, t) - equivalent iff for each structure B, the two numbers #u s.t.  $S_1[u,r] \cong B$  #v s.t.  $S_2[v,r] \cong B$ are either the same or both  $\ge t$ .

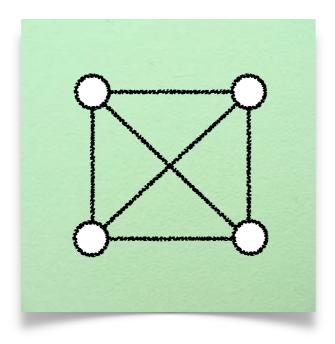
Example.  $S_1$ ,  $S_2$  are Hanf(1, 1) - equivalent iff they have the same balls of radius 1

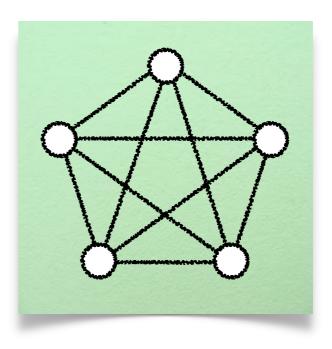




Definition. Two structures  $S_1$  and  $S_2$  are Hanf(r, t) - equivalent iff for each structure B, the two numbers #u s.t.  $S_1[u,r] \cong B$  #v s.t.  $S_2[v,r] \cong B$ are either the same or both  $\ge t$ .

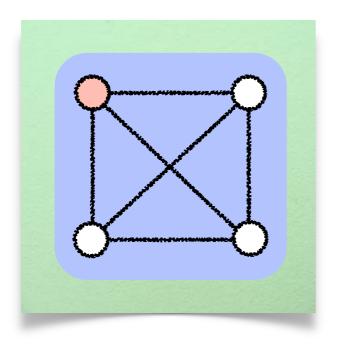
Example.  $K_n$ ,  $K_{n+1}$  are **not** Hanf(1, 1) - equivalent

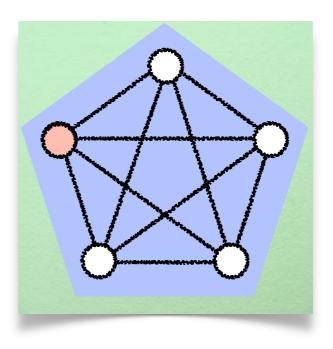




Definition. Two structures  $S_1$  and  $S_2$  are Hanf(r, t) - equivalent iff for each structure B, the two numbers #u s.t.  $S_1[u,r] \cong B$  #v s.t.  $S_2[v,r] \cong B$ are either the same or both  $\ge t$ .

Example.  $K_n$ ,  $K_{n+1}$  are **not** Hanf(1, 1) - equivalent





**Theorem.** If  $S_1$ ,  $S_2$  are **Hanf**(r, t) - equivalent, with  $r = 3^n$  and t = nthen  $S_1$ ,  $S_2$  are *n* - equivalent (they satisfy the same sentences with quantifier rank *n*)

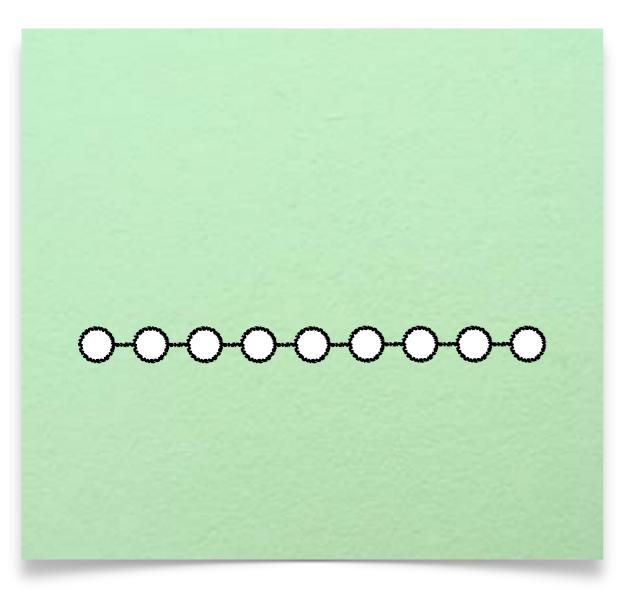
[Hanf '60]

**Theorem.** If  $S_1$ ,  $S_2$  are Hanf(r, t) - equivalent, with  $r = 3^n$  and t = nthen  $S_1$ ,  $S_2$  are *n* - equivalent (they satisfy the same sentences with quantifier rank *n*)

[Hanf '60]

