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Review
Semantics of each feature is defined by specific algebra operators
• Join(M1, M2): join compatible mappings from M1 and M2

• FilterG(ϕ, M): remove from multiset M all mappings for which ϕ does not evaluate
to EBV “true”

• Union(M1, M2): compute the union of mappings from multisets M1 and M2

• Minus(M1, M2): remove from multiset M1 all mappings compatible with a
non-empty mapping in M2

• LeftJoinG(M1, M2,ϕ): extend mappings from M1 by compatible mappings from M2

when filter condition is satisfied; keep remaining mappings from M1 unchanged
• Extend(M, v,ϕ): extend all mappings from M by assigning v the value of ϕ.
• OrderBy(L, condition): sort list by a condition
• Slice(L, start, length): apply limit and offset modifiers

Further operators exist, e.g., Distinct(L).

Translating SPARQL to nested algebra expressions is mostly straightforward (we saw an
algorithm for a subset of features).
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Complexity of SPARQL

Markus Krötzsch, 23th Nov 2021 Knowledge Graphs slide 3 of 25



Finding BGP solutions

How can we compute solutions to BGPs?

Possible approach:

1. Find solutions to triple patterns

2. Compute joins of partial solutions

By Theorem 6.6, BGPG(P) is the join of the solution multisets of all individual triple
patterns in P.
(Blank nodes might need to be replaced by variables that are projected away later.)

How hard is this? (on a graph with n edges)

1. Can be solved by iterating over all edges: O(n) (linear)

2. We defined
Join(Ω1, Ω2) = {µ1 ] µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, and µ1 and µ2 are compatible}.
Therefore Join(Ω1, Ω2) is of size O(|Ω1| × |Ω2|) ∈ O(n2) (quadratic)
But joining results of k triple patterns is in O(nk) (exponential)!

{ worst-case exponential-time query answering algorithm
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Review: Computational complexity

Computational complexity provides tools for estimating

• how hard a problem is

• based on the effort an algorithm needs to solve it

To classify algorithms, we distinguish:

• computational models: deterministic, non-deterministic, probabilistic, quantum, . . .

• constrained resources: time (steps), space (memory), . . .

• resource bounds: polynomial, exponential, . . . (measured wrt. to input size)

Such complexity classifications are rather robust measures of a problem’s “difficulty” and
do not depend on implementation details.
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Review: Some complexity classes

deterministic non-deterministic

P = PTime =
⋃
d≥1

DTime(nd) polynomial time NP =
⋃
k≥1

NTime(nk)

Exp = ExpTime =
⋃
d≥1

DTime(2nd
) exponential time NExp = NExpTime =

⋃
k≥1

NTime(2nk
)

L = LogSpace = DSpace(log n) logarithmic space NL = NLogSpace = NSpace(log n)

PSpace =
⋃
d≥1

DSpace(nd) polynomial space

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace ⊆ ExpTime ⊆ NExpTime ⊆ ExpSpace

,

,

,

,
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Review: The class NP

NP is an extremely common class for challenging problems in practice.
It can be defined in two ways:

Nondeterministic polynomial time

• Problems in NP can be solved by a non-deterministic algorithm

• In time bounded by a polynomial

Polynomial verification

• All problems in NP have polynomial “solutions”: short certificates that prove all
“yes” answers

• The correctness of such certificates can be verified in polynomial time

NP problems are search problems – searching for a right solution among the
exponentially many potential solutions – but even the best known algorithms may take
exponential time.
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Finding BGP solutions

Observation: It is easy to check if a given mapping of bnodes and variables produces a
solution:

• Simply verify that the mapped triples are contained in the given graph

• Can be done in quadratic time (# triples in pattern × # edges in graph)

In other words: the problem (as a decision problem) is in NP.

It turns out this is the best we can do:

Theorem 7.1: Determining if a BGP has solution mappings over a graph is
NP-complete (with respect to the size of the pattern).

Proof:

• Inclusion: guess mapping for bnodes and variables; check if guess was correct.

