
DATABASE THEORY

Lecture 18: Dependencies

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 3rd July 2018

https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2018)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en

Review: Databases and their schemas

Lines:

Line Type

85 bus

3 tram

F1 ferry

.

Stops:

SID Stop Accessible

17 Hauptbahnhof true

42 Helmholtzstr. true

57 Stadtgutstr. true

123 Gustav-Freytag-Str. false

.

Connect:

From To Line

57 42 85

17 789 3

.

Every table has a schema:

• Lines[Line:string, Type:string]

• Stops[SID:int, Stop:string,
Accessible:bool]

• Connect[From:int, To:int, Line:string]
Markus Krötzsch, 3rd July 2018 Database Theory slide 2 of 17

Adding constraints

Observation: Even with datatypes, schema information in databases so far is very
limited.

Example 18.1: In the public transport example, one would assume that, e.g.,

• SID is a key in the Stops table, i.e., no two rows refer to the same stop ID,

• every Line mentioned in the Connect table also occurs as a Line in the
Lines table,

and many more.

Can we express such schema-level information?

{ Dependencies

Markus Krötzsch, 3rd July 2018 Database Theory slide 3 of 17

Adding constraints

Observation: Even with datatypes, schema information in databases so far is very
limited.

Example 18.1: In the public transport example, one would assume that, e.g.,

• SID is a key in the Stops table, i.e., no two rows refer to the same stop ID,

• every Line mentioned in the Connect table also occurs as a Line in the
Lines table,

and many more.

Can we express such schema-level information?

{ Dependencies

Markus Krötzsch, 3rd July 2018 Database Theory slide 3 of 17

Functional dependencies and keys

A common type of simple dependencies are so-called functional dependencies

Definition 18.2: A functional dependency (fd) is an expression Table : A → B,
where Table is a relation name, and A and B are sets of attributes of Table. A key
is an fd where B is the set of all attributes of Table.

A database instance I satisfies an fd as above if all tuples in TableI that agree on
the values of all attributes in A also agree on the values of all attributes in B.

Example 18.3: The key in the previous example corresponds to the fd

Stops : SID→ SID, Stop, Accessible

(one usually omits set braces when writing fds).

Markus Krötzsch, 3rd July 2018 Database Theory slide 4 of 17

Inclusion dependencies

Inclusion dependencies can establish relationships between two tables:

Definition 18.4: An inclusion dependency (ind) is an expression Table1[A] ⊆
Table2[B], where Table1 and Table2 are relation names, and A and B are lists of
attributes of Table1 and Table2, respectively, that are of equal length.

A database instance I satisfies an ind as above if, for each tuple τ ∈ Table1I,
there is a tuple τ′ ∈ Table2I such that τ[ai] = τ[bi] for all attributes ai ∈ A and
bi ∈ B that occur in corresponding positions in both lists.

Example 18.5: The inclusion in the previous example corresponds to the ind

Connect[Line] ⊆ Lines[Line].

Markus Krötzsch, 3rd July 2018 Database Theory slide 5 of 17

Why dependencies?
Dependencies have many possible uses:
• Express constraints that a DBMS must guarantee (updates violating constraints fail)
• Improve physical data storage and indexing
• Optimise DB schema, e.g., by normalising tables

Example 18.6: Consider a table Customers[Name,Street,ZIP,City] with key
Name and another functional dependency Customers : ZIP → City, which
suggests to normalise the table into two tables
CustomersNew[Name,Street,ZIP] and Cities[ZIP,City].