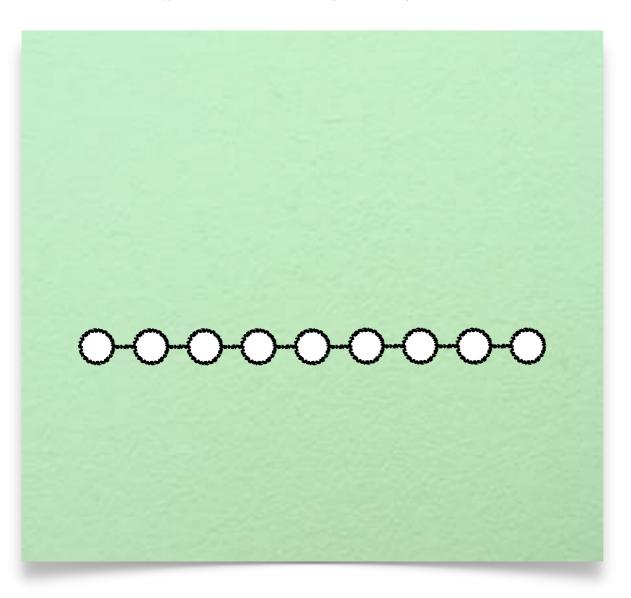
**Theorem.** If  $S_1$ ,  $S_2$  are Hanf(r, t) - equivalent, with  $r = 3^n$  and t = nthen  $S_1$ ,  $S_2$  are *n* - equivalent (they satisfy the same sentences with quantifier rank *n*)

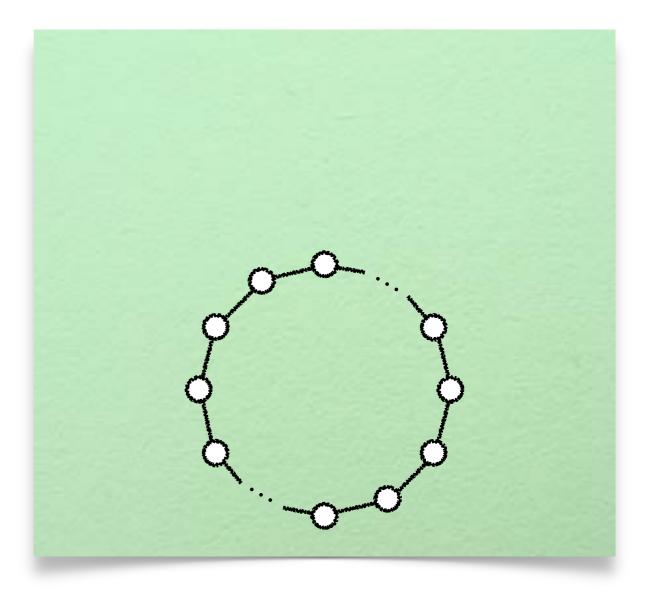
[Hanf '60]



**Theorem.** If  $S_1$ ,  $S_2$  are Hanf(r, t) - equivalent, with  $r = 3^n$  and t = nthen  $S_1$ ,  $S_2$  are *n* - equivalent (they satisfy the same sentences with quantifier rank *n*)

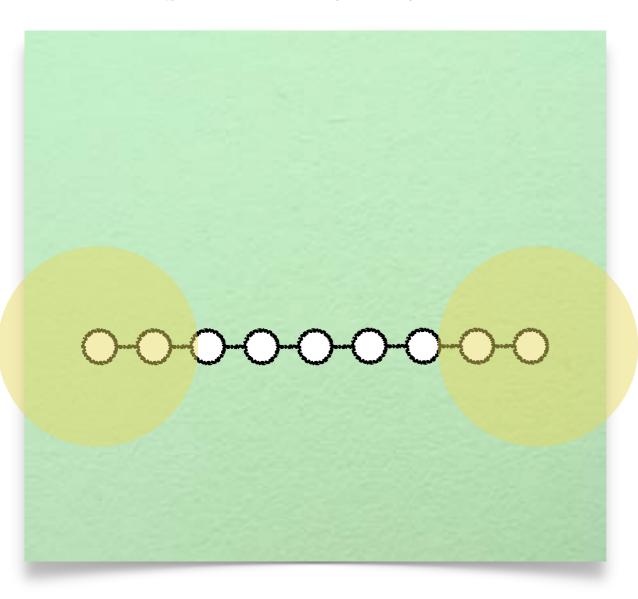
[Hanf '60]

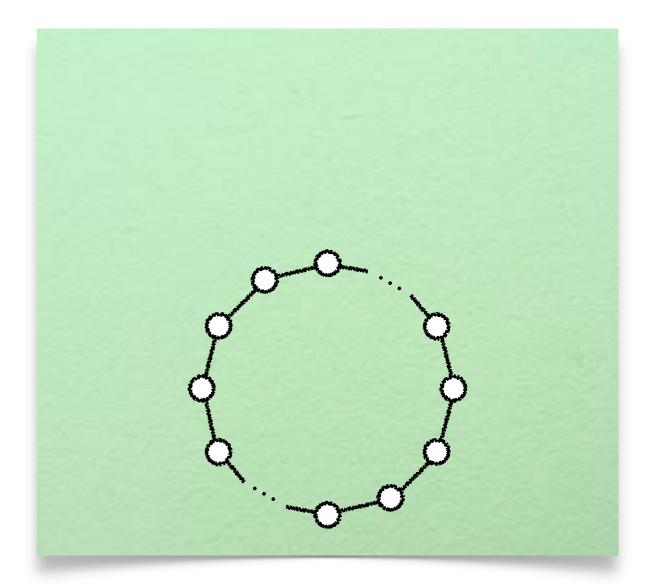




**Theorem.** If  $S_1$ ,  $S_2$  are Hanf(r, t) - equivalent, with  $r = 3^n$  and t = nthen  $S_1$ ,  $S_2$  are *n* - equivalent (they satisfy the same sentences with quantifier rank *n*)

