
COMPLEXITY THEORY

Lecture 8: NP-Complete Problems

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 9th Nov 2021

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2021/22)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

Towards More NP-Complete Problems

Starting with Sat, one can readily show more problems P to be NP-complete, each time
performing two steps:

(1) Show that P ∈ NP

(2) Find a known NP-complete problem P′ and reduce P′ ≤p P

Thousands of problem have now been shown to be NP-complete.
(See Garey and Johnson for an early survey)

In this course:

Sat

≤p Clique ≤p Independent Set

≤p 3-Sat ≤p Dir. Hamiltonian Path

≤p Subset Sum ≤p Knapsack

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 2 of 36

3-Sat, Hamiltonian Path, and Subset Sum

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 3 of 36

NP-Completeness of 3-Sat

3-Sat: Satisfiability of formulae in CNF with ≤ 3 literals per clause

Theorem 8.1: 3-Sat is NP-complete.

Proof: Hardness by reduction Sat ≤p 3-Sat:

• Given: ϕ in CNF

• Construct ϕ′ by replacing clauses Ci = (L1 ∨ · · · ∨ Lk) with k > 3 by

C′i := (L1 ∨ Y1) ∧ (¬Y1 ∨ L2 ∨ Y2) ∧ ... ∧ (¬Yk−1 ∨ Lk)

Here, the Yj are fresh variables for each clause.

• Claim: ϕ is satisfiable iff ϕ′ is satisfiable.

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 4 of 36

Example

Let ϕ := (X1 ∨ X2 ∨ ¬X3 ∨ X4) ∧ (¬X4 ∨ ¬X2 ∨ X5 ∨ ¬X1)

Then ϕ′ := (X1 ∨ Y1) ∧

(¬Y1 ∨ X2 ∨ Y2) ∧

(¬Y2 ∨ ¬X3 ∨ Y3) ∧

(¬Y3 ∨ X4) ∧

(¬X4 ∨ Z1) ∧

(¬Z1 ∨ ¬X2 ∨ Z2) ∧

(¬Z2 ∨ X5 ∨ Z3) ∧

(¬Z3 ∨ ¬X1)

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 5 of 36

Proving NP-Completeness of 3-Sat

“⇒” Given ϕ :=
∧m

i=1 Ci with clauses Ci, show that if ϕ is satisfiable then ϕ′ is satisfiable

For a satisfying assignment β for ϕ, define an assignment β′ for ϕ′:

For each C := (L1 ∨ · · · ∨ Lk), with k > 3, in ϕ there is

C′ = (L1 ∨ Y1) ∧ (¬Y1 ∨ L2 ∨ Y2) ∧ ... ∧ (¬Yk−1 ∨ Lk) in ϕ′

As β satisfies ϕ, there is i ≤ k s.th. β(Li) = 1 i.e.
β(X) = 1 if Li = X

β(X) = 0 if Li = ¬X

Set

β′(Yj) = 1 for j < i

β′(Yj) = 0 for j ≥ i

β′(X) = β(X) for all variables in ϕ

This is a satisfying asignment for ϕ′

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 6 of 36

Proving NP-Completeness of 3-Sat

“⇐” Show that if ϕ′ is satisfiable then so is ϕ

Suppose β is a satisfying assignment for ϕ′ – then β satisfies ϕ:

Let C := (L1 ∨ · · · ∨ Lk) be a clause of ϕ

(1) If k ≤ 3 then C is a clause of ϕ′

(2) If k > 3 then

C′ = (L1 ∨ Y1) ∧ (¬Y1 ∨ L2 ∨ Y2) ∧ ... ∧ (¬Yk−1 ∨ Lk) in ϕ′

β must satisfy at least one Li, 1 ≤ i ≤ k

Case (2) follows since, if β(Li) = 0 for all i ≤ k then C′ can be reduced to

C′ = (Y1) ∧ (¬Y1 ∨ Y2) ∧ ... ∧ (¬Yk−1)

≡ Y1 ∧ (Y1 → Y2) ∧ ... ∧ (Yk−2 → Yk−1) ∧ ¬Yk−1

which is not satisfiable. �

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 7 of 36

NP-Completeness of Directed Hamiltonian Path

Directed Hamiltonian Path

Input: A directed graph G.

Problem: Is there a directed path in G containing every ver-
tex exactly once?

Theorem 8.2: Directed Hamiltonian Path is NP-complete.

Proof:

(1) Directed Hamiltonian Path ∈ NP:
Take the path to be the certificate.

(2) Directed Hamiltonian Path is NP-hard:
3-Sat ≤p Directed Hamiltonian Path

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 8 of 36

Digression: How to design reductions

Task: Show that problem P (Directed Hamiltonian Path) is NP-hard.

