Complexity Theory Polynomial Space

Daniel Borchmann, Markus Krötzsch

Computational Logic

2015-12-01

Review

Review

Polynomial Space

The Class PSPACE

We defined PSPACE as:

$$PSPACE = \bigcup_{d \ge 1} DSPACE(n^d)$$

and we observed that

$$P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME.$$

We can also define a corresponding notion of $\operatorname{PSpace}\text{-hardness}$:

Definition 11.1

- ▶ A language \mathcal{H} is PSPACE-hard, if $\mathcal{L} \leq_p \mathcal{H}$ for every language $\mathcal{L} \in \mathrm{PSPACE}$.
- ▶ A language C is PSPACE-complete, if C is PSPACE-hard and $C \in PSPACE$.

Quantified Boolean Formulae (QBF)

A QBF is a formula of the following form:

$$Q_1X_1.Q_2X_2.\cdots Q_\ell X_\ell.\varphi[X_1,\ldots,X_\ell]$$

where $Q_i \in \{\exists, \forall\}$ are quantifiers, X_i are propositional logic variables, and φ is a propositional logic formula with variables X_1, \ldots, X_ℓ and constants \top (true) and \bot (false)

Semantics:

- ▶ Propositional formulae without variables (only constants ⊤ and ⊥) are evaluated as usual
- ▶ $\exists X.\varphi[X]$ is true if either $\varphi[X/\top]$ or $\varphi[X/\bot]$ are true
- ▶ $\forall X.\varphi[X]$ is true if both $\varphi[X/\top]$ and $\varphi[X/\bot]$ are true (where $\varphi[X/\top]$ is " φ with X replaced by \top , and similar for \bot)

Deciding QBF Validity

TRUE QBF

Input: A quantified Boolean formula φ .

Problem: Is φ true (valid)?

Observation

We can assume that the quantified formula is in CNF or 3-CNF (same transformations possible as for propositional logic formulae)

Deciding QBF Validity

TRUE QBF

Input: A quantified Boolean formula φ .

Problem: Is φ true (valid)?

Observation

We can assume that the quantified formula is in CNF or 3-CNF (same transformations possible as for propositional logic formulae)

Consider a propositional logic formula φ with variables X_1, \ldots, X_ℓ :

Example 11.2

The QBF $\exists X_1 \cdots \exists X_\ell . \varphi$ is true if and only if φ is satisfiable.

Example 11.3

The QBF $\forall X_1, \dots \forall X_\ell, \varphi$ is true if and only if φ is a tautology.

The Power of QBF

Theorem 11.4

True QBF is PSPACE-complete.

Proof.

- ► TRUE QBF ∈ PSPACE: Give an algorithm that runs in polynomial space.
- ► TRUE QBF is PSPACE-hard:
 Proof by reduction from the word problem for polynomially space-bounded TMs.

Solving True QBF in PSPACE

```
01 TRUEQBF(\varphi) {
02    if \varphi has no quantifiers :
03      return "evaluation of \varphi"
04    else if \varphi = \exists X.\psi :
05      return (TRUEQBF(\psi[X/\top]) OR TRUEQBF(\psi[X/\bot]))
06    else if \varphi = \forall X.\psi :
07      return (TRUEQBF(\psi[X/\top]) AND TRUEQBF(\psi[X/\bot]))
08 }
```

- Evaluation in line 03 can be done in polynomial space
- Recursions in lines 05 and 07 can be executed one after the other, reusing space
- Maximum depth of recursion = number of variables (linear)
- Store one variable assignment per recursive call
- → polynomial space algorithm

PSPACE-Hardness of True QBF

Express TM computation in logic, similar to Cook-Levin

Given:

- a polynomial p
- ▶ a *p*-space bounded 1-tape NTM $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}})$
- ▶ a word w

Intended reduction

Define a QBF $\varphi_{p,\mathcal{M},w}$ such that $\varphi_{p,\mathcal{M},w}$ is true if and only if \mathcal{M} accepts w in space p(|w|).