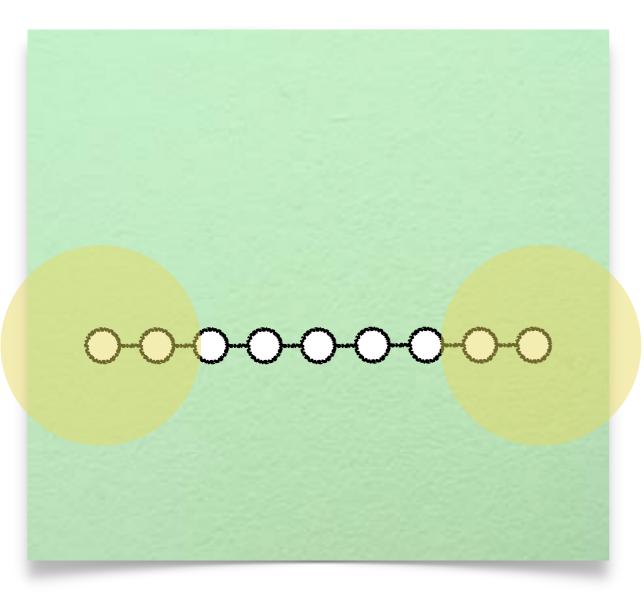
[Hanf '60]

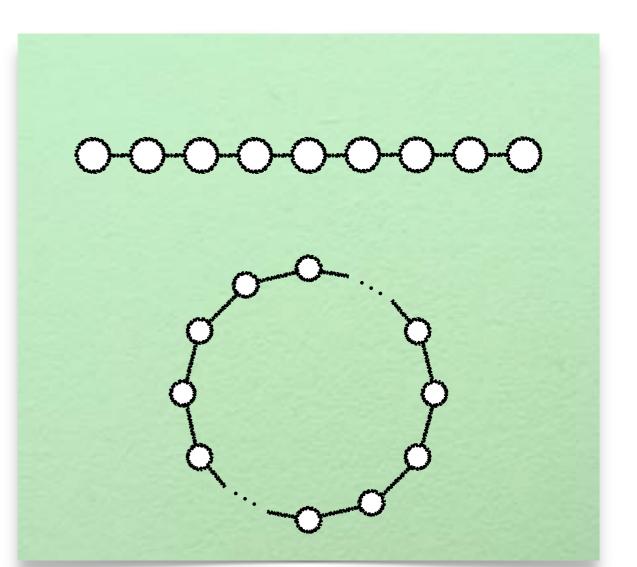




**Theorem.** If  $S_1$ ,  $S_2$  are Hanf(r, t) - equivalent, with  $r = 3^n$  and t = nthen  $S_1$ ,  $S_2$  are *n* - equivalent (they satisfy the same sentences with quantifier rank *n*)

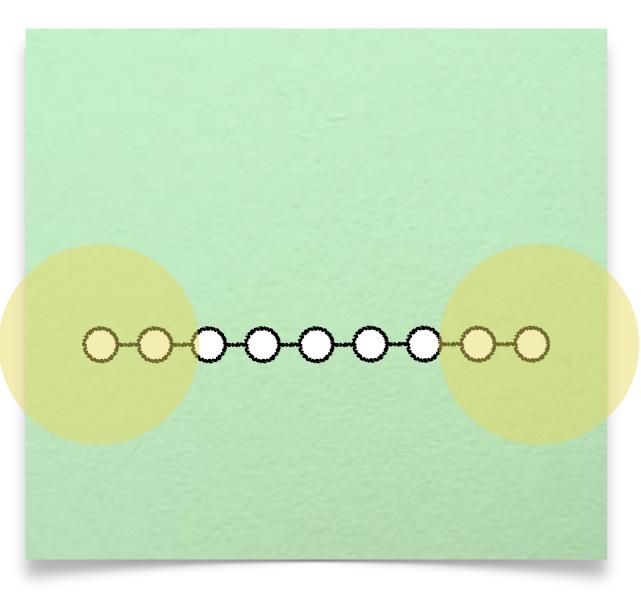
[Hanf '60]

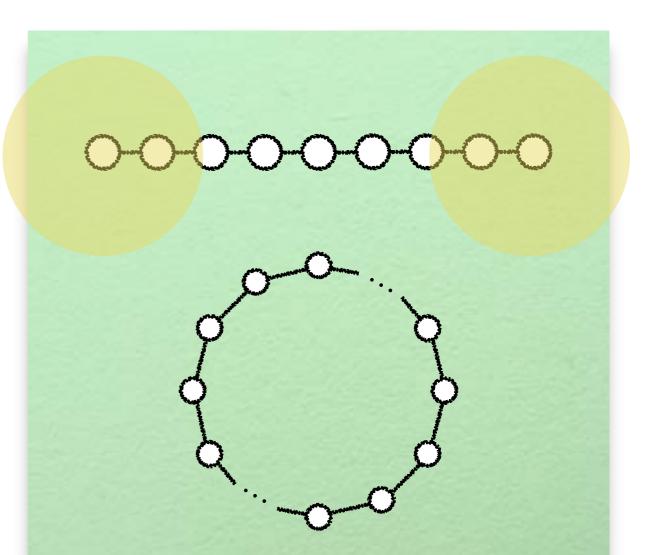




**Theorem.** If  $S_1$ ,  $S_2$  are Hanf(r, t) - equivalent, with  $r = 3^n$  and t = nthen  $S_1$ ,  $S_2$  are *n* - equivalent (they satisfy the same sentences with quantifier rank *n*)

