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Agenda
1 Introduction
2 Uninformed Search versus Informed Search (Best First Search, A*

Search, Heuristics)
3 Local Search, Stochastic Hill Climbing, Simulated Annealing
4 Tabu Search
5 Answer-set Programming (ASP)
6 Constraint Satisfaction (CSP)
7 Structural Decomposition Techniques (Tree/Hypertree Decompositions)
8 Evolutionary Algorithms/ Genetic Algorithms
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Traditional Methods
• There are many classic algorithms to search spaces for an optimal

solution.
• Broadly, they fall into two disjoint classes:

– Algorithms that only evaluate complete solutions (exhaustive
seach, local search, . . . ).

– Algorithms that require the evaluation of partially constructed or
approximate solutions.

• Algorithms that treat complete solutions can be stopped any time, and
give at least one potential answer.

• If you interrupt an algorithm that works on partial solutions, the results
might be useless.
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Complete Solutions
• All decision variables are specified.
• For example, binary strings of length n constitute complete solutions for

any n-variable SAT.
• Permutations of n cities constitute complete solutions for a TSP.
• We can compare two complete solutions using an evaluation function.
• Many algorithms rely on such comparisons, manipulating one single

complete solution at a time.
• When a new solution has a better evaluation than the previous best

solution, it replaces that prior solution.
• Exhaustive search, local search, hill climbing as well as modern heuristic

methods such as simulated annealing, tabu search and evolutionary
algorithms fall into this category.
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Partial Solutions
There are two forms:

1 incomplete solution to the problem originally posed, and
2 complete solution to a reduced (i.e. simpler) problem.

• Incomplete solutions reside in a subset of the original problem’s search
space.

– In an SAT, consider all of the binary strings where the first two
variables were assigned the value 1 (i.e. TRUE).

– In a TSP, consider every permutation of cities that contains the
sequence 7− 11− 2− 16.

– We fix the attention on a subset of the search space that has a
partial property.

– Hopefully, that property is also shared by the real solution!
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Partial Solutions ctd.
• Decompose original problem into a set of smaller and simpler problems.

– Hope: solving each of the easier problems and combine the partial
solutions, results in an answer for the original problem.

– In a TSP, consider only k out of n cities and try to establish the
shortest path from city i to j that passes through all k of these cities.

– Reduce the size of the search space significantly and search for a
complete solution within the restricted domain.

– Such partial solutions can serve as building blocks for the solution
to the original problem.
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Partial Solutions ctd.
• Decompose original problem into a set of smaller and simpler problems.

– Hope: solving each of the easier problems and combine the partial
solutions, results in an answer for the original problem.

– In a TSP, consider only k out of n cities and try to establish the
shortest path from city i to j that passes through all k of these cities.

– Reduce the size of the search space significantly and search for a
complete solution within the restricted domain.

– Such partial solutions can serve as building blocks for the solution
to the original problem.

• But, algorithms that work on partial solutions pose additional difficulties.
One needs to

– devise a way to organize the subspaces so that they can be
searched efficiently, and

– create a new evaluation function that can assess the quality of
partial solutions.
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Exhaustive Search
• Checks every solution in the search space until the best global solution

has been found.
• Can be used only for small instances of problems.
• Exhaustive (enumerative) algorithms are simple.
• Search space can be reduced by backtracking.
• Some optimization methods, e.g., branch and bound and A* are based on

an exhaustive search.
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Exhaustive Search
• Checks every solution in the search space until the best global solution

has been found.
• Can be used only for small instances of problems.
• Exhaustive (enumerative) algorithms are simple.
• Search space can be reduced by backtracking.
• Some optimization methods, e.g., branch and bound and A* are based on

an exhaustive search.
• How can we generate a sequence of every possible solution to the

problem?
– The order in which the solutions are generated and evaluated is

irrelevant (because we evaluate all of them).
– The answer for the question depends on the selected

representation.
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Enumerating the SAT
• We have to generate every possible binary string of length n.
• All solutions correspond to whole numbers in a one-to-one mapping.
• Generate all non-negative integers from 0 to 2n − 1 and convert each of

these integers into the matching binary string of length n.