Note

We show the reduction for NTMs, which is more than needed, but makes little difference in logic and allows us to reuse our previous formulae from Cook-Levin

Review: Encoding Configurations

Use propositional variables for describing configurations:

- Q_q for each $q \in Q$ means " \mathcal{M} is in state $q \in Q$ "
- P_i for each $0 \le i < p(n)$ means "the head is at Position i"
- $S_{a,i}$ for each $a \in \Gamma$ and $0 \le i < p(n)$ means "tape cell i contains Symbol a"
- Represent configuration $(q, p, a_0 \dots a_{p(n)})$

by assigning truth values to variables from the set

$$\overline{C} := \{Q_q, P_i, S_{a,i} \mid q \in Q, \quad a \in \Gamma, \quad 0 \le i < p(n)\}$$

using the truth assignment β defined as

$$\beta(Q_s) := \begin{cases} 1 & s = q \\ 0 & s \neq q \end{cases} \qquad \beta(P_i) := \begin{cases} 1 & i = p \\ 0 & i \neq p \end{cases} \qquad \beta(S_{a,i}) := \begin{cases} 1 & a = a_i \\ 0 & a \neq a_i \end{cases}$$

Review: Validating Configurations

We define a formula $Conf(\overline{C})$ for a set of configuration variables

$$\overline{C} = \{Q_q, P_i, S_{a,i} \mid q \in Q, \quad a \in \Gamma, \quad 0 \le i < p(n)\}$$

as follows:

$$Conf(\overline{C}) :=$$

$$\bigvee_{q\in Q} \left(Q_q \wedge \bigwedge_{q'\neq q} \neg Q_{q'}\right)$$

$$\wedge \bigvee_{p < p(n)} \left(P_p \wedge \bigwedge_{p' \neq p} \neg P_{p'} \right)$$

$$\wedge \bigwedge_{0 \le i < p(n)} \bigvee_{a \in \Gamma} \left(S_{a,i} \wedge \bigwedge_{b \ne a \in \Gamma} \neg S_{b,i} \right)$$

"the assignment is a valid configuration":

"TM in exactly one state $q \in Q$ "

"head in exactly one position p < p(n)"

"exactly one $a \in \Gamma$ in each cell"

Review: Validating Configurations

For an assignment β defined on variables in \overline{C} define

$$\operatorname{conf}(\overline{C},\beta) := \left\{ \begin{aligned} &\beta(Q_q) = 1, \\ (q,p,w_0 \dots w_{p(n)}) \mid & \beta(P_p) = 1, \\ &\beta(S_{w_i,i}) = 1 \text{ for all } 0 \leq i < p(n) \end{aligned} \right\}$$

Note: β may be defined on other variables besides those in \overline{C} .

Lemma 11.5

If β satisfies $\operatorname{Conf}(\overline{C})$ then $|\operatorname{conf}(\overline{C},\beta)|=1$. We can therefore write $\operatorname{conf}(\overline{C},\beta)=(q,p,w)$ to simplify notation.

Observations:

- ▶ $conf(C,\beta)$ is a potential configuration of \mathcal{M} , but it may not be reachable from the start configuration of \mathcal{M} on input w.
- ▶ Conversely, every configuration $(q, p, w_1 \dots w_{p(n)})$ induces a satisfying assignment β or which conf $(\overline{C}, \beta) = (q, p, w_1 \dots w_{p(n)})$.

Review: Transitions Between Configurations

Consider the following formula $Next(\overline{C}, \overline{C}')$ defined as

$$\mathsf{Conf}(\overline{C}) \land \mathsf{Conf}(\overline{C}') \land \mathsf{NoChange}(\overline{C}, \overline{C}') \land \mathsf{Change}(\overline{C}, \overline{C}').$$

$$\mathsf{NoChange} := \bigvee_{0 \leq p < p(n)} \left(P_p \land \bigwedge_{i \neq p, a \in \Gamma} \left(S_{a,i} \to S'_{a,i} \right) \right)$$

$$\mathsf{Change} := \bigvee_{0 \leq \rho < p(n)} \left(P_{\rho} \wedge \bigvee_{\substack{q \in Q \\ a \in \Gamma}} \left(Q_{q} \wedge S_{a,p} \wedge \bigvee_{(q',b,D) \in \delta(q,a)} (Q'_{q'} \wedge S'_{b,p} \wedge P'_{D(p)}) \right) \right)$$

where D(p) is the position reached by moving in direction D from p.