• Hardness: by reduction from a known NP-hard problem
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Review: Polynomial many-one reductions

To compare the hardness of problems, we ask which problems can be reduced to others.

Definition 7.2: A language L1 ⊆ Σ∗ is polynomially many-one reducible to L2 ⊆

Σ∗, denoted L1 ≤p L2, if there is a polynomial-time computable function f such that
for all w ∈ Σ∗

w ∈ L1 if and only if f (w) ∈ L2.

Intuition: If L1 ≤p L2, then:

• We can solve a problem of L1, by reducing it to a problem of L2

• Therefore L1 is “at most as difficult” as L2 (modulo polynomial effort)

Definition 7.3: A problem C is NP-complete if C ∈ NP and, for every problem
L ∈ NP, we find L ≤p C.

Intuition: NP-complete problems are the “hardest” problems in NP since they hold the
key to solving all other problems in NP. For a more refined understanding, see course “Complexity Theory”.
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From 3-colourability to BGP matching

The problem of graph 3-colourability (3Col) is defined as follows:
Given: An undirected graph G
Question: Can the vertices of G be assigned colours red, green and blue so that
no two adjacent vertices have the same colour?

It is known that this problem is NP-complete (and in particular NP-hard).

We can find a polynomial many-one reduction from 3Col to BGP matching:

• A given graph G is mapped to a BGP PG by introducing, for each undirected edge
e−f in G, two triples ?e <edge> ?f and ?f <edge> ?e.

• We consider the RDF graph C given by

<red> <edge> <green>, <blue> .

<green> <edge> <red>, <blue> .

<blue> <edge> <green>, <red> .

Then PG has a solution mapping over C if and only if G is 3-colourable. �
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NP-hardness another way

A typical NP-complete problem is satisfiability of propositional logic formulae:

The problem of propositional logic satisfiability (SAT) is defined as follows:
Given: An propositional logic formula ϕ

Question: Is it possible to assign truth values to propositional variables in ϕ such
that the formula evaluates to true?

Exercise: Give a direct reduction from SAT to SPARQL query answering, without
using BGPs.

This shows (in another way) that SPARQL query answering is NP-hard. However, it is
actually harder than that.
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Beyond NP

In complexity theory, space is usually more powerful than time
(intuition: space can be reused; time, alas, cannot)

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace ⊆ ExpTime ⊆ NExpTime ⊆ ExpSpace

,

,

,

,

Space restrictions can also be used for non-deterministic algorithms, but by Savitch’s
Theorem, this often does not give additional expressive power: PSpace = NPSpace

Completeness again is defined by polynomial reductions:

Definition 7.4: A problem C is PSpace-complete if C ∈ PSpace and, for every
problem L ∈ PSpace, we find L ≤p C.
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Quantified Boolean Formulae

A QBF is a formula of the following form:

Q1X1. Q2X2. · · · Q̀X`.ϕ[X1, . . . , X`]

where Qi ∈ {∃,∀} are quantifiers, Xi are propositional logic variables, and ϕ is a
propositional logic formula with variables X1, . . . , X` and constants > (true) and ⊥ (false)

Semantics:

• Propositional formulae without variables (only constants > and ⊥) are evaluated as
usual

• ∃X.ϕ[X] is true if either ϕ[X/>] or ϕ[X/⊥] are true

• ∀X.ϕ[X] is true if both ϕ[X/>] and ϕ[X/⊥] are true

(where ϕ[X/>] is “ϕ with X replaced by >, and similar for ⊥)
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Hardness of QBF Evaluation

TrueQBF is the following problem:
Given: A quantified boolean formula ϕ

Question: Does ϕ evaluate to true?

This is a rather difficult question:

Example 7.5: A propositional formula ϕ with propositions p1, . . . , pn is satisfiable if
∃p1 . . .∃pn.ϕ is a true QBF, i.e., SAT reduces to TrueQBF (so it is NP-hard).