0000 0 0100 4 1000 8 1100 12
0001 1 0101 5 1001 9 1101 13
0010 2 0110 6 1010 10 1110 14
0011 3 0111 7 1011 11 1111 15

• Bits of the string are the truth assignments of the decision variables.
• Organize the search space, for example partition into two disjoint

subspaces. First contains all the vectors where x1 = f (FALSE), and the
second contains all vectors where x1 = t (TRUE).
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Enumerating the SAT ctd.

x1 = f x1 = t

x2 = f x2 = t x2 = f x2 = t

x3 = f x3 = t . . .. . .

Binary search tree for SAT
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Enumerating the TSP
• How to generate all possible permutations?
• If some cities are not connected, some permutation might not be feasible.

Algorithm gen1_permutation(i)
1: k ← k + 1
2: P[i]← k
3: if k = n then
4: for q = 1 to n do
5: print P[q]
6: end for
7: end if
8: for q = 1 to n do
9: if P[q] = 0 then
10: gen1_permutation(q)
11: end if
12: end for
13: k ← k − 1
14: P[i]← 0
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Enumerating the TSP

Algorithm gen1_permutation(i)
1: k ← k + 1
2: P[i]← k
3: if k = n then
4: for q = 1 to n do
5: print P[q]
6: end for
7: end if
8: for q = 1 to n do
9: if P[q] = 0 then
10: gen1_permutation(q)
11: end if
12: end for
13: k ← k − 1
14: P[i]← 0

• Called with k initialized to −1, parameter i set to 0, and all entries of the
array P initialized to 0;

• Prints every permutation of (1, . . . , n).
• Fixes 1 in the first position and generates the remaining (n− 1)!

permutations of numbers 2 to n.
• For n = 3 : (1 2 3), (1 3 2), (2 1 3), (3 1 2), (2 3 1), (3 2 1).
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Search Strategies

A strategy is defined by picking the order of node expansion.
Strategies are evaluated along the following dimensions:

• Completeness - does it always find a solution if one exists?
• Time complexity - number of nodes generated/expanded.
• Space complexity - maximum number of nodes in memory.
• Optimality - does it always find a least-cost solution?

Time and space complexity are measured in terms of
• b - maximum branching factor of the search tree;
• d - depth of the least-cost solution;
• m - maximum depth of the state space (may be∞).
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Uninformed Search Strategies

Uninformed strategies use only the information available in the problem
definition.

• Breadth-first search
• Depth-first search
• Depth-limited search
• Iterative deepening search
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Breadth-First Search
• Expand shallowest unexpanded node.
• FIFO queue, i.e. new nodes go to the back of the queue, and old nodes

get expanded first.

A

B C

D E F G
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Breadth-First Search
• Expand shallowest unexpanded node.
• FIFO queue, i.e. new nodes go to the back of the queue, and old nodes

get expanded first.
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Breadth-First Search
• Expand shallowest unexpanded node.
• FIFO queue, i.e. new nodes go to the back of the queue, and old nodes

get expanded first.
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Breadth-First Search
• Expand shallowest unexpanded node.
• FIFO queue, i.e. new nodes go to the back of the queue, and old nodes

get expanded first.

A

B C

D E F G
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Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . .+ bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space?? O(bd+1) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec so 24hrs =
8640GB.
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Depth-First Search
• Expand deepest unexpanded node.
• LIFO queue, i.e. most recently generated node is chosen for expansion.