Lemma 11.6

For any assignment β defined on $\overline{C} \cup \overline{C}'$:

$$\beta$$
 satisfies Next $(\overline{C}, \overline{C}')$ if and only if $\operatorname{conf}(\overline{C}, \beta) \vdash_{\mathcal{M}} \operatorname{conf}(\overline{C}', \beta)$

Review: Start and End

Defined so far:

- ► $CONF(\overline{C})$: \overline{C} describes a potential configuration
- ▶ $Next(\overline{C}, \overline{C}')$: $conf(\overline{C}, \beta) \vdash_{\mathcal{M}} conf(\overline{C}', \beta)$

Start configuration: Let $w = w_0 \cdots w_{n-1} \in \Sigma^*$ be the input word

$$\mathsf{Start}_{\mathcal{M},w}(\overline{C}) := \mathsf{Conf}(\overline{C}) \land Q_{q_0} \land P_0 \land \bigwedge_{i=0}^{n-1} S_{w_i,i} \land \bigwedge_{i=n}^{p(n)-1} S_{\square,i}$$

Then an assignment β satisfies $\mathsf{Start}_{\mathcal{M},w}(\overline{C})$ if and only if \overline{C} represents the start configuration of \mathcal{M} on input w.

Accepting stop configuration:

$$\mathsf{Acc} ext{-}\mathsf{Conf}(\overline{C}) := \mathsf{Conf}(\overline{C}) \wedge Q_{q_{\mathsf{accept}}}$$

Then an assignment β satisfies Acc-Conf(\overline{C}) if and only if \overline{C} represents an accepting configuration of \mathcal{M} .

For Cook-Levin, we used one set of configuration variables for every computating step: polynomially time → polynomially many variables

Problem: For polynomial space, we have $2^{O(p(n))}$ possible steps ...

For Cook-Levin, we used one set of configuration variables for every computating step: polynomially time → polynomially many variables

Problem: For polynomial space, we have $2^{O(p(n))}$ possible steps ...

What would Savitch do?

For Cook-Levin, we used one set of configuration variables for every computating step: polynomially time → polynomially many variables

Problem: For polynomial space, we have $2^{O(p(n))}$ possible steps ...

What would Savitch do?

Define a formula $CanYIeld_i(\overline{C}_1, \overline{C}_2)$ to state that \overline{C}_2 is reachable from \overline{C}_1 in at most 2^i steps:

$$\begin{split} &\mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ &\mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \exists \overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_i(\overline{C}_1,\overline{C}) \wedge \mathsf{CanYield}_i(\overline{C},\overline{C}_2) \end{split}$$

For Cook-Levin, we used one set of configuration variables for every computating step: polynomially time → polynomially many variables

Problem: For polynomial space, we have $2^{O(p(n))}$ possible steps ...

What would Savitch do?

Define a formula $CanYield_i(\overline{C}_1, \overline{C}_2)$ to state that \overline{C}_2 is reachable from \overline{C}_1 in at most 2^i steps:

$$\begin{split} & \mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ & \mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \exists \overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_i(\overline{C}_1,\overline{C}) \wedge \mathsf{CanYield}_i(\overline{C},\overline{C}_2) \end{split}$$

But what is $\overline{C}_1 = \overline{C}_2$ supposed to mean here?

For Cook-Levin, we used one set of configuration variables for every computating step: polynomially time → polynomially many variables

Problem: For polynomial space, we have $2^{O(p(n))}$ possible steps ...

What would Savitch do?

