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Agenda

@ Introduction

@ Uninformed Search versus Informed Search (Best First Search, A*
Search, Heuristics)

e Local Search, Stochastic Hill Climbing, Simulated Annealing

© Tabu Search

e Answer-set Programming (ASP)

@ Constraint Satisfaction (CSP)

@ Structural Decomposition Techniques (Tree/Hypertree Decompositions)
@ Evolutionary Algorithms/ Genetic Algorithms
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Traditional Methods

® There are many classic algorithms to search spaces for an optimal
solution.
® Broadly, they fall into two disjoint classes:
— Algorithms that only evaluate complete solutions (exhaustive
seach, local search, ...).
— Algorithms that require the evaluation of partially constructed or
approximate solutions.
® Algorithms that treat complete solutions can be stopped any time, and
give at least one potential answer.

® |f you interrupt an algorithm that works on partial solutions, the results
might be useless.
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Complete Solutions

® All decision variables are specified.

® For example, binary strings of length n constitute complete solutions for
any n-variable SAT.

® Permutations of n cities constitute complete solutions for a TSP.
® We can compare two complete solutions using an evaluation function.

® Many algorithms rely on such comparisons, manipulating one single
complete solution at a time.

® \When a new solution has a better evaluation than the previous best
solution, it replaces that prior solution.

® Exhaustive search, local search, hill climbing as well as modern heuristic
methods such as simulated annealing, tabu search and evolutionary
algorithms fall into this category.
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Partial Solutions

There are two forms:
ﬂ incomplete solution to the problem originally posed, and
e complete solution to a reduced (i.e. simpler) problem.

® Incomplete solutions reside in a subset of the original problem’s search
space.

— In an SAT, consider all of the binary strings where the first two
variables were assigned the value 1 (i.e. TRUE).

— In a TSP, consider every permutation of cities that contains the
sequence 7 — 11 — 2 — 16.

— We fix the attention on a subset of the search space that has a
partial property.

— Hopefully, that property is also shared by the real solution!
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Partial Solutions ctd.

® Decompose original problem into a set of smaller and simpler problems.

— Hope: solving each of the easier problems and combine the partial
solutions, results in an answer for the original problem.

— Ina TSP, consider only k out of n cities and try to establish the
shortest path from city i to j that passes through all k of these cities.

— Reduce the size of the search space significantly and search for a
complete solution within the restricted domain.

— Such partial solutions can serve as building blocks for the solution
to the original problem.
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Partial Solutions ctd.

® Decompose original problem into a set of smaller and simpler problems.
— Hope: solving each of the easier problems and combine the partial
solutions, results in an answer for the original problem.
— Ina TSP, consider only k out of n cities and try to establish the
shortest path from city i to j that passes through all k of these cities.
— Reduce the size of the search space significantly and search for a
complete solution within the restricted domain.
— Such partial solutions can serve as building blocks for the solution
to the original problem.
® But, algorithms that work on partial solutions pose additional difficulties.
One needs to
— devise a way to organize the subspaces so that they can be
searched efficiently, and
— create a new evaluation function that can assess the quality of
partial solutions.
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Exhaustive Search

Checks every solution in the search space until the best global solution
has been found.

Can be used only for small instances of problems.
Exhaustive (enumerative) algorithms are simple.
Search space can be reduced by backtracking.

Some optimization methods, e.g., branch and bound and A* are based on
an exhaustive search.
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Exhaustive Search

Checks every solution in the search space until the best global solution
has been found.

Can be used only for small instances of problems.

Exhaustive (enumerative) algorithms are simple.

Search space can be reduced by backtracking.

Some optimization methods, e.g., branch and bound and A* are based on
an exhaustive search.

How can we generate a sequence of every possible solution to the
problem?

— The order in which the solutions are generated and evaluated is
irrelevant (because we evaluate all of them).

— The answer for the question depends on the selected
representation.
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Enumerating the SAT

® We have to generate every possible binary string of length n.
® All solutions correspond to whole numbers in a one-to-one mapping.

® Generate all non-negative integers from 0 to 2" — 1 and convert each of
these integers into the matching binary string of length n.

0000 0 | 0100 4 | 1000 8 | 1100 12
0001 1 | 0101 5 | 1001 9 | 1101 13
0010 2 | 0110 6 | 1010 10 | 1110 14
0011 3 | o111 7 | 1011 11 | 1111 15

® Bits of the string are the truth assignments of the decision variables.