A

B C

D E F G

H I J K L M N O
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Depth-First Search
• Expand deepest unexpanded node.
• LIFO queue, i.e. most recently generated node is chosen for expansion.
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Depth-First Search
• Expand deepest unexpanded node.
• LIFO queue, i.e. most recently generated node is chosen for expansion.
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Depth-First Search
• Expand deepest unexpanded node.
• LIFO queue, i.e. most recently generated node is chosen for expansion.
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Depth-First Search
• Expand deepest unexpanded node.
• LIFO queue, i.e. most recently generated node is chosen for expansion.
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Depth-First Search
• Expand deepest unexpanded node.
• LIFO queue, i.e. most recently generated node is chosen for expansion.
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Depth-First Search
• Expand deepest unexpanded node.
• LIFO queue, i.e. most recently generated node is chosen for expansion.
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Depth-First Search
• Expand deepest unexpanded node.
• LIFO queue, i.e. most recently generated node is chosen for expansion.
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Depth-First Search
• Expand deepest unexpanded node.
• LIFO queue, i.e. most recently generated node is chosen for expansion.
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Depth-First Search
• Expand deepest unexpanded node.
• LIFO queue, i.e. most recently generated node is chosen for expansion.
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Depth-First Search
• Expand deepest unexpanded node.
• LIFO queue, i.e. most recently generated node is chosen for expansion.
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Depth-First Search
• Expand deepest unexpanded node.
• LIFO queue, i.e. most recently generated node is chosen for expansion.
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Properties of Depth-First Search

Complete?? No: fails in infinite-depth spaces, spaces with loops

Time?? O(bm): terrible if m is much larger than d;
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal?? No
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Backtracking

Suppose the SAT formula ϕ contains a clause (x1 ∨ x2).
ϕ

x1 = f x1 = t

x2 = f x2 = t x2 = f x2 = t

x3 = f x3 = t . . .. . .
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Backtracking

Suppose the SAT formula ϕ contains a clause (x1 ∨ x2).
ϕ

x1 = f x1 = t

x2 = f x2 = t x2 = f x2 = t

x3 = f x3 = t . . .. . .

Remaining branches
below this node can
lead to nothing but a
dead end
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Backtracking

Suppose the SAT formula ϕ contains a clause (x1 ∨ x2).
ϕ

x1 = f x1 = t

x2 = f x2 = t x2 = f x2 = t

x3 = f x3 = t . . .. . .

Remaining branches
below this node can
lead to nothing but a
dead end

backtrack
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Depth-Limited Search
• Depth first search with depth limit L

– Nodes at depth L are not expanded.
• Eliminates problem with infinite path.
• How to select L?
• Possible failures:

– No solution;
– Cutoff - no solution within the depth limit.
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Iterative Deepening Search

Repeat Depth-limited search with L=1,2,3,. . .

Limit = 0 A A
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Iterative Deepening Search

Repeat Depth-limited search with L=1,2,3,. . .

Limit = 1 A

B C

A

B C

A

B C

A

B C
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Iterative Deepening Search

Repeat Depth-limited search with L=1,2,3,. . .

Limit = 2 A

B C

D E F G
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Iterative Deepening Search

Repeat Depth-limited search with L=1,2,3,. . .

Limit = 3
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Properties of Iterative Deepening Search

Complete?? Yes

Time?? (d + 1)b0 + db1 + (d − 1)b2 + . . .+ bd = O(bd)

Space?? O(bd)

Optimal?? Yes, if step cost = 1
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Properties of Iterative Deepening Search

Complete?? Yes

Time?? (d + 1)b0 + db1 + (d − 1)b2 + . . .+ bd = O(bd)

Space?? O(bd)

Optimal?? Yes, if step cost = 1

Number of nodes generated in worst case for b = 10 and d = 5 (solution at far
right leaf):

N(IDS) = 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450

N(BFS) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 = 111, 100

Hybrid approach that runs BFS until almost all memory is consumed, and then
runs IDS from all the nodes in the frontier.
In general, IDS is the preferred uninformed search method when the search
space is large and the depth of the solution is not known.
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Agenda
1 Introduction
2 Uninformed Search versus Informed Search (Best First Search, A*