Define a formula $CanYield_i(\overline{C}_1, \overline{C}_2)$ to state that \overline{C}_2 is reachable from \overline{C}_1 in at most 2^i steps:

$$\begin{split} &\mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ &\mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \exists \overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_i(\overline{C}_1,\overline{C}) \wedge \mathsf{CanYield}_i(\overline{C},\overline{C}_2) \end{split}$$

But what is $\overline{C}_1 = \overline{C}_2$ supposed to mean here? It is short for:

$$\bigwedge_{q \in Q} Q_q^1 \leftrightarrow Q_q^2 \wedge \bigwedge_{0 \leq i < p(n)} P_i^1 \leftrightarrow P_i^2 \wedge \bigwedge_{a \in \Gamma, 0 \leq i < p(n)} S_{a,i}^1 \leftrightarrow S_{a,i}^2$$

Putting Everything Together

We define the formula $\varphi_{p,M,w}$ as follows:

$$\varphi_{p,\mathcal{M},w}:=\exists \overline{C}_1.\exists \overline{C}_2.\mathsf{Start}_{\mathcal{M},w}(\overline{C}_1) \land \mathsf{Acc}\text{-}\mathsf{Conf}(\overline{C}_2) \land \mathsf{CanYield}_{dp(n)}(\overline{C}_1,\overline{C}_2)$$

where we select d to be the least number such that \mathcal{M} has less than $2^{dp(n)}$ configurations in space p(n).

Lemma 11.7

 $\varphi_{p,\mathcal{M},w}$ is satisfiable if and only if \mathcal{M} accepts w in space p(|w|).

Note: we used only existential quantifiers when defining $\varphi_{p,\mathcal{M},w}$:

$$\begin{split} & \mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ & \mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \overline{\exists}\overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C}_1,\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C},\overline{C}_2) \\ & \varphi_{\mathcal{D},\mathcal{M},w} := \overline{\exists}\overline{C}_1.\overline{\exists}\overline{C}_2.\mathsf{Start}_{\mathcal{M},w}(\overline{C}_1) \wedge \mathsf{Acc\text{-}Conf}(\overline{C}_2) \wedge \mathsf{CanYield}_{dp(p)}(\overline{C}_1,\overline{C}_2) \end{split}$$

Note: we used only existential quantifiers when defining $\varphi_{p,\mathcal{M},w}$:

$$\begin{split} & \mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ & \mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \overline{\exists}\overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C}_1,\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C},\overline{C}_2) \\ & \varphi_{p,\mathcal{M},w} := \overline{\exists}\overline{C}_1.\overline{\exists}\overline{C}_2.\mathsf{Start}_{\mathcal{M},w}(\overline{C}_1) \wedge \mathsf{Acc}\text{-}\mathsf{Conf}(\overline{C}_2) \wedge \mathsf{CanYield}_{dp(n)}(\overline{C}_1,\overline{C}_2) \end{split}$$

Now that's quite interesting ...

Note: we used only existential quantifiers when defining $\varphi_{p,\mathcal{M},w}$:

$$\begin{split} & \mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ & \mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \frac{1}{3}\overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C}_1,\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C},\overline{C}_2) \\ & \varphi_{p,\mathcal{M},w} := \frac{1}{3}\overline{C}_1.\underline{\exists}\overline{C}_2.\mathsf{Start}_{\mathcal{M},w}(\overline{C}_1) \wedge \mathsf{Acc}\text{-}\mathsf{Conf}(\overline{C}_2) \wedge \mathsf{CanYield}_{dp(n)}(\overline{C}_1,\overline{C}_2) \end{split}$$

Now that's quite interesting ...

▶ With only (non-negated) ∃ quantifiers, TRUE QBF coincides with SAT

Note: we used only existential quantifiers when defining $\varphi_{p,\mathcal{M},w}$:

$$\begin{split} & \mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ & \mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \exists \overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C}_1,\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C},\overline{C}_2) \\ & \varphi_{p,\mathcal{M},w} := \exists \overline{C}_1. \exists \overline{C}_2.\mathsf{Start}_{\mathcal{M},w}(\overline{C}_1) \wedge \mathsf{Acc\text{-}Conf}(\overline{C}_2) \wedge \mathsf{CanYield}_{dp(n)}(\overline{C}_1,\overline{C}_2) \end{split}$$

Now that's quite interesting ...