® Organize the search space, for example partition into two disjoint
subspaces. First contains all the vectors where x; = f (FALSE), and the
second contains all vectors where x; = t (TRUE).
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Enumerating the SAT ctd.

xp =t

x, =f = Xp =1t

X3=f x3 =t

Binary search tree for SAT
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Enumerating the TSP

® How to generate all possible permutations?
® |f some cities are not connected, some permutation might not be feasible.

Algorithm gen1_permutation(i)

Lk k+1

Pli] + k

. ifk = nthen

forg = 1tondo
print P[qg]

end for

. end if

. forg=1tondo

if P[g) = 0 then

gen1_permutation(q)

end if

0:
1:
2: end for
3k
4: p

Hk*l

Pli]
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Enumerating the TSP

Algorithm gen1_permutation(i)

Lk k+1

L P[] +— k

. ifk = nthen

forg = 1tondo
print P[qg]

end for

. end if

. forg=1tondo

if P[g) = 0 then

gen1_permutation(q)

end if

0:
1:
2 end for
3:
4.

k< k—1
P[i] < 0

® (Called with k initialized to —1, parameter i set to 0, and all entries of the
array P initialized to 0;
® Prints every permutation of (1,...,n).
® Fixes 1 in the first position and generates the remaining (n — 1)!
permutations of numbers 2 to n.
® Forn=3:(123),(132),(213),(312),(231),(321).
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Search Strategies

A strategy is defined by picking the order of node expansion.
Strategies are evaluated along the following dimensions:

® Completeness - does it always find a solution if one exists?
® Time complexity - number of nodes generated/expanded.
® Space complexity - maximum number of nodes in memory.
® Optimality - does it always find a least-cost solution?

Time and space complexity are measured in terms of
® ) - maximum branching factor of the search tree;
® ( - depth of the least-cost solution;
® - maximum depth of the state space (may be ~o).
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Uninformed Search Strategies

Uninformed strategies use only the information available in the problem
definition.

® Breadth-first search

® Depth-first search

® Depth-limited search

® |terative deepening search
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Breadth-First Search

® Expand shallowest unexpanded node.

® FIFO queue, i.e. new nodes go to the back of the queue, and old nodes
get expanded first.

/ N
7 AN
— \\/‘
(B] (©)
/ \ / \
(D) (E) (F) (O
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Breadth-First Search

® Expand shallowest unexpanded node.
® FIFO queue, i.e. new nodes go to the back of the queue, and old nodes

get expanded first.
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Breadth-First Search

® Expand shallowest unexpanded node.

® FIFO queue, i.e. new nodes go to the back of the queue, and old nodes
get expanded first.
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Breadth-First Search

® Expand shallowest unexpanded node.
® FIFO queue, i.e. new nodes go to the back of the queue, and old nodes

get expanded first.
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Properties of breadth-first search

Complete?? Yes (if b is finite)
Time?? 1+b+b>+b>+...+ 0+ b — 1) =0T, ie., exp.ind
Space?? O(h?*!) (keeps every node in memory)
Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec so 24hrs =
8640GB.
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Depth-First Search

® Expand deepest unexpanded node.
® LIFO queue, i.e. most recently generated node is chosen for expansion.
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Depth-First Search

® Expand deepest unexpanded node.
® LIFO queue, i.e. most recently generated node is chosen for expansion.
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Depth-First Search

® Expand deepest unexpanded node.
® LIFO queue, i.e. most recently generated node is chosen for expansion.
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Depth-First Search

® Expand deepest unexpanded node.
® LIFO queue, i.e. most recently generated node is chosen for expansion.
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Depth-First Search

® Expand deepest unexpanded node.
® LIFO queue, i.e. most recently generated node is chosen for expansion.
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Depth-First Search

® Expand deepest unexpanded node.
® LIFO queue, i.e. most recently generated node is chosen for expansion.
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Depth-First Search

® Expand deepest unexpanded node.
® LIFO queue, i.e. most recently generated node is chosen for expansion.
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Depth-First Search

® Expand deepest unexpanded node.
® LIFO queue, i.e. most recently generated node is chosen for expansion.
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Depth-First Search

® Expand deepest unexpanded node.
® LIFO queue, i.e. most recently generated node is chosen for expansion.
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Depth-First Search

® Expand deepest unexpanded node.
® LIFO queue, i.e. most recently generated node is chosen for expansion.
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Depth-First Search