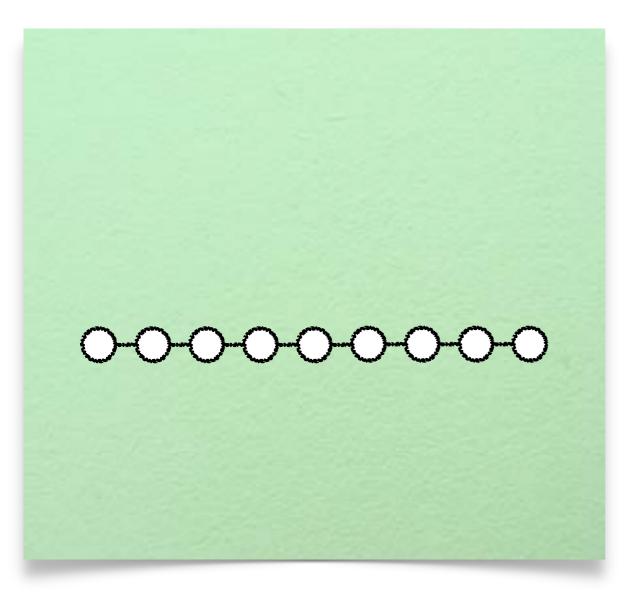
[Hanf '60]

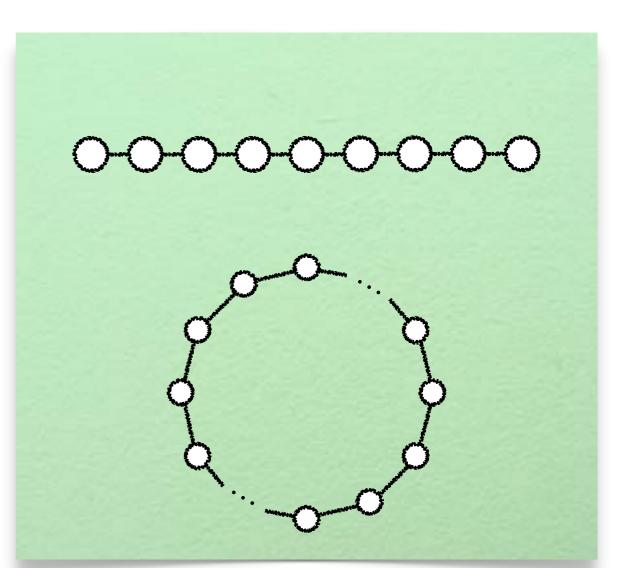




**Theorem.** If  $S_1$ ,  $S_2$  are Hanf(r, t) - equivalent, with  $r = 3^n$  and t = nthen  $S_1$ ,  $S_2$  are *n* - equivalent (they satisfy the same sentences with quantifier rank *n*)

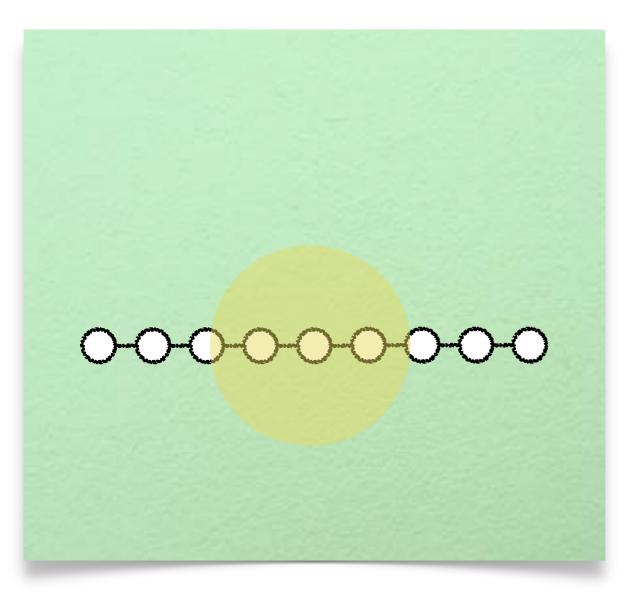
[Hanf '60]

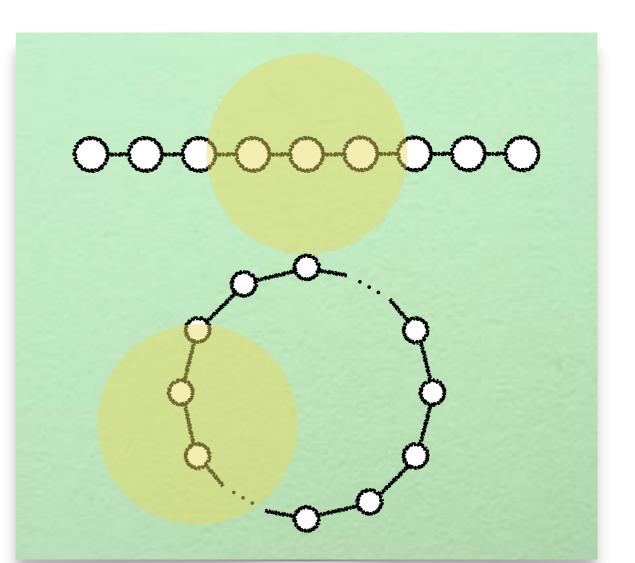




**Theorem.** If  $S_1$ ,  $S_2$  are Hanf(r, t) - equivalent, with  $r = 3^n$  and t = nthen  $S_1$ ,  $S_2$  are *n* - equivalent (they satisfy the same sentences with quantifier rank *n*)