• Optimise queries for the special type of databases that satisfy some constraints
• Take background knowledge into account to compare queries (containment,

equivalence)
• Query answering under constraints: compute answers under the assumption that

the database has been “repaired” to satisfy all constraints
• Construct views over databases for query answering, especially in data integration

scenarios
In each case, it can also be helpful to infer additional dependencies
Markus Krötzsch, 3rd July 2018 Database Theory slide 6 of 17

Generalisation
Observation Both kinds of dependencies have a logical if-then structure

{ we can vastly generalise these dependencies

For the following definition, we consider again the unnamed perspective, which is more
common for logical expressions:

Definition 18.7: A dependency is a formula of the form

∀~x,~y.ϕ[~x,~y]→ ∃~z.ψ[~x,~z],

where ~x,~y,~z are disjoint lists of variables, and ϕ (the body) and ψ (the head) are
conjunctions of atoms using variables ~x∪~y and ~x∪~z, respectively. We allow equal-
ity atoms s ≈ t to occur in dependencies. The variables ~x, which occur in body
and head, are known as frontier.

It is common to omit the universal quantifiers when writing dependencies.

Semantically, we will consider dependencies as formulae of first-order logic (with
equality).

Markus Krötzsch, 3rd July 2018 Database Theory slide 7 of 17

Generalisation
Observation Both kinds of dependencies have a logical if-then structure

{ we can vastly generalise these dependencies

For the following definition, we consider again the unnamed perspective, which is more
common for logical expressions:

Definition 18.7: A dependency is a formula of the form

∀~x,~y.ϕ[~x,~y]→ ∃~z.ψ[~x,~z],

where ~x,~y,~z are disjoint lists of variables, and ϕ (the body) and ψ (the head) are
conjunctions of atoms using variables ~x∪~y and ~x∪~z, respectively. We allow equal-
ity atoms s ≈ t to occur in dependencies. The variables ~x, which occur in body
and head, are known as frontier.

It is common to omit the universal quantifiers when writing dependencies.

Semantically, we will consider dependencies as formulae of first-order logic (with
equality).
Markus Krötzsch, 3rd July 2018 Database Theory slide 7 of 17

Equality-generating dependencies generalise fds

An important special type of dependencies are as follows:

Definition 18.8: Equality-generating dependencies (egds) are dependencies with
heads of the form s ≈ t, where s, t are terms, and which do not contain existential
qualifiers.

We therefore find fds and keys to be special egds:

Observation 18.9: Every fd of the form Table : A → B can be decomposed into
fds of the form Table : A→ {b} for each b ∈ B. Such fds can be written as egds.

Example 18.10: Assuming the order of attributes to be as written, the earlier fd
Customers : ZIP→ City can be expressed as

Customers(x, y, z, v) ∧ Customers(x′, y′, z, v′)→ v ≈ v′.

Markus Krötzsch, 3rd July 2018 Database Theory slide 8 of 17

Equality-generating dependencies generalise fds

An important special type of dependencies are as follows:

Definition 18.8: Equality-generating dependencies (egds) are dependencies with
heads of the form s ≈ t, where s, t are terms, and which do not contain existential
qualifiers.

We therefore find fds and keys to be special egds:

Observation 18.9: Every fd of the form Table : A → B can be decomposed into
fds of the form Table : A→ {b} for each b ∈ B. Such fds can be written as egds.

Example 18.10: Assuming the order of attributes to be as written, the earlier fd
Customers : ZIP→ City can be expressed as

Customers(x, y, z, v) ∧ Customers(x′, y′, z, v′)→ v ≈ v′.

Markus Krötzsch, 3rd July 2018 Database Theory slide 8 of 17

Tuple-generating dependencies generalise inds

Another important kind of dependencies does not use equality:

Definition 18.11: Tuple-generating dependencies (tgds) are dependencies with-
out equality atoms.

We therefore find inds to be special tgds:

Observation 18.12: Every ind can be written as tgd.

Example 18.13: The ind Connect[Line] ⊆ Lines[Line] can be expressed as

Connect(x, y, z)→ ∃v.Lines(z, v).

Markus Krötzsch, 3rd July 2018 Database Theory slide 9 of 17

Tuple-generating dependencies generalise inds

Another important kind of dependencies does not use equality:

Definition 18.11: Tuple-generating dependencies (tgds) are dependencies with-
out equality atoms.

We therefore find inds to be special tgds:

Observation 18.12: Every ind can be written as tgd.