® Expand deepest unexpanded node.
® LIFO queue, i.e. most recently generated node is chosen for expansion.
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Depth-First Search

® Expand deepest unexpanded node.
® LIFO queue, i.e. most recently generated node is chosen for expansion.
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Properties of Depth-First Search

Complete?? No: fails in infinite-depth spaces, spaces with loops

Time?? O(b™): terrible if m is much larger than d;
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!
Optimal?? No
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Backtracking

Suppose the SAT formula ¢ contains a clause (x; V x3).
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Backtracking

Suppose the SAT formula ¢ contains a clause (x; V x3).

x1=f X1:t

x, =f xp =t xp =f xy =t

PSSAI slide 35 of 84
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Backtracking

Suppose the SAT formula ¢ contains a clause (x; V x3).

x, =f

x3=f C/

Remaining branches
below this node can
lead to nothing but a
dead end
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Depth-Limited Search

® Depth first search with depth limit L
— Nodes at depth L are not expanded.
® FEliminates problem with infinite path.
® How to select L?
® Possible failures:

— No solution;
— Cutoff - no solution within the depth limit.
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lterative Deepening Search

Repeat Depth-limited search with L=1,2,3,...

Limit =0 >® N ) N
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lterative Deepening Search

Repeat Depth-limited search with L=1,2,3,. ..

e @/@\(9 a/@\© a/.\.
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lterative Deepening Search

Repeat Depth-limited search with L=1,2,3,. ..

Limit =2 @
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lterative Deepening Search

Repeat Depth-limited search with L=1,2,3,. ..

Limit =3 »®
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Properties of lterative Deepening Search

Complete?? Yes
Time?? (d+ 1)b° +db' + (d — )b + ...+ b? = 0(b?)
Space?? O(bd)
Optimal?? Yes, if step cost = 1
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Properties of lterative Deepening Search

Complete?? Yes
Time?? (d+ 1)b° +db' + (d — 1)b* + ... +b? = 0(b%)
Space?? O(bd)
Optimal?? Yes, if step cost = 1
Number of nodes generated in worst case for » = 10 and ¢ = 5 (solution at far
right leaf):
N(IDS) = 504 400 -+ 3,000 4 20,000 + 100,000 = 123, 450
N(BFS) = 10+ 100+ 1,000 + 10,000 4 100,000 = 111, 100

Hybrid approach that runs BFS until almost all memory is consumed, and then
runs IDS from all the nodes in the frontier.

In general, IDS is the preferred uninformed search method when the search
space is large and the depth of the solution is not known.

TU Dresden, 28th April 2015 PSSAI slide 43 of 84



Agenda

@ Introduction

@ Uninformed Search versus Informed Search (Best First Search, A*
Search, Heuristics)

e Local Search, Stochastic Hill Climbing, Simulated Annealing

© Tabu Search

e Answer-set Programming (ASP)

@ Constraint Satisfaction (CSP)

@ Structural Decomposition Techniques (Tree/Hypertree Decompositions)
@ Evolutionary Algorithms/ Genetic Algorithms
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Best-First Search

Idea: use an evaluation function for each node
® estimate of “desirability”
= Expand most desirable unexpanded node

Special cases:
® Greedy search
® Dynamic programming
® A* search
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Example: Romania with step costs in km

[] Hirsova

86

Dobreta

LI Craiova Eforie

TU Dresden, 28th April 2015 PSSAI

Straight-line distance

to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Tasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374
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Greedy Search

® FEvaluation function /(n) (heuristic)
h(n) = estimate of cost from » to the closest goal
® E.g., iisip(n) = straight-line distance from » to Bucharest
® Greedy search expands the node that appears to be closest to goal
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Greedy Search Example

366
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Greedy Search Example
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Greedy Search Example
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Greedy Search Example
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Properties of Greedy Search

Complete?? No—can get stuck in loops, e.g.,

— lasi — Neamt — lasi — Neamt —
— Complete in finite space with repeated-state checking

Time?? O(b™), but a good heuristic can give dramatic improvement
Space?? O(b")—keeps all nodes in memory
Optimal?? No

TU Dresden, 28th April 2015 PSSAI
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Dynamic Programming

Principle of finding an overall solution by operating on an intermediate point that
lies between where you are now and where you want to go.

® Procedure is recursive, each next intermediate point is a function of the
points already visited.