[Hanf '60]



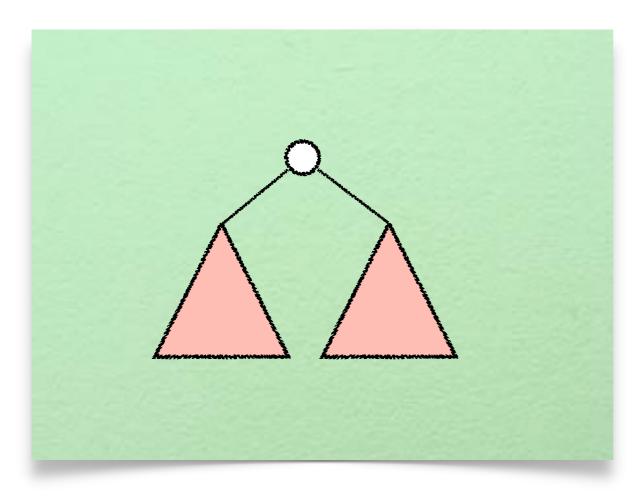


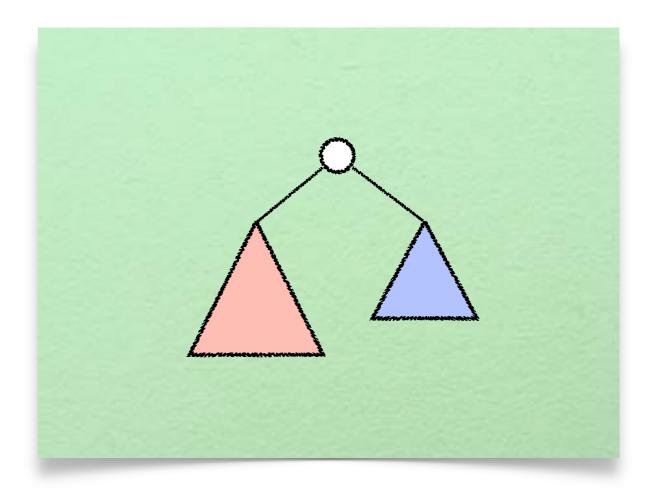
**Theorem.**  $S_1$ ,  $S_2$  are *n* - equivalent (they satisfy the same sentences with quantifier rank *n*) whenever  $S_1$ ,  $S_2$  are Hanf(r, t) - equivalent, with  $r = 3^n$  and t = n. [Hanf '60]

Exercise: prove that testing whether a binary tree is *complete* is not FO-definable

Theorem.  $S_1$ ,  $S_2$  are *n*-equivalent (they satisfy the same sentences with quantifier rank *n*) whenever  $S_1$ ,  $S_2$  are Hanf(r, t)-equivalent, with  $r = 3^n$  and t = n. [Hanf '60]

Exercise: prove that testing whether a binary tree is *complete* is not FO-definable





Theorem.  $S_1$ ,  $S_2$  are *n*-equivalent (they satisfy the same sentences with quantifier rank *n*) whenever  $S_1$ ,  $S_2$  are Hanf(r, t)-equivalent, with  $r = 3^n$  and t = n. [Hanf '60]

Theorem.  $S_1$ ,  $S_2$  are *n*-equivalent (they satisfy the same sentences with quantifier rank *n*) whenever  $S_1$ ,  $S_2$  are Hanf(r, t)-equivalent, with  $r = 3^n$  and t = n. [Hanf '60]

Why so **BIG**?

Theorem.  $S_1$ ,  $S_2$  are *n*-equivalent (they satisfy the same sentences with quantifier rank *n*) whenever  $S_1$ ,  $S_2$  are Hanf(r, t)-equivalent, with  $r = 3^n$  and t = n. [Hanf '60]

Why so **BIG**?

Remember  $\phi_k(x,y)$  = "there is a path of length 2<sup>k</sup> from x to y"

**Theorem.**  $S_1$ ,  $S_2$  are *n*-equivalent (they satisfy the same sentences with quantifier rank *n*) whenever  $S_1$ ,  $S_2$  are Hanf(r, t)-equivalent, with  $r = 3^n$  and t = n. [Hanf '60]

Why so **BIG**?