Example 18.13: The ind Connect[Line] ⊆ Lines[Line] can be expressed as

Connect(x, y, z)→ ∃v.Lines(z, v).

Markus Krötzsch, 3rd July 2018 Database Theory slide 9 of 17

Full dependencies
Tgds without existential variable are called full tgds; tgds that are not full are sometimes
called embedded
(note that this terminology is intuitive when considering inds)

Proposition 18.14: Full tgds can be expressed using several full tgds with only a
single head.

Proof: Just write a full tgd ϕ→ ψ as a set of tgds {ϕ→ H | H ∈ ψ}. �

Example 18.15: Splitting heads into several dependencies is not generally admis-
sible in tgds. For example, the tgd uncle(x, y) → ∃z.child(x, z) ∧ brother(z, y) entails
the set {uncle(x, y) → ∃z.child(x, z), uncle(x, y) → ∃z.brother(z, y)}, but not vice
versa.

Remark: In general, heads of tgds can still be decomposed to some extent, as long as
each existential quantifier (and all occurrences of the bound variable) remains in one
rule (sets of atoms connected by sharing existential variables have been called pieces).

Markus Krötzsch, 3rd July 2018 Database Theory slide 10 of 17

Full dependencies
Tgds without existential variable are called full tgds; tgds that are not full are sometimes
called embedded
(note that this terminology is intuitive when considering inds)

Proposition 18.14: Full tgds can be expressed using several full tgds with only a
single head.

Proof: Just write a full tgd ϕ→ ψ as a set of tgds {ϕ→ H | H ∈ ψ}. �

Example 18.15: Splitting heads into several dependencies is not generally admis-
sible in tgds. For example, the tgd uncle(x, y) → ∃z.child(x, z) ∧ brother(z, y) entails
the set {uncle(x, y) → ∃z.child(x, z), uncle(x, y) → ∃z.brother(z, y)}, but not vice
versa.

Remark: In general, heads of tgds can still be decomposed to some extent, as long as
each existential quantifier (and all occurrences of the bound variable) remains in one
rule (sets of atoms connected by sharing existential variables have been called pieces).
Markus Krötzsch, 3rd July 2018 Database Theory slide 10 of 17

Reasoning with dependencies

Markus Krötzsch, 3rd July 2018 Database Theory slide 11 of 17

Reasoning tasks (1)
Some of the main reasoning tasks for working with dependencies are as follows:

Dependency implication:
Input: sets of dependencies Σ and {σ}
Output: “yes” if Σ |= σ; “no” otherwise

CQ containment under constraints:
Input: set of dependencies Σ and CQs q1 and q2

Output: “yes” if every answer to q1 is also an answer to q2 in every database I
with I |= Σ; “no” otherwise

For both reasoning tasks we consider only database instances that satisfy the given
constraints.

Note: We may consider reasoning problems to refer only to finite databases, or to
generalised (possibly infinite) databases. In general, this does not lead to the same
results, so it has to be defined. Unless otherwise stated, we always allow for infinite
models/databases here.
Markus Krötzsch, 3rd July 2018 Database Theory slide 12 of 17

Reasoning tasks (2)

BCQ entailment under constraints:
Input: set of dependencies Σ, database instance I, and boolean CQ q
Output: “yes” if every extension I′ ⊇ I with I′ |= Σ also satisfies I′ |= q; “no”
otherwise

Alternatively, we can also view I as a (syntactic) set of ground facts and ask if I ∪ Σ |= q
(a first-order logic entailment problem)

As usual, BCQ entailment is the decision-problem version for CQ answering

Note: Again, we allow for the extension I′ to be infinite in general.

Markus Krötzsch, 3rd July 2018 Database Theory slide 13 of 17

Reducing reasoning tasks

Theorem 18.16: Dependency implication, CQ containment under constraints, and
BCQ entailment under constraints are equivalent problems.

Proof: Consider a set Σ of dependencies.

• For CQs q1 and q2, containment under constraints corresponds to the implication of
a dependency q1 → q2 by Σ.