Search, Heuristics)
3 Local Search, Stochastic Hill Climbing, Simulated Annealing
4 Tabu Search
5 Answer-set Programming (ASP)
6 Constraint Satisfaction (CSP)
7 Structural Decomposition Techniques (Tree/Hypertree Decompositions)
8 Evolutionary Algorithms/ Genetic Algorithms
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Best-First Search
Idea: use an evaluation function for each node

• estimate of “desirability”

⇒ Expand most desirable unexpanded node

Special cases:
• Greedy search
• Dynamic programming
• A∗ search
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Example: Romania with step costs in km

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straightïline distance
to Bucharest

 0
160
242
161

77
151

241

366

193

178

253
329

80
199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86
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Greedy Search
• Evaluation function h(n) (heuristic)

h(n) = estimate of cost from n to the closest goal
• E.g., hSLD(n) = straight-line distance from n to Bucharest
• Greedy search expands the node that appears to be closest to goal
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Greedy Search Example

Arad
366
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Greedy Search Example

Zerind

Arad

Sibiu Timisoara
253 329 374
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Greedy Search Example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara
329 374

366 176 380 193
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Greedy Search Example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0
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Properties of Greedy Search

Complete?? No–can get stuck in loops, e.g.,
– Iasi→ Neamt→ Iasi→ Neamt→
– Complete in finite space with repeated-state checking

Time?? O(bm), but a good heuristic can give dramatic improvement

Space?? O(bm)—keeps all nodes in memory

Optimal?? No
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Dynamic Programming

Principle of finding an overall solution by operating on an intermediate point that
lies between where you are now and where you want to go.

• Procedure is recursive, each next intermediate point is a function of the
points already visited.

• Prototypical problem suitable for dynamic programming has the following
properties.
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Dynamic Programming

Principle of finding an overall solution by operating on an intermediate point that
lies between where you are now and where you want to go.

• Procedure is recursive, each next intermediate point is a function of the
points already visited.

• Prototypical problem suitable for dynamic programming has the following
properties.

• Can be decomposed into a sequence of decisions made at various
stages.

• Each stage has a number of possible states.
• A decision takes you from a state at one stage to some state at the next

stage.
• Best sequence of decisions (policy) at any stage is independent of the

decisions made at prior stages.
• Well-defined cost for traversing from state to state across stages.
• There is a recursive relationship from choosing the best decisions to

make.
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Dynamic Programming ctd.

Procedure
• Starting at the goal and working backward to the current state.
• First, determine the best decision at last stage.
• From there, determine the best decision at the next to last stage,

presuming we will make the best decision at the last stage.
• And so forth . . .
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Dynamic Program for the TSP

L =


0 7 12 8 11
3 0 10 7 13
4 8 0 9 12
6 6 9 0 10
7 7 11 10 0


• Suppose, we start from city 1.
• We split the problem into smaller problems.
• g(i, S) length of the shortest path from city i to 1 that passes through each

city in S.
• g(4, {5, 2, 3}) is the shortest path from city 4 through cities 5, 2 and 3 (in

some unspecified order) and then returns to 1.
• g(1, V − {1}) is the length of the shortest complete tour.
• In general, we claim that

g(i, S) = minj∈S{L(i, j) + g(j, S− {j})}.
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Dynamic Program for the TSP ctd.

L =


0 7 12 8 11
3 0 10 7 13
4 8 0 9 12
6 6 9 0 10
7 7 11 10 0


The problem is to find g(1, {2, 3, 4, 5}).
We start backwards with S = ∅.

g(2, ∅) = L(2, 1) = 3,
g(3, ∅) = L(3, 1) = 4,
g(4, ∅) = L(4, 1) = 6, and

g(5, ∅) = L(5, 1) = 7.
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Dynamic Program for the TSP ctd.