Remember  $\phi_k(x,y)$  = "there is a path of length 2<sup>k</sup> from x to y"

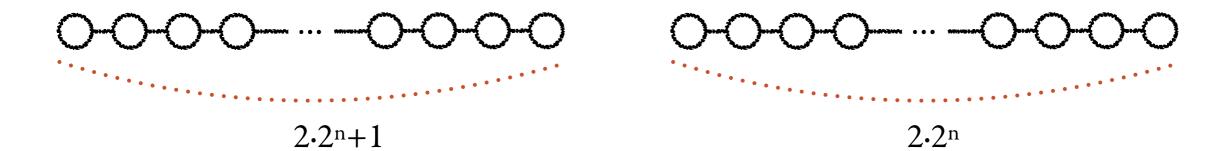
$$\begin{array}{l} \varphi_0(x,y)=\ E(x,y)\text{, and}\\ \varphi_k(x,y)\ =\ \exists z\ (\ \varphi_{k-1}(x,z)\ \land\ \varphi_{k-1}(z,y)\ )\\ qr(\varphi_k)=k \end{array}$$

**Theorem.**  $S_1$ ,  $S_2$  are *n*-equivalent (they satisfy the same sentences with quantifier rank *n*) whenever  $S_1$ ,  $S_2$  are Hanf(r, t)-equivalent, with  $r = 3^n$  and t = n. [Hanf '60]

Why so **BIG**?

Remember  $\phi_k(x,y)$  = "there is a path of length 2<sup>k</sup> from x to y"

$$\begin{array}{l} \varphi_0(x,y) = \ E(x,y), and \\ \varphi_k(x,y) = \ \exists z \ ( \ \varphi_{k-1}(x,z) \land \varphi_{k-1}(z,y) \ ) \\ qr(\varphi_k) = k \end{array}$$



Theorem.  $S_1$ ,  $S_2$  are *n* - equivalent (they satisfy the same sentences with quantifier rank *n*) whenever  $S_1$ ,  $S_2$  are Hanf(r, t) - equivalent, with  $r = 3^n$  and t = n. [Hanf '60]

Why so **BIG**?

Remember  $\phi_k(x,y)$  = "there is a path of length 2<sup>k</sup> from x to y"

$$\begin{aligned} \varphi_0(x, y) &= E(x, y), \text{ and} \\ \varphi_k(x, y) &= \exists z \ ( \ \varphi_{k-1}(x, z) \land \varphi_{k-1}(z, y) \ ) \\ qr(\varphi_k) &= k \end{aligned}$$



 $2 \cdot 2^{n} + 1$ 

2•2<sup>n</sup>

Not (n+2)-equivalent yet they have the same  $2^n-1$  balls.

If  $\mathfrak{A}$  and  $\mathfrak{B}$  are Hanf $(\mathfrak{Z}^n, n)$ -equivalent then  $\mathfrak{A} \equiv_m \mathfrak{B}$ .

If  $\mathfrak{A}$  and  $\mathfrak{B}$  are Hanf $(\mathfrak{Z}^n, n)$ -equivalent then  $\mathfrak{A} \equiv_m \mathfrak{B}$ .

Proof

If  $\mathfrak{A}$  and  $\mathfrak{B}$  are Hanf $(\mathfrak{Z}^n, n)$ -equivalent then  $\mathfrak{A} \equiv_m \mathfrak{B}$ .

# Proof

Let  $a_1, a_2, \ldots, a_k \in A$  and  $b_1, b_2, \ldots, b_k \in B$  be the history of the play after k rounds.

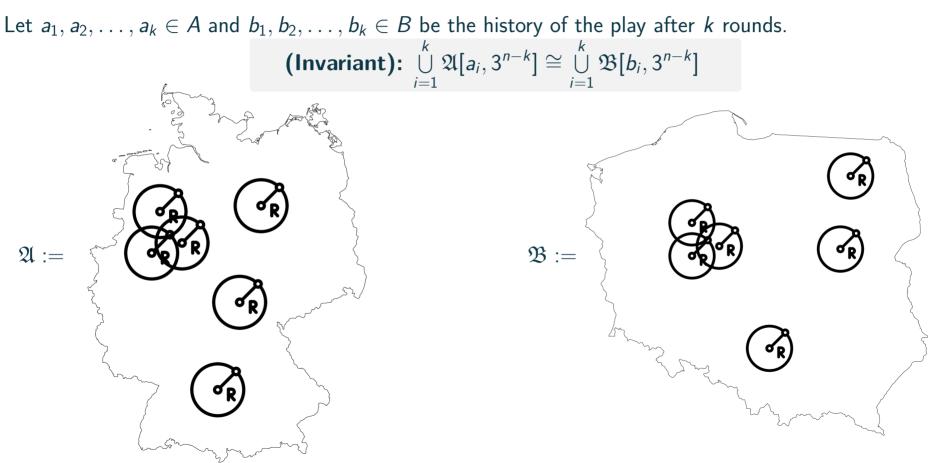
If  $\mathfrak{A}$  and  $\mathfrak{B}$  are Hanf $(\mathfrak{Z}^n, n)$ -equivalent then  $\mathfrak{A} \equiv_m \mathfrak{B}$ .

# Proof

# Let $a_1, a_2, \ldots, a_k \in A$ and $b_1, b_2, \ldots, b_k \in B$ be the history of the play after k rounds. (Invariant): $\bigcup_{i=1}^k \mathfrak{A}[a_i, 3^{n-k}] \cong \bigcup_{i=1}^k \mathfrak{B}[b_i, 3^{n-k}]$

If  $\mathfrak{A}$  and  $\mathfrak{B}$  are Hanf $(\mathfrak{Z}^n, n)$ -equivalent then  $\mathfrak{A} \equiv_m \mathfrak{B}$ .