• For a dependency σ = ϕ[~x,~y]→ ∃~z.ψ[~x,~z], let Iϕ be the database instance
corresponding to the CQ ϕ, obtained using a substitution θ that replaces each
variable v in ~x ∪ ~y by a fresh constant cv; then σ is entailed by Σ iff Iϕ, Σ |= ∃~z.ψθ.

• A BCQ q is entailed by a database instance I under constraints Σ iff query t() is
contained in q under constraints Σ ∪ {t()} ∪ {p(c1, . . . , cn) | 〈c1, . . . , cn〉 ∈ pI}, where t
is a fresh nullary predicate. �

Note: In the last case, we use rules that contain ground heads but no body to express
facts.

Markus Krötzsch, 3rd July 2018 Database Theory slide 14 of 17

Reducing reasoning tasks

Theorem 18.16: Dependency implication, CQ containment under constraints, and
BCQ entailment under constraints are equivalent problems.

Proof: Consider a set Σ of dependencies.

• For CQs q1 and q2, containment under constraints corresponds to the implication of
a dependency q1 → q2 by Σ.

• For a dependency σ = ϕ[~x,~y]→ ∃~z.ψ[~x,~z], let Iϕ be the database instance
corresponding to the CQ ϕ, obtained using a substitution θ that replaces each
variable v in ~x ∪ ~y by a fresh constant cv; then σ is entailed by Σ iff Iϕ, Σ |= ∃~z.ψθ.

• A BCQ q is entailed by a database instance I under constraints Σ iff query t() is
contained in q under constraints Σ ∪ {t()} ∪ {p(c1, . . . , cn) | 〈c1, . . . , cn〉 ∈ pI}, where t
is a fresh nullary predicate. �

Note: In the last case, we use rules that contain ground heads but no body to express
facts.

Markus Krötzsch, 3rd July 2018 Database Theory slide 14 of 17

Reducing reasoning tasks

Theorem 18.16: Dependency implication, CQ containment under constraints, and
BCQ entailment under constraints are equivalent problems.

Proof: Consider a set Σ of dependencies.

• For CQs q1 and q2, containment under constraints corresponds to the implication of
a dependency q1 → q2 by Σ.

• For a dependency σ = ϕ[~x,~y]→ ∃~z.ψ[~x,~z], let Iϕ be the database instance
corresponding to the CQ ϕ, obtained using a substitution θ that replaces each
variable v in ~x ∪ ~y by a fresh constant cv; then σ is entailed by Σ iff Iϕ, Σ |= ∃~z.ψθ.

• A BCQ q is entailed by a database instance I under constraints Σ iff query t() is
contained in q under constraints Σ ∪ {t()} ∪ {p(c1, . . . , cn) | 〈c1, . . . , cn〉 ∈ pI}, where t
is a fresh nullary predicate. �

Note: In the last case, we use rules that contain ground heads but no body to express
facts.

Markus Krötzsch, 3rd July 2018 Database Theory slide 14 of 17

Reducing reasoning tasks

Theorem 18.16: Dependency implication, CQ containment under constraints, and
BCQ entailment under constraints are equivalent problems.

Proof: Consider a set Σ of dependencies.

• For CQs q1 and q2, containment under constraints corresponds to the implication of
a dependency q1 → q2 by Σ.

• For a dependency σ = ϕ[~x,~y]→ ∃~z.ψ[~x,~z], let Iϕ be the database instance
corresponding to the CQ ϕ, obtained using a substitution θ that replaces each
variable v in ~x ∪ ~y by a fresh constant cv; then σ is entailed by Σ iff Iϕ, Σ |= ∃~z.ψθ.

• A BCQ q is entailed by a database instance I under constraints Σ iff query t() is
contained in q under constraints Σ ∪ {t()} ∪ {p(c1, . . . , cn) | 〈c1, . . . , cn〉 ∈ pI}, where t
is a fresh nullary predicate. �

Note: In the last case, we use rules that contain ground heads but no body to express
facts.