The QBF ϕ is a tautology if ∀p1 . . .∀pn.ϕ is a true QBF, i.e., tautology checking
reduces to TrueQBF (so it is coNP-hard).

In fact, it is known that TrueQBF is harder than both NP and coNP:

Theorem 7.6: TrueQBF is PSpace-complete.

(without proof; see course “Complexity Theory”)

Markus Krötzsch, 23th Nov 2021 Knowledge Graphs slide 14 of 25



Hardness of QBF Evaluation

TrueQBF is the following problem:
Given: A quantified boolean formula ϕ

Question: Does ϕ evaluate to true?

This is a rather difficult question:

Example 7.5: A propositional formula ϕ with propositions p1, . . . , pn is satisfiable if
∃p1 . . .∃pn.ϕ is a true QBF, i.e., SAT reduces to TrueQBF (so it is NP-hard).

The QBF ϕ is a tautology if ∀p1 . . .∀pn.ϕ is a true QBF, i.e., tautology checking
reduces to TrueQBF (so it is coNP-hard).

In fact, it is known that TrueQBF is harder than both NP and coNP:

Theorem 7.6: TrueQBF is PSpace-complete.

(without proof; see course “Complexity Theory”)

Markus Krötzsch, 23th Nov 2021 Knowledge Graphs slide 14 of 25



Hardness of QBF Evaluation

TrueQBF is the following problem:
Given: A quantified boolean formula ϕ

Question: Does ϕ evaluate to true?

This is a rather difficult question:

Example 7.5: A propositional formula ϕ with propositions p1, . . . , pn is satisfiable if
∃p1 . . .∃pn.ϕ is a true QBF, i.e., SAT reduces to TrueQBF (so it is NP-hard).

The QBF ϕ is a tautology if ∀p1 . . .∀pn.ϕ is a true QBF, i.e., tautology checking
reduces to TrueQBF (so it is coNP-hard).

In fact, it is known that TrueQBF is harder than both NP and coNP:

Theorem 7.6: TrueQBF is PSpace-complete.

(without proof; see course “Complexity Theory”)

Markus Krötzsch, 23th Nov 2021 Knowledge Graphs slide 14 of 25



Universal quantifiers in SPARQL
To show NP-hardness, we used the fact that SPARQL can naturally express existential
quantifiers, since we always ask “does a match for this query exist”?

Can we also express universal quantifiers?

— Yes:

Example 7.7: In Wikidata, find bands all of whose (known) members are female.

SELECT ?band
WHERE {
?band wdt:P31 wd:Q215380 . # ?band instance of: band

?band wdt:P527 [] . # ?band has part: [] (at least one known member)

FILTER NOT EXISTS {
?band wdt:P527 ?member . # ?band has part: ?member

FILTER NOT EXISTS {
?member wdt:P21 wd:Q6581072 # ?member sex or gender: female

}

}

}
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SPARQL is PSpace-hard
The PSpace-hardness of TrueQBF + the encoding universal quantifiers yield:

Theorem 7.8: Deciding whether a SPARQL query has any results is PSpace-
hard, even over an empty RDF graph.

Proof: We reduce QBF formulae to SPARQL queries.

A QBF
Q1X1. Q2X2. · · · Q̀X`.ϕ[X1, . . . , X`] is transformed to SPARQL in the following steps:
1. Replace every sub-formula of the form ∀Xi.ψ by ¬∃Xi.¬ψ.
2. Replace the innermost boolean formula (ϕ or ¬ϕ) by an expression FILTER (ϕ̂)

where ϕ̂ is (¬)ϕ written using SPARQL Boolean functions &&, ||, and !, and with
each propositional variable Xi replaced by a unique SPARQL variable ?Xi.