- ▶ With only (non-negated) ∃ quantifiers, True QBF coincides with Sat
- ► SAT is in NP

Note: we used only existential quantifiers when defining $\varphi_{p,\mathcal{M},w}$:

$$\begin{split} & \mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ & \mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \frac{1}{3}\overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C}_1,\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C},\overline{C}_2) \\ & \varphi_{p,\mathcal{M},w} := \frac{1}{3}\overline{C}_1.\underline{\exists}\overline{C}_2.\mathsf{Start}_{\mathcal{M},w}(\overline{C}_1) \wedge \mathsf{Acc}\text{-}\mathsf{Conf}(\overline{C}_2) \wedge \mathsf{CanYield}_{dp(n)}(\overline{C}_1,\overline{C}_2) \end{split}$$

Now that's quite interesting ...

- ▶ With only (non-negated) ∃ quantifiers, True QBF coincides with Sat
- ▶ Sat is in NP
- So we showed that the word problem for PSPACE NTMs to be in NP

Note: we used only existential quantifiers when defining $\varphi_{p,\mathcal{M},w}$:

$$\begin{split} & \mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ & \mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \exists \overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C}_1,\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C},\overline{C}_2) \\ & \varphi_{p,\mathcal{M},w} := \exists \overline{C}_1. \exists \overline{C}_2.\mathsf{Start}_{\mathcal{M},w}(\overline{C}_1) \wedge \mathsf{Acc}\text{-}\mathsf{Conf}(\overline{C}_2) \wedge \mathsf{CanYield}_{dp(n)}(\overline{C}_1,\overline{C}_2) \end{split}$$

Now that's quite interesting ...

- ▶ With only (non-negated) ∃ quantifiers, TRUE QBF coincides with SAT
- ▶ Sat is in NP
- So we showed that the word problem for PSPACE NTMs to be in NP

So we found that NP = PSPACE!

Note: we used only existential quantifiers when defining $\varphi_{p,\mathcal{M},w}$:

$$\begin{split} & \mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ & \mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \exists \overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C}_1,\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C},\overline{C}_2) \\ & \varphi_{p,\mathcal{M},w} := \exists \overline{C}_1. \exists \overline{C}_2.\mathsf{Start}_{\mathcal{M},w}(\overline{C}_1) \wedge \mathsf{Acc\text{-}Conf}(\overline{C}_2) \wedge \mathsf{CanYield}_{dp(n)}(\overline{C}_1,\overline{C}_2) \end{split}$$

Now that's quite interesting ...

- ▶ With only (non-negated) ∃ quantifiers, TRUE QBF coincides with SAT
- ▶ Sat is in NP
- So we showed that the word problem for PSPACE NTMs to be in NP

So we found that NP = PSPACE!

Strangely, most textbooks claim that this is not known to be true . . .

Are we up for the next Turing Award, or did we make a mistake?

How big is $\varphi_{p,\mathcal{M},w}$?

$$\begin{split} &\mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ &\mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \exists \overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C}_1,\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C},\overline{C}_2) \\ &\varphi_{\mathcal{D},\mathcal{M},w} := \exists \overline{C}_1.\exists \overline{C}_2.\mathsf{Start}_{\mathcal{M},w}(\overline{C}_1) \wedge \mathsf{Acc}\text{-}\mathsf{Conf}(\overline{C}_2) \wedge \mathsf{CanYield}_{d\mathcal{D}(n)}(\overline{C}_1,\overline{C}_2) \end{split}$$

How big is $\varphi_{p,\mathcal{M},w}$?

$$\begin{split} &\mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ &\mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \exists \overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C}_1,\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C},\overline{C}_2) \\ &\varphi_{p,\mathcal{M},w} := \exists \overline{C}_1. \exists \overline{C}_2.\mathsf{Start}_{\mathcal{M},w}(\overline{C}_1) \wedge \mathsf{Acc\text{-}Conf}(\overline{C}_2) \wedge \mathsf{CanYield}_{dp(n)}(\overline{C}_1,\overline{C}_2) \end{split}$$

Size of CanYIELD_{i+1} is more than twice the size of CanYIELD_i \rightarrow Size of $\varphi_{p,\mathcal{M},w}$ is in $2^{O(p(n))}$. Oops.