L =


0 7 12 8 11
3 0 10 7 13
4 8 0 9 12
6 6 9 0 10
7 7 11 10 0


Next iteration, find the solutions to all problems where |S| = 1 (12
sub-problems).

g(2, {3}) = L(2, 3) + g(3, ∅) = 10 + 4 = 14,
g(2, {4}) = L(2, 4) + g(4, ∅) = 7 + 6 = 13, and

g(2, {5}) = L(2, 5) + g(5, ∅) = 13 + 7 = 20.
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Dynamic Program for the TSP ctd.

For city 3:

g(3, {2}) = L(3, 2) + g(2, ∅) = 8 + 3 = 11,
g(3, {4}) = L(3, 4) + g(4, ∅) = 9 + 6 = 15,
g(3, {5}) = L(3, 5) + g(5, ∅) = 12 + 7 = 19.

For city 4:

g(4, {2}) = L(4, 2) + g(2, ∅) = 6 + 3 = 9,
g(4, {3}) = L(4, 3) + g(3, ∅) = 9 + 4 = 13,
g(4, {5}) = L(4, 5) + g(5, ∅) = 10 + 7 = 17.

For city 5:

g(5, {2}) = L(5, 2) + g(2, ∅) = 7 + 3 = 10,
g(5, {3}) = L(5, 3) + g(3, ∅) = 11 + 4 = 15,
g(5, {4}) = L(5, 4) + g(4, ∅) = 10 + 6 = 16.
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Dynamic Program for the TSP ctd.

L =


0 7 12 8 11
3 0 10 7 13
4 8 0 9 12
6 6 9 0 10
7 7 11 10 0


Next iteration, |S| = 2.

g(2, {3, 4}) = min{L(2, 3) + g(3, {4}), L(2, 4) + g(4, {3})}
= min{10 + 15, 7 + 13} = min{25, 20} = 20,

g(2, {3, 5}) = min{L(2, 3) + g(3, {5}), L(2, 5) + g(5, {3})}
= min{10 + 19, 13 + 15} = min{29, 28} = 28,

g(2, {4, 5}) = min{L(2, 4) + g(4, {5}), L(2, 5) + g(5, {4})}
= min{7 + 17, 13 + 16} = min{24, 29} = 24.
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Dynamic Program for the TSP ctd.

For city 3:

g(3, {2, 5}) = min{L(3, 2) + g(2, {5}), L(3, 5) + g(5, {2})}
= min{8 + 20, 12 + 10} = min{28, 22} = 22,

g(3, {2, 4}) = min{L(3, 2) + g(2, {4}), L(3, 4) + g(4, {2})}
= min{8 + 13, 9 + 9} = min{21, 18} = 18,

g(3, {4, 5}) = min{L(3, 4) + g(4, {5}), L(3, 5) + g(5, {4})}
= min{9 + 17, 12 + 16} = min{26, 28} = 26.

For city 4:

g(4, {2, 3}) = min{L(4, 2) + g(2, {3}), L(4, 3) + g(3, {2})}
= min{6 + 14, 9 + 11} = min{20, 20} = 20,

g(4, {2, 5}) = min{L(4, 2) + g(2, {5}), L(4, 5) + g(5, {2})}
= min{6 + 20, 10 + 10} = min{26, 20} = 20,

g(4, {3, 5}) = min{L(4, 3) + g(3, {5}), L(4, 5) + g(5, {3})}
= min{9 + 19, 10 + 15} = min{28, 25} = 25.
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Dynamic Program for the TSP ctd.

For city 5:

g(5, {2, 3}) = min{L(5, 2) + g(2, {3}), L(5, 3) + g(3, {2})}
= min{7 + 14, 11 + 11} = min{21, 22} = 21,

g(5, {2, 4}) = min{L(5, 2) + g(2, {4}), L(5, 4) + g(4, {2})}
= min{7 + 13, 10 + 19} = min{20, 29} = 20,

g(5, {3, 4}) = min{L(5, 3) + g(3, {4}), L(5, 4) + g(4, {3})}
= min{11 + 15, 10 + 13} = min{26, 23} = 23.
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Dynamic Program for the TSP ctd.