3. Replace every sub-expression of the form ¬∃Xi.ψ with
FILTER NOT EXISTS { VALUES ?Xi {true false} ψ }

4. Replace every sub-expression of the form ∃.ψ with
FILTER EXISTS { VALUES ?Xi {true false} ψ }

From the resulting SPARQL expression P, create the query:

SELECT * WHERE { VALUES ?x {"QBF is true!"} P }
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1. Replace every sub-formula of the form ∀Xi.ψ by ¬∃Xi.¬ψ.
2. Replace the innermost boolean formula (ϕ or ¬ϕ) by an expression FILTER (ϕ̂)

where ϕ̂ is (¬)ϕ written using SPARQL Boolean functions &&, ||, and !, and with
each propositional variable Xi replaced by a unique SPARQL variable ?Xi.

3. Replace every sub-expression of the form ¬∃Xi.ψ with
FILTER NOT EXISTS { VALUES ?Xi {true false} ψ }

4. Replace every sub-expression of the form ∃.ψ with
FILTER EXISTS { VALUES ?Xi {true false} ψ }

From the resulting SPARQL expression P, create the query:

SELECT * WHERE { VALUES ?x {"QBF is true!"} P }
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SPARQL is PSpace-hard (2)

It is not hard to see that this transformation works as desired: the resulting query has a
solution mapping {x 7→ "QBF is true!"} if and only if the QBF is true.

Example 7.9: Consider the QBF ∀p.∃q.((¬p ∧ q) ∨ (p ∧ ¬q)). Eliminating ∀ yields
¬∃p.¬∃q.((¬p ∧ q) ∨ (p ∧ ¬q)). We then obtain the following SPARQL query:

SELECT * WHERE {
VALUES ?x {"QBF is true!"}
FILTER NOT EXISTS { VALUES ?p {true false}
FILTER NOT EXISTS { VALUES ?q {true false}
FILTER ( (! ?p && ?q) || (?p && ! ?q) )

}

}

}
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Is SPARQL practical?

PSpace-hard problems are highly intractable and hard to implement in practice.

Is SPARQL practically feasible at all?

Apparently yes:

• We have seen implementations

• Other widely used query languages, such as SQL, have similar complexities

Is complexity theory useless?

No, but we should measure more carefully:

• Our proofs (for NP and PSpace) turn hard problems into hard queries

• We hardly need RDF data at all

In practice, databases grow very big, while queries are rather limited!
(Wikidata has billions of triples; typical Wikidata query have less than 100 triple patterns [Malyshev et al., ISWC 2018])
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More fine-grained complexity measures

Combined Complexity
Input: Query Q and RDF graph G
Output: Does Q have answers over G?

{ estimates complexity in terms of overall input size
{ “2KB query/2TB database” = “2TB query/2KB database”

{ study worst-case complexity of algorithms for fixed queries:

Data Complexity
Input: RDF graph G
Output: Does Q have answers over G? (for fixed query Q)

{ we can also fix the database and vary the query:

Query Complexity
Input: SPARQL query Q
Output: Does Q have answers over G? (for fixed RDF graph G)

Markus Krötzsch, 23th Nov 2021 Knowledge Graphs slide 19 of 25



More fine-grained complexity measures

Combined Complexity
Input: Query Q and RDF graph G
Output: Does Q have answers over G?

{ estimates complexity in terms of overall input size
{ “2KB query/2TB database” = “2TB query/2KB database”
{ study worst-case complexity of algorithms for fixed queries:

Data Complexity
Input: RDF graph G
Output: Does Q have answers over G? (for fixed query Q)

{ we can also fix the database and vary the query:

Query Complexity
Input: SPARQL query Q
Output: Does Q have answers over G? (for fixed RDF graph G)

Markus Krötzsch, 23th Nov 2021 Knowledge Graphs slide 19 of 25



More fine-grained complexity measures

Combined Complexity
Input: Query Q and RDF graph G
Output: Does Q have answers over G?