® Prototypical problem suitable for dynamic programming has the following
properties.
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Dynamic Programming

Principle of finding an overall solution by operating on an intermediate point that
lies between where you are now and where you want to go.

® Procedure is recursive, each next intermediate point is a function of the
points already visited.

® Prototypical problem suitable for dynamic programming has the following
properties.

® (Can be decomposed into a sequence of decisions made at various
stages.

® FEach stage has a number of possible states.

® A decision takes you from a state at one stage to some state at the next
stage.

® Best sequence of decisions (policy) at any stage is independent of the
decisions made at prior stages.

® Well-defined cost for traversing from state to state across stages.

® There is a recursive relationship from choosing the best decisions to
make.
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Dynamic Programming ctd.

Procedure

® Starting at the goal and working backward to the current state.

® First, determine the best decision at last stage.

® From there, determine the best decision at the next to last stage,
presuming we will make the best decision at the last stage.

® And so forth ...
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Dynamic Program for the TSP

0 7 12 8 11
30 10 7 13
L=(4 8 0 9 12
6 6 9 0 10
7 7 11 10 0

® Suppose, we start from city 1.

® We split the problem into smaller problems.

® ¢(i,S) length of the shortest path from city i to 1 that passes through each
city in S.

® ¢(4,{5,2,3}) is the shortest path from city 4 through cities 5,2 and 3 (in
some unspecified order) and then returns to 1.

® ¢(1,V —{1})isthe length of the shortest complete tour.

® |n general, we claim that

8(i, 8) = minjes{L(i,j) + g(j, S — {/})}-
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Dynamic Program for the TSP ctd.

The problem is to find g(1,{2,3,4,5}).
We start backwards with S = ().

TU Dresden, 28th April 2015

0 7 12 8
30 10 7
L=14 8 0 9
6 6 9 0
77 11 10
¢(2,0) =L(2,1) =3,
¢(3,0) =L(3,1) =4,
¢(4,0) =L(4,1) =6,a
¢(5,0) =L(5,1) =7.
PSSAI

11
13
12
10

nd
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Dynamic Program for the TSP ctd.

0 7 12 8 11
30 10 7 13
L= 14 8 9 12
6 6 9 0 10
7 7 11 10 O

Next iteration, find the solutions to all problems where |S| =1 (12
sub-problems).

2(2,{3}) = L(2,3) + g(3,0) = 10 + 4 = 14,
2(2,{4}) = L(2,4) +g(4,0) =7+ 6 = 13,and
g(2,{5}) = L(2,5) + g(5,0) = 13 +7 = 20.
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Dynamic Program for the TSP ctd.

For city 3:
2(3,{2}) = L(3,2) +g(2,0) =8 +3 =11,
2(3,{4}) =L(3,4) +g(4,0) =9+ 6 = 15,
2(3,{5}) = L(3,5) +¢g(5,0) = 12 +7 = 19.
For city 4:
¢(4,{2}) = L(4,2) +8(2,0) =6 +3 =9,
g(4,{3}) = L(4,3) +g(3,0) =9+ 4 = 13,
g(4,{5}) =L(4,5) +g(5,0) =10 +7 = 17.
For city 5:

g(5,{2}) = L(5,2) +g(2,0) = 7+ 3 = 10,
2(5,{3}) =L(5,3) +¢(3,0) = 11 +4 = 15,
2(5,{4}) = L(5,4) + g(4,0) = 10 + 6 = 16.
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Dynamic Program for the TSP ctd.

0 7 12 8 11
30 10 7 13
L=14 8 0 9 12
6 6 9 0 10
7 7 11 10 O

Next iteration, |S| = 2.

8(2,{3,4}) = min{L(2,3) + 5(3,{4}),L(2,4) + g(4,{3})}
= min{10 4+ 15,7 + 13} = min{25,20} = 20,
8(2, {37 5}) = mi”{l‘(27 3)+ 8@, {5})7 L(2,5) +g(5, {3})}
= min{10 + 19, 13 4+ 15} = min{29,28} = 28,
8(2,{4,5}) = min{L(2,4) + g(4,{5}),L(2,5) + &(5,{4})}
min{7 + 17,13 + 16} = min{24,29} = 24.
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Dynamic Program for the TSP ctd.
For city 3:

8(3,{2,5}) = min{L(3,2) + 8(2,{5}),L(3,5) + (5, {21}
= min{8 + 20,12 + 10} = min{28,22} = 22,

8(3,{2,4}) = min{L(3,2) + ¢(2,{4}),L(3,4) + ¢(4,{2})}
= min{8 + 13,9 4+ 9} = min{21, 18} = 18,

8(3,{4,5}) = min{L(3,4) + ¢(4,{5}),L(3,5) + ¢(5,{4})}
= min{9 + 17,12 + 16} = min{26,28} = 26.