L =


0 7 12 8 11
3 0 10 7 13
4 8 0 9 12
6 6 9 0 10
7 7 11 10 0


Next iteration, |S| = 3.

g(2, {3, 4, 5}) = min{L(2, 3) + g(3, {4, 5}), L(2, 4) + g(4, {3, 5}, L(2, 5) + g(5, {3, 4})}
= min{10 + 26, 7 + 25, 13 + 23} = min{36, 32, 34} = 32,
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Dynamic Program for the TSP ctd.

Next iteration, |S| = 3.

g(2, {3, 4, 5}) = min{L(2, 3) + g(3, {4, 5}), L(2, 4) + g(4, {3, 5}, L(2, 5) + g(5, {3, 4})}
= min{10 + 26, 7 + 25, 13 + 23} = min{36, 32, 34} = 32,

g(3, {2, 4, 5}) = min{L(3, 2) + g(2, {4, 5}), L(3, 4) + g(4, {2, 5}), L(3, 5) + g(5, {2, 4})}
= min{8 + 24, 9 + 20, 12 + 20} = min{32, 29, 32} = 29,

g(4, {2, 3, 5}) = min{L(4, 2) + g(2, {3, 5}), L(4, 3) + g(3, {2, 5}), L(4, 5) + g(5, {2, 3})}
= min{6 + 28, 9 + 22, 10 + 21} = min{34, 31, 31} = 31.

g(5, {2, 3, 4}) = min{L(5, 2) + g(2, {3, 4}), L(5, 3) + g(3, {2, 4}), L(5, 4) + g(4, {2, 3})}
= min{7 + 20, 11 + 18, 10 + 20} = min{27, 29, 30} = 27.
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Dynamic Program for the TSP ctd.

L =


0 7 12 8 11
3 0 10 7 13
4 8 0 9 12
6 6 9 0 10
7 7 11 10 0


Last iteration, |S| = 4, original problem:

g(1, {2, 3, 4, 5}) = min{L(1, 2) + g(2, {3, 4, 5}), L(1, 3) + g(3, {2, 4, 5}),
L(1, 4) + g(4, {2, 3, 5}), L(1, 5) + g(5, {2, 3, 4})}

= min{7 + 32, 12 + 29, 8 + 31, 11 + 27} = min{39, 41, 39, 38} = 38.

Shortest tour has length 38.
Which tour is that?
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Dynamic Program for the TSP ctd.

Last iteration, |S| = 4, original problem:

g(1, {2, 3, 4, 5}) = min{L(1, 2) + g(2, {3, 4, 5}), L(1, 3) + g(3, {2, 4, 5}),
L(1, 4) + g(4, {2, 3, 5}), L(1, 5) + g(5, {2, 3, 4})}

= min{7 + 32, 12 + 29, 8 + 31, 11 + 27} = min{39, 41, 39, 38} = 38.

Shortest tour has length 38. Which tour is that?
• Additional data structure W with information on the next city with minimal

path.
• W(1, {2, 3, 4, 5}) = 5.
• W(5, {2, 3, 4}) = 2, W(2, {3, 4}) = 4, W(4, {3}) = 3,
• last we arrive at city 1.
• Length of this tour is 11 + 7 + 7 + 9 + 4 = 38.
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Properties of Dynamic Programming
• Computationally intensive: O(n22n).
• DP algorithms tend to be complicated to understand, because the

construction of the program depends on the problem.
• How to formulate sub-problems?
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A∗ Search
Idea: avoid expanding paths that are already expensive

• Evaluation function f (n) = g(n) + h(n)
g(n) = cost so far to reach n
h(n) = estimated cost to goal from n
f (n) = estimated total cost of path through n to goal

• A∗ search uses an admissible heuristic
– i.e., h(n) ≤ h∗(n) where h∗(n) is the true cost from n.
– Also require h(n) ≥ 0, so h(G) = 0 for any goal G.