Proof



Let  $a_1, a_2, \ldots, a_k \in A$  and  $b_1, b_2, \ldots, b_k \in B$  be the history of the play after k rounds.

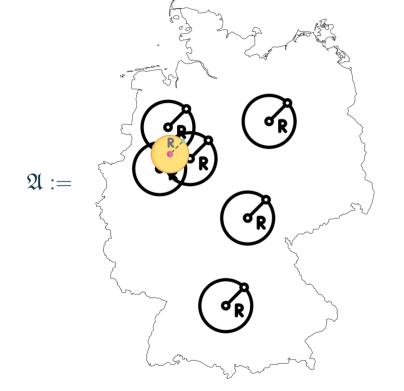
Let  $a_1, a_2, \ldots, a_k \in A$  and  $b_1, b_2, \ldots, b_k \in B$  be the history of the play after k rounds. (Invariant):  $\bigcup_{i=1}^k \mathfrak{A}[a_i, 3^{n-k}] \cong \bigcup_{i=1}^k \mathfrak{B}[b_i, 3^{n-k}]$ 

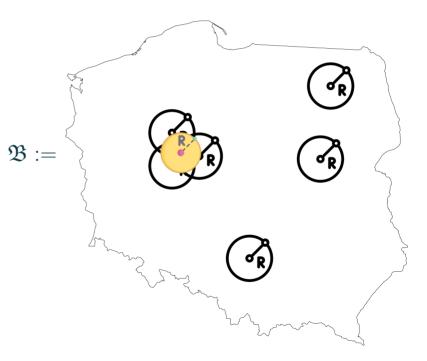
Let  $a_1, a_2, \ldots, a_k \in A$  and  $b_1, b_2, \ldots, b_k \in B$  be the history of the play after k rounds. (Invariant):  $\bigcup_{i=1}^k \mathfrak{A}[a_i, 3^{n-k}] \cong \bigcup_{i=1}^k \mathfrak{B}[b_i, 3^{n-k}]$ 

Suppose that Spoiler picked  $a_{k+1} \in A$  such that  $dist(a_{k+1}, a_i) \leq 2 \cdot 3^{n-k}$  holds for some  $a_i$ .

Let  $a_1, a_2, \ldots, a_k \in A$  and  $b_1, b_2, \ldots, b_k \in B$  be the history of the play after k rounds. (Invariant):  $\bigcup_{i=1}^k \mathfrak{A}[a_i, 3^{n-k}] \cong \bigcup_{i=1}^k \mathfrak{B}[b_i, 3^{n-k}]$ 

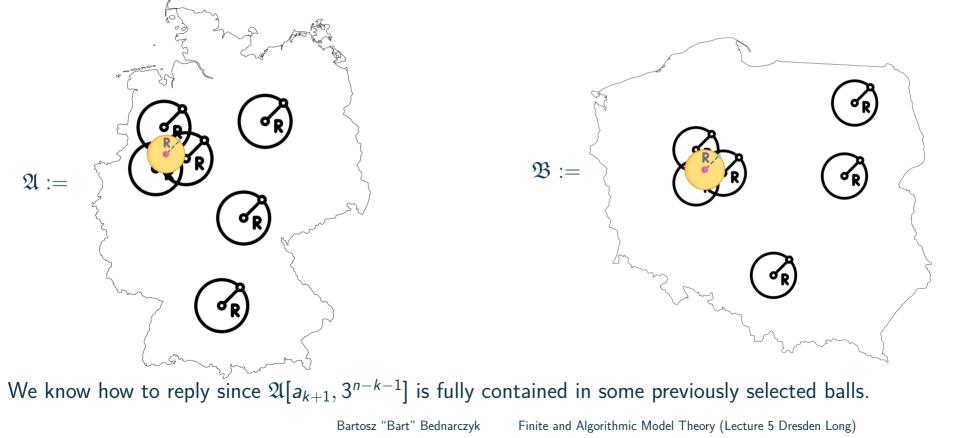
Suppose that Spoiler picked  $a_{k+1} \in A$  such that  $dist(a_{k+1}, a_i) \leq 2 \cdot 3^{n-k}$  holds for some  $a_i$ .





Let  $a_1, a_2, \ldots, a_k \in A$  and  $b_1, b_2, \ldots, b_k \in B$  be the history of the play after k rounds. (Invariant):  $\bigcup_{i=1}^k \mathfrak{A}[a_i, 3^{n-k}] \cong \bigcup_{i=1}^k \mathfrak{B}[b_i, 3^{n-k}]$ 

Suppose that Spoiler picked  $a_{k+1} \in A$  such that  $dist(a_{k+1}, a_i) \leq 2 \cdot 3^{n-k}$  holds for some  $a_i$ .



Let  $a_1, a_2, \ldots, a_k \in A$  and  $b_1, b_2, \ldots, b_k \in B$  be the history of the play after k rounds.