How big is $\varphi_{p,\mathcal{M},w}$?

$$\begin{split} &\mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ &\mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \exists \overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C}_1,\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C},\overline{C}_2) \\ &\varphi_{\rho,\mathcal{M},w} := \exists \overline{C}_1. \exists \overline{C}_2.\mathsf{Start}_{\mathcal{M},w}(\overline{C}_1) \wedge \mathsf{Acc\text{-}Conf}(\overline{C}_2) \wedge \mathsf{CanYield}_{dp(n)}(\overline{C}_1,\overline{C}_2) \end{split}$$

Size of CanYIELD_{i+1} is more than twice the size of CanYIELD_i \rightarrow Size of $\varphi_{p,\mathcal{M},w}$ is in $2^{O(p(n))}$. Oops.

A correct reduction: We redefine CanYield by setting

Can Yield
$$_{i+1}(\overline{C}_1, \overline{C}_2) := \overline{C}$$
. Conf $(\overline{C}) \land \overline{C}$

$$\forall \overline{Z}_1. \forall \overline{Z}_2. \big(((\overline{Z}_1 = \overline{C}_1 \wedge \overline{Z}_2 = \overline{C}) \vee (\overline{Z}_1 = \overline{C} \wedge \overline{Z}_2 = \overline{C}_2)) \rightarrow \mathsf{CanYield}_i(\overline{Z}_1, \overline{Z}_2) \big)$$

Let's analyse the size more carefully this time:

$$\begin{split} & \mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \\ & \exists \overline{C}.\mathsf{Conf}(\overline{C}) \land \\ & \forall \overline{Z}_1.\forall \overline{Z}_2. \big(((\overline{Z}_1 = \overline{C}_1 \land \overline{Z}_2 = \overline{C}) \lor (\overline{Z}_1 = \overline{C} \land \overline{Z}_2 = \overline{C}_2)) \to \mathsf{CanYield}_i(\overline{Z}_1,\overline{Z}_2) \big) \end{split}$$

- ► CanYield_{i+1}(\overline{C}_1 , \overline{C}_2) extends CanYield_i(\overline{C}_1 , \overline{C}_2) by parts that are linear in the size of configurations \rightsquigarrow growth in O(p(n))
- ▶ Maximum index *i* used in $\varphi_{p,M,w}$ is dp(n), that is in O(p(n))
- ► Therefore: $\varphi_{p,\mathcal{M},w}$ has size $O(p^2(n))$ and thus can be computed in polynomial time

Exercise:

Why can we just use dp(n) in the reduction? Don't we have to compute it somehow? Maybe even in polynomial time?

The Power of QBF

Theorem 11.4

True QBF is PSPACE-complete.

Proof.

- ► TRUE QBF ∈ PSPACE: Give an algorithm that runs in polynomial space.
- ► TRUE QBF is PSPACE-hard:

 Proof by reduction from the word problem for polynomially space-bounded TMs.

A More Common Logical Problem in PSPACE

Recall standard first-order logic:

- Instead of propositional variables, we have atoms (predicates with constants and variables)
- Instead of propositional evaluations we have first-order structures (or interpretations)
- First-order quantifiers can be used on variables
- Sentences are formulae where all variables are quantified
- A sentence can be satisfied or not by a given first-order structure

A More Common Logical Problem in PSPACE

Recall standard first-order logic:

- Instead of propositional variables, we have atoms (predicates with constants and variables)
- Instead of propositional evaluations we have first-order structures (or interpretations)
- First-order quantifiers can be used on variables
- Sentences are formulae where all variables are quantified
- A sentence can be satisfied or not by a given first-order structure

FOL MODEL CHECKING

Input: A first-orer sentence φ and a finite first-order

structure \mathcal{I} .