• E.g., hSLD(n) never overestimates the actual road distance

Theorem: A∗ search is optimal
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A∗ Search Example

Arad
366=0+366
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A∗ Search Example

Zerind

Arad

Sibiu Timisoara
447=118+329 449=75+374393=140+253
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A∗ Search Example

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380
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A∗ Search Example

Zerind

Arad

Sibiu

Arad

Timisoara

Fagaras Oradea

447=118+329 449=75+374

646=280+366 415=239+176
Rimnicu Vilcea

Craiova Pitesti Sibiu
526=366+160 553=300+253417=317+100

671=291+380
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A∗ Search Example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380
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A∗ Search Example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea
418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380
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Optimality of A∗ (standard proof)

Suppose some suboptimal goal G2 has been generated and is in the queue. Let
n be an unexpanded node on a shortest path to an optimal goal G1.

G

n

G2

Start

f (G2) = g(G2) since h(G2) = 0

> g(G1) since G2 is suboptimal

≥ f (n) since h is admissible

Since f (G2) > f (n), A∗ will never select G2 for expansion
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Optimality of A∗ (more useful)

Lemma: A∗ expands nodes in order of increasing f value∗

• Gradually adds “f -contours” of nodes (cf. breadth-first adds layers)
• Contour i has all nodes with f = fi, where fi < fi+1

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S
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Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f (G)

Time?? Exponential in [relative error in h × length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand fi+1 until fi is finished

• C∗ - cost of the optimal solution path
• A∗ expands all nodes with f (n) < C∗

• A∗ expands some nodes with f (n) = C∗

• A∗ expands no nodes with f (n) > C∗
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Proof of Lemma: Consistency
A heuristic is consistent if

h(n) ≤ c(n, a, n′) + h(n′)

If h is consistent, we have

f (n′) = g(n′) + h(n′)

= g(n) + c(n, a, n′) + h(n′)

≥ g(n) + h(n)

= f (n)

n
c(n,a,n’)

h(n’)

h(n)

G

n’

I.e., f (n) is nondecreasing along any path.
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Admissible Heuristics
E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance (i.e., no. of squares from desired

location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) =??

h2(S) =??
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Admissible Heuristics
E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance (i.e., no. of squares from desired

location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) =?? 6

h2(S) =?? 4+0+3+3+1+0+2+1 = 14
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Dominance
If h2(n) ≥ h1(n) for all n (both admissible) then h2 dominates h1 and is better for
search.

Typical search costs:

d = 14 IDS = 3,473,941 nodes
A∗(h1) = 539 nodes
A∗(h2) = 113 nodes

d = 24 IDS ≈ 54,000,000,000 nodes
A∗(h1) = 39,135 nodes
A∗(h2) = 1,641 nodes

Given any admissible heuristics ha, hb,

h(n) = max(ha(n), hb(n))

is also admissible and dominates ha, hb
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Relaxed problems
• Admissible heuristics can be derived from the exact solution cost of a

relaxed version of the problem.
• If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,

then h1(n) gives the shortest solution.
• If the rules are relaxed so that a tile can move to any adjacent square,

then h2(n) gives the shortest solution.

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem
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Summary
• Heuristic functions estimate costs of shortest paths
• Good heuristics can dramatically reduce search cost
• Greedy best-first search expands lowest h

– incomplete and not always optimal
• Dynamic programming

– complete and optimal
– time and space consuming
– how to define the sub-problems?

• A∗ search expands lowest g + h
– complete and optimal
– also optimally efficient

• Admissible heuristics can be derived from exact solution of relaxed
problems
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