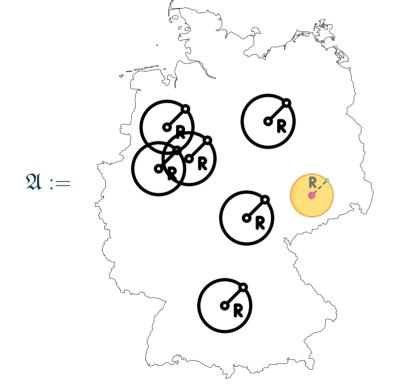
Let  $a_1, a_2, \ldots, a_k \in A$  and  $b_1, b_2, \ldots, b_k \in B$  be the history of the play after k rounds. (Invariant):  $\bigcup_{i=1}^k \mathfrak{A}[a_i, 3^{n-k}] \cong \bigcup_{i=1}^k \mathfrak{B}[b_i, 3^{n-k}]$ 

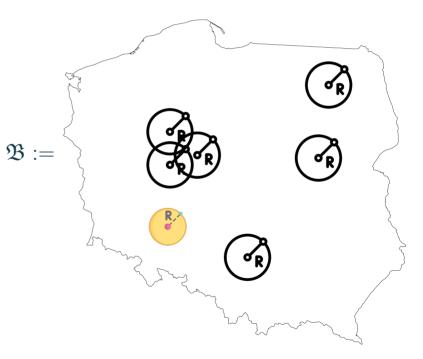
Let  $a_1, a_2, \ldots, a_k \in A$  and  $b_1, b_2, \ldots, b_k \in B$  be the history of the play after k rounds. (Invariant):  $\bigcup_{i=1}^k \mathfrak{A}[a_i, 3^{n-k}] \cong \bigcup_{i=1}^k \mathfrak{B}[b_i, 3^{n-k}]$ 

Suppose that Spoiler picked  $a_{k+1} \in A$  such that  $dist(a_{k+1}, a_i) > 2 \cdot 3^{n-k}$  holds for some  $a_i$ .

Let  $a_1, a_2, \ldots, a_k \in A$  and  $b_1, b_2, \ldots, b_k \in B$  be the history of the play after k rounds. (Invariant):  $\bigcup_{i=1}^k \mathfrak{A}[a_i, 3^{n-k}] \cong \bigcup_{i=1}^k \mathfrak{B}[b_i, 3^{n-k}]$ 

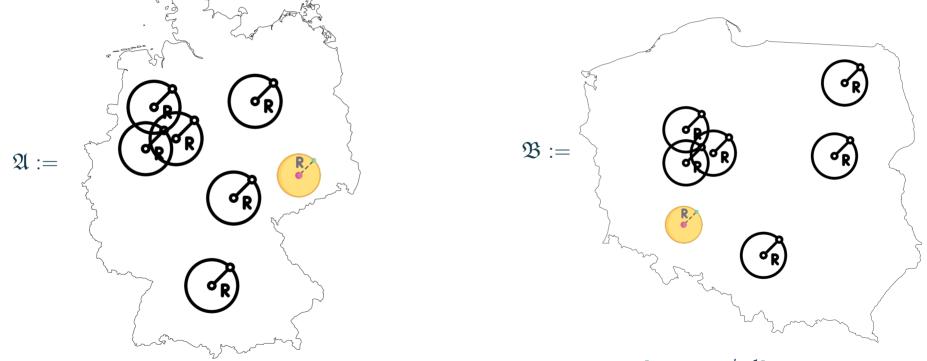
Suppose that Spoiler picked  $a_{k+1} \in A$  such that  $dist(a_{k+1}, a_i) > 2 \cdot 3^{n-k}$  holds for some  $a_i$ .





Let  $a_1, a_2, \ldots, a_k \in A$  and  $b_1, b_2, \ldots, b_k \in B$  be the history of the play after k rounds. (Invariant):  $\bigcup_{i=1}^k \mathfrak{A}[a_i, 3^{n-k}] \cong \bigcup_{i=1}^k \mathfrak{B}[b_i, 3^{n-k}]$ 

Suppose that Spoiler picked  $a_{k+1} \in A$  such that  $dist(a_{k+1}, a_i) > 2 \cdot 3^{n-k}$  holds for some  $a_i$ .



We know how to reply since we have sufficiently many realisations of  $\mathfrak{A}[a_{k+1}, 3^{n-k-1}]$  in  $\mathfrak{B}$ .

#### Copyright of used icons, pictures and slides

- **1.** Universities/DeciGUT/ERC logos downloaded from the corresponding institutional webpages. 2. Idea icon created by Vectors Market — Flaticon flaticon.com/free-icons/idea. **3.** Head icons created by Eucalyp — Flaticon flaticon.com/free-icons/head **4.** Graph icons created by SBTS2018 — Flaticon flaticon.com/free-icons/graph **5.** Angel icons created by Freepik — Flaticon flaticon.com/free-icons/angel 6. Devil icons created by Freepik and Pixel perfect — Flaticon flaticon.com/free-icons/devil **7.** VS icons created by Freepik — Flaticon flaticon.com/free-icons/vs 8. Robot icon created by Eucalyp — Flaticon flaticon.com/free-icons/robot. **9.** Warning icon created by Freepik - Flaticon flaticon.com/free-icons/warning. **10.** Slides 78–110 from ESSLI 2016 by [Diego Figueira] **11.** German and Poland maps by Vemaps.com https://vemaps.com/europe.
- 12. Radius icons created by Freepik Flaticon flaticon.com/free-icons/radius.