{ estimates complexity in terms of overall input size
{ “2KB query/2TB database” = “2TB query/2KB database”
{ study worst-case complexity of algorithms for fixed queries:

Data Complexity
Input: RDF graph G
Output: Does Q have answers over G? (for fixed query Q)

{ we can also fix the database and vary the query:

Query Complexity
Input: SPARQL query Q
Output: Does Q have answers over G? (for fixed RDF graph G)

Markus Krötzsch, 23th Nov 2021 Knowledge Graphs slide 19 of 25



Below P

Our previous proofs show high query complexity (hence also high combined complexity).
For data complexity, we get much lower complexities, starting below polynomial time.

Definition 7.10: The class NL of languages decidable in logarithmic space on a
non-deterministic Turing machine is defined as NL = NSpace(log(n)).

Note: When restricting Turing machines to use less than linear space, we need to provide them with a separate read-only input tape that is not
counted (since the input of length n cannot fit into log(n) space itself).

Intuition: The memory of a logspace-bounded Turing machine (deterministic or
not) is just enough for the following:

• Store a fixed number of binary counters (with at most polynomial value)

• Store a fixed number of pointers to positions in the input

• Compare the values of counters and target symbols of pointers

It is known that NL ⊆ P ⊆ NP (and all inclusions are believed to be strict, though this remains unproven)
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Data complexity of SPARQL

The problem of directed graph reachability (also known as s-t-reachability) is de-
fined as follows:
Given: A directed graph G and two vertices s and t
Question: Is there a directed path from s to t?

This can be solved in NL:
• Starting from s, non-deterministically move to a successor vertex
• Terminate when moving to t (success) or after making more moves than vertices in

the graph (failure)
This runs in logarithmic space: one pointer to current vertex, one counter

Directed graph reachability is furthermore known to be NL-hard, so we get:

Theorem 7.11: Deciding if a SPARQL query has any solutions is NL-hard in
terms of data complexity.

Proof: Directed graph reachability is easily reduced: encode graph in RDF, and use a
single property path pattern with * to check reachability. �
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Upper bounds

Important note: All of our results so far were lower bounds, showing that SPARQL is at
least as hard as the given class. We have not shown that SPARQL queries can actually
be answered in the given bounds.1

How to obtain upper bounds?

• Give an algorithm

• Show that it can run within the required bounds (with respect to query size and/or data size)

Problem: SPARQL has a large number of features that an algorithm would need to
consider, making algorithms rather complex and harder to verify

{ sketch algorithms for basic cases only

1We have not even shown that SPARQL query answers are computable at all. SQL query
answers, e.g., are not, if all SQL features are allowed.
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Answering queries in PSpace
Note: A single query can have exponentially many solutions, so the result does not fit
into polynomial space. But a polynomial space algorithm could still discover all solutions
(and stream them to an output).

Algorithm sketch:

• Iterate over all possible variable and bnode bindings, storing them one by
one (possible in polynomial space)

• Verify query conditions for the given binding (possible in polynomial space for
most features, e.g., triple patterns, property path patterns, filters, union,
minus, . . . )

Where this sketch is lacking:

• We should check complexity of all filter conditions and functions

• We did not clarify how to handle subqueries and aggregates

• Result values can become exponentially large (e.g., by repeated string doubling
using BIND), so a smarter representation of values has to be used
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Answering queries in NL for data

We can use the same approach for worst-case optimal query answering with respect to
the size of the RDF graph (data complexity):

Algorithm sketch:

• Iterate over all possible variable and bnode bindings, storing one at a time

• Verify query conditions for the given binding

{ If the query is fixed, the bindings can be stored using a fixed number of pointers.
{ For most operations, it is again clear that they are possible to verify in NL

This includes many numeric aggregates and arithmetic operations.

Again, we omit many details here that would need careful discussion.

Note: In terms of the size of the data, values can not be exponentially but merely
polynomially large, since the query is constant now; but one still needs to explain how to
represent this.
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Summary

SPARQL is PSpace-complete for query and combined complexity1

SPARQL is NL-complete for data complexity, hence practically tractable and well
parallelisable1

What’s next?

• The limits of SPARQL

• Querying graphs with rules

• Property graph and Cypher

1The matching upper bound has not been proven with the full set of features.
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