For city 4:

§(4,{2,3}) = min{L(4,2) + g(2,{3}),L(4,3) + 8(3,{2})}
= min{6 + 14,9 + 11} = min{20,20} = 20,
min{L(4,2) +¢(2,{5}),L(4,5) + ¢(5,{2})}
min{6 + 20, 10 + 10} = min{26,20} = 20,
8(4,{3,5}) = min{L(4,3) + ¢(3,{5}), L(4,5) + ¢(5, {3})}
= min{9 + 19,10 + 15} = min{28,25} = 25.

8(4,{2,5})
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Dynamic Program for the TSP ctd.
For city 5:

8(5,{2,3}) = min{L(5,2) + 8(2,{3}),L(5,3) + (3, {2})}
= min{7 + 14,11 + 11} = min{21,22} = 21,
8(5,{2,4}) = min{L(5,2) + ¢(2,{4}), L(5,4) + ¢(4,{2})}
= min{7 + 13,10 + 19} = min{20,29} = 20,
min{L(5,3) +¢(3,{4}),L(5,4) + ¢(4,{3})}
min{11 + 15,10 + 13} = min{26,23} = 23.

8(5,{3,4})
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Dynamic Program for the TSP ctd.

0 7 12 8 11
30 10 7 13
L=14 8 0 9 12
6 6 9 0 10
7 7 11 10 O

Next iteration, |S| = 3.

8(2,{3,4,5}) = min{L(2,3) + g(3,{4,5}),L(2,4) + g(4,{3,5},L(2,5) + g(5,{3,4})}
= min{10 + 26,7 + 25, 13 + 23} = min{36, 32,34} = 32,
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Dynamic Program for the TSP ctd.
Next iteration, |S| = 3.

8(2,{3,4,5}) = min{L(2,3) + 8(3,{4,5}),L(2,4) + g(4,{3,5},L(2,5) + &(5,{3,4})}
= min{10 + 26,7 + 25,13 + 23} = min{36,32,34} = 32,

8(3,{2,4,5}) = min{L(3,2) +8(2,{4,5}),L(3,4) + 8(4,{2,5}),L(3,5) + 8(5,{2,4})}
= min{8 + 24,9 + 20, 12 + 20} = min{32,29,32} = 29,

min{L(4,2) + g(2,{3,5}),L(4,3) + g(3,{2,5}),L(4,5) + g(5,{2,3})}

= min{6 + 28,9 + 22,10 + 21} = min{34,31,31} = 31.

¢(5,{2,3,4}) = min{L(5,2) + 2(2,{3,4}), L(5,3) + 2(3,{2,4}), L(5,4) + g(4,{2,3})}
= min{7 420,11 + 18,10 + 20} = min{27,29,30} = 27.

8(4,{2,3,5})
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Dynamic Program for the TSP ctd.

0 7 12 8 11
30 10 7 13
L=14 8 0 9 12
6 6 9 0 10
7 7 11 10 O

Last iteration, |S| = 4, original problem:

g(1,{2,3,4,5}) = min{L(1,2) + g(2,{3,4,5}),L(1,3) +g(3,{2,4,5}),
L(1,4) +¢g(4,{2,3,5}),L(1,5) + ¢(5,{2,3,4})}
= min{7 + 32,124 29,8 + 31,11 + 27} = min{39,41, 39,38} = 38.

Shortest tour has length 38.
Which tour is that?
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Dynamic Program for the TSP ctd.
Last iteration, |S| = 4, original problem:

8(1,{2,3,4,5}) = min{L(1,2) + g(2,{3,4,5}), L(1,3) + 5(3,{2,4,5}),
L(1,4) +g(4,{2,3,5}),L(1,5) + &(5,{2,3,4})}
= min{7 + 32,12+ 29,8 + 31, 11 + 27} = min{39, 41, 39,38} = 38.

Shortest tour has length 38. Which tour is that?

® Additional data structure W with information on the next city with minimal
path.

W(1,{2,3,4,5}) =5.