Problem: Is φ satisfied by I?

First-Order Logic is PSPACE-complete

Theorem 11.8

FOL Model Checking is PSPACE-complete.

Proof.

- ► FOL Model Checking ∈ PSPACE:

 Give algorithm that runs in polynomial space.
- ▶ FOL Model Checking is PSPACE-hard: Proof by reduction True QBF \leq_p FOL Model Checking.

Checking FOL Models in Polynomial Space (Sketch)

```
01 EVAL(\varphi, \mathcal{I}) {
      switch (\varphi):
02
         case p(c_1,...,c_n): return \langle c_1,...,c_n\rangle\in p^T
03
04
         case \neg \psi: return NOT Eval(\psi, I)
         case \psi_1 \wedge \psi_2: return Eval(\psi_1, I) AND Eval(\psi_2, I)
05
06
         case \exists x.\psi:
            for c \in \Delta^I:
07
80
              if EVAL(\psi[x \mapsto c], I): return TRUE
           // eventually, if no success:
09
10
           return FALSE
11 }
```

- ▶ We can assume φ only uses \neg , \wedge and \exists (easy to get)
- We use Δ^I to denote the (finite!) domain of I
- ▶ We allow domain elements to be used like constants in the formula

Hardness of FOL Model Checking

Given: a QBF $\varphi = Q_1 X_1 \cdots Q_\ell X_\ell \psi$

FOL Model Checking Problem:

- ▶ Interpretation domain $\Delta^{I} := \{0, 1\}$
- ▶ Single predicate symbol true with interpretation $true^{I} = \{\langle 1 \rangle\}$
- FOL formula φ' is obtained by replacing variables in input QBF with corresponding first-order expressions:

$$Q_1 x_1 \cdots Q_\ell x_\ell \psi[X_1 \mapsto \operatorname{true}(x_1), \dots, X_\ell \mapsto \operatorname{true}(x_\ell)]$$

Lemma 11.9

 $\langle I, \varphi' \rangle \in \mathsf{FOL}$ Model Checking if and only if $\varphi \in \mathsf{True}$ QBF.

First-Order Logic is PSPACE-complete

Theorem 11.8

FOL Model Checking is PSPACE-complete.

Proof.

- ► FOL Model Checking ∈ PSPACE:

 Give algorithm that runs in polynomial space.
- ► FOL Model Checking is PSPACE-hard:

 Proof by reduction True QBF ≤_p FOL Model Checking.

1

FOL Model Checking: Practical Significance

Why is FOL Model Checking a relevant problem?

FOL Model Checking: Practical Significance

Why is FOL Model Checking a relevant problem?

Correspondence with database query answering:

- Finite first-order interpretation = database
- ► First-order logic formula = database query
- Satisfying assignments (for non-sentences) = query results

Known correspondence:

As a query language, FOL has the same expressive power as (basic) SQL (relational algebra).

Corollary 11.10

Answering SQL queries over a given database is PSPACE-complete.

Games

Games as Computational Problems

Many single-player games relate to NP-complete problems:

- Sudoku
- Minesweeper
- Tetris

```
Decision problem: Is there a solution? (For Tetris: is it possible to clear all blocks?)
```

What about two-player games?

Games as Computational Problems

Many single-player games relate to NP-complete problems:

- Sudoku
- Minesweeper
- Tetris
- **>** ...

Decision problem: Is there a solution? (For Tetris: is it possible to clear all blocks?)

What about two-player games?

- Two players take moves in turns
- The players have different goals
- The game ends if a player wins

Decision problem: Does Player 1 have a winnings strategy?
In other words: can Player 1 enforce winning, whatever Player 2 does?

Coming Up Next

- ▶ How hard is it to determine if there is a winning strategy?
- Which games should we study?

To be continued ...