Markus Krötzsch, 3rd July 2018 Database Theory slide 14 of 17

Reasoning is undecidable

The following should not come as a surprise:

Theorem 18.17: Query entailment under a set of tgd constraints is undecidable.

Proof (sketch): This can be shown by direct encoding of a deterministic TM in query
entailment, similar to our proof of Trakhtenbrot’s Theorem:

• Most axioms used there already are in the form of tgds

• Negative information in consequences of first-order implications are handled by
transformation:
ϕ→ ¬H1 ∨ ¬H2 becomes ϕ ∧ H1 ∧ H2 → match()

• We can avoid equality by axiomatising its effects

• Halting of the TM can be recognised by a rule that implies match() in this case (to
make it easy to recognise, we can transform the TM to have a unique halting state)

Checking entailment of BCQ match() then corresponds to checking if the TM halts. �

Markus Krötzsch, 3rd July 2018 Database Theory slide 15 of 17

Reasoning is undecidable

The following should not come as a surprise:

Theorem 18.17: Query entailment under a set of tgd constraints is undecidable.

Proof (sketch): This can be shown by direct encoding of a deterministic TM in query
entailment, similar to our proof of Trakhtenbrot’s Theorem:

• Most axioms used there already are in the form of tgds

• Negative information in consequences of first-order implications are handled by
transformation:
ϕ→ ¬H1 ∨ ¬H2 becomes ϕ ∧ H1 ∧ H2 → match()

• We can avoid equality by axiomatising its effects

• Halting of the TM can be recognised by a rule that implies match() in this case (to
make it easy to recognise, we can transform the TM to have a unique halting state)

Checking entailment of BCQ match() then corresponds to checking if the TM halts. �

Markus Krötzsch, 3rd July 2018 Database Theory slide 15 of 17

Datalog and full tgds

Full tgds are closely related to Datalog:

• Syntactically, both types of rules are the same (we use← for Datalog instead of→)

• Semantically, Datalog query answers (second-order model checking) correspond
to entailments of the corresponding full tgds (first-order entailment)

The boundaries between both perspectives are blurred in modern works, in particular
since tgds are increasingly used to define (query) views.
(an EDB/IDB distinction is sometimes made for tgds as well)

From what we learned about Datalog, we conclude:

Theorem 18.18: For full tgds, dependency implication, as well as CQ contain-
ment and BCQ entailment under constraints is decidable and ExpTime-complete.

Note: We take a strict first-order view here, and use the reduction of Theorem 18.16.
BCQ entailment can be decided, e.g., using bottom-up computation.

Markus Krötzsch, 3rd July 2018 Database Theory slide 16 of 17

Datalog and full tgds

Full tgds are closely related to Datalog:

• Syntactically, both types of rules are the same (we use← for Datalog instead of→)

• Semantically, Datalog query answers (second-order model checking) correspond
to entailments of the corresponding full tgds (first-order entailment)

The boundaries between both perspectives are blurred in modern works, in particular
since tgds are increasingly used to define (query) views.
(an EDB/IDB distinction is sometimes made for tgds as well)

From what we learned about Datalog, we conclude:

Theorem 18.18: For full tgds, dependency implication, as well as CQ contain-
ment and BCQ entailment under constraints is decidable and ExpTime-complete.

Note: We take a strict first-order view here, and use the reduction of Theorem 18.16.
BCQ entailment can be decided, e.g., using bottom-up computation.

Markus Krötzsch, 3rd July 2018 Database Theory slide 16 of 17

Summary and Outlook

Dependencies have many uses in database theory and practice

Most practical forms of dependencies can be captured in logical form, with the two most
common general cases being

• Tuple-generating dependencies (tgds)

• Equality generating dependencies (egds)

There are several reasoning problems for dependencies, which are all equivalent (and
generally undecidable)

Next topics:

• The Chase

• Languages of tgds with decidable entailment problems

• Outlook

Markus Krötzsch, 3rd July 2018 Database Theory slide 17 of 17