W(5,{2,3,4}) =2, W(2,{3,4}) =4, W(4,{3}) =3,
last we arrive at city 1.

Length of this touris 11 +7 +7 +9 + 4 = 38.
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Properties of Dynamic Programming

e Computationally intensive: O(n?2").

® DP algorithms tend to be complicated to understand, because the
construction of the program depends on the problem.

® How to formulate sub-problems?
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A* Search

Idea: avoid expanding paths that are already expensive
® FEvaluation function f(n) = g(n) + h(n)
g(n) = cost so far to reach n
h(n) = estimated cost to goal from »
f(n) = estimated total cost of path through » to goal
® A* search uses an admissible heuristic

— i.e., h(n) < h*(n) where 1" (n) is the true cost from n.

— Also require i(n) > 0, so i(G) = 0 for any goal G.

E.g., is.p(n) never overestimates the actual road distance
Theorem: A* search is optimal
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A* Search Example

D
366=0+366
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A* Search Example

393=140+253 447=118+329 449=75+374
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A* Search Example

447=118+329

agaras R
646=280+366 415=239+176 671=291+380 413=220+193
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A* Search Example

447=118+329 449=75+374

66+160 417=
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A* Search Example

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253
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A* Search Example

447=118+329

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

418=418+0 615=455+160 607=414+193
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Optimality of A* (standard proof)

Suppose some suboptimal goal G, has been generated and is in the queue. Let
n be an unexpanded node on a shortest path to an optimal goal G .

Start

N

‘@ G,

f(G) = g(Gy) since 1(G,) = 0

> g(Gy) since G is suboptimal
> f(n) since h is admissible

Since f(G2) > f(n), A* will never select G, for expansion
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Optimality of A* (more useful)

Lemma: A* expands nodes in order of increasing f value*
® Gradually adds “f-contours” of nodes (cf. breadth-first adds layers)
® Contour i has all nodes with /' = f;, where f; < fi,
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Properties of A*

Complete?? Yes, unless there are infinitely many nodes with /' < f(G)
Time?? Exponential in [relative error in 2 x length of soln.]
Space?? Keeps all nodes in memory
Optimal?? Yes—cannot expand /., until ; is finished

® (C* - cost of the optimal solution path
® A* expands all nodes with f(n) < C*
® A* expands some nodes with f(n) = C*
® A* expands no nodes with /(n) > C*
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Proof of Lemma: Consistency

A heuristic is consistent if
h(n) < c(n,a,n’) + h(n")
If /1 is consistent, we have

g(n") + h(n')

g(n) +c(n,a,n’) + h(n')
8(n) + h(n)

J(n)

fn)

v

l.e., f(n) is nondecreasing along any path.
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Admissible Heuristics

E.g., for the 8-puzzle:
® /i (n) = number of misplaced tiles

® /i, (n) = total Manhattan distance (i.e., no. of squares from desired
location of each tile)

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

hy(S) =72
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Admissible Heuristics

E.g., for the 8-puzzle:
® /i (n) = number of misplaced tiles

® /i, (n) = total Manhattan distance (i.e., no. of squares from desired
location of each tile)

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

hi(S)=?? 6
ha(S) =??7 4+40+43+3+1+0+2+1 =14
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Dominance

If hy(n) > hy(n) for all n (both admissible) then /2, dominates /2; and is better for

search.
Typical search costs:
d=14 IDS = 3,473,941 nodes
A*(h;) = 539 nodes
A*(hy) = 113 nodes
d =24 DS =~ 54,000,000,000 nodes
A*(h) = 39,135 nodes
A*(hy) = 1,641 nodes
Given any admissible heuristics /,, /1,
h(n) = max(hq(n), hp(n))

is also admissible and dominates /., /,,
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Relaxed problems

® Admissible heuristics can be derived from the exact solution cost of a
relaxed version of the problem.

® |[f the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then i, (n) gives the shortest solution.

® |[f the rules are relaxed so that a tile can move to any adjacent square,
then /,(n) gives the shortest solution.

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem
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Summary

® Heuristic functions estimate costs of shortest paths
® Good heuristics can dramatically reduce search cost
® Greedy best-first search expands lowest /2

— incomplete and not always optimal
® Dynamic programming

— complete and optimal

— time and space consuming
— how to define the sub-problems?

® A* search expands lowest g + /

— complete and optimal
— also optimally efficient

® Admissible heuristics can be derived from exact solution of relaxed
problems
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