• Arguably, the most important part is to decide where to start from.

That is, which problem to reduce to Directed Hamiltonian Path?

• Considerations:
– Is there an NP-complete problem similar to P?

(for example, Clique and Independent Set)
– It is not always beneficial to choose a problem of the same type

(for example, reducing a graph problem to a graph problem)
• For instance, Clique, Independent Set are “local” problems

(is there a set of vertices inducing some structure)
• Hamiltonian Path is a global problem

(find a structure – the Hamiltonian path – containing all vertices)

• How to design the reduction:
– Does your problem come from an optimisation problem?

If so: a maximisation problem? a minimisation problem?
– Learn from examples, have good ideas.

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 9 of 36

NP-Completeness of Directed Hamiltonian Path

Directed Hamiltonian Path

Input: A directed graph G.

Problem: Is there a directed path in G containing every ver-
tex exactly once?

Theorem 8.2: Directed Hamiltonian Path is NP-complete.

Proof:

(1) Directed Hamiltonian Path ∈ NP:
Take the path to be the certificate.

(2) Directed Hamiltonian Path is NP-hard:
3-Sat ≤p Directed Hamiltonian Path

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 10 of 36

NP-Completeness of Directed Hamiltonian Path

Proof (Proof idea): (see blackboard for details)
Let ϕ :=

∧k
i=1 Ci and Ci := (Li,1 ∨ Li,2 ∨ Li,3)

• For each variable X occurring in ϕ, we construct a directed graph (“gadget”) that
allows only two Hamiltonian paths: “true” and “false”

• Gadgets for each variable are “chained” in a directed fashion, so that all variables
must be assigned one value

• Clauses are represented by vertices that are connected to the gadgets in such a
way that they can only be visited on a Hamiltonian path that corresponds to an
assignment where they are true

Details are also given in [Sipser, Theorem 7.46].

Example 8.3: ϕ := C1 ∧ C2 where C1 := (X ∨ ¬Y ∨ Z) and C2 := (¬X ∨ Y ∨ ¬Z)
(see blackboard)

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 11 of 36

Towards More NP-Complete Problems

Starting with Sat, one can readily show more problems P to be NP-complete, each time
performing two steps:

(1) Show that P ∈ NP

(2) Find a known NP-complete problem P′ and reduce P′ ≤p P

Thousands of problem have now been shown to be NP-complete.
(See Garey and Johnson for an early survey)

In this course:

Sat

≤p Clique ≤p Independent Set

≤p 3-Sat ≤p Dir. Hamiltonian Path

≤p Subset Sum ≤p Knapsack

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 12 of 36

NP-Completeness of Subset Sum

Subset Sum

Input: A collection1 of positive integers

S = {a1, . . . , ak} and a target integer t.

Problem: Is there a subset T ⊆ S such that
∑

ai∈T ai = t?

Theorem 8.4: Subset Sum is NP-complete.

Proof:

(1) Subset Sum ∈ NP: Take T to be the certificate.

(2) Subset Sum is NP-hard: Sat ≤p Subset Sum

1) This “collection” is supposed to be a multi-set, i.e., we allow the same number to occur several
times. The solution “subset” can likewise use numbers multiple times, but not more often than they
occured in the given collection.
Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 13 of 36

Example

(X1 ∨ X2 ∨ X3) ∧ (¬X1 ∨ ¬X4) ∧ (X4 ∨ X5 ∨ ¬X2 ∨ ¬X3)

X1 X2 X3 X4 X5 C1 C2 C3

t1 = 1 0 0 0 0 1 0 0
f1 = 1 0 0 0 0 0 1 0
t2 = 1 0 0 0 1 0 0
f2 = 1 0 0 0 0 0 1
t3 = 1 0 0 1 0 0
f3 = 1 0 0 0 0 1
t4 = 1 0 0 0 1
f4 = 1 0 0 1 0
t5 = 1 0 0 1
f5 = 1 0 0 0

m1,1 = 1 0 0
m1,2 = 1 0 0
m2,1 = 0 1 0
m3,1 = 0 0 1
m3,2 = 0 0 1
m3,3 = 0 0 1

t = 1 1 1 1 1 3 2 4

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 14 of 36

Sat ≤p Subset Sum

Given: ϕ := C1 ∧ · · · ∧ Ck in conjunctive normal form.

(w.l.o.g. at most 9 literals per clause)

Let X1, . . . , Xn be the variables in ϕ. For each Xi let

ti := a1 . . . anc1 . . . ck where aj :=

1 i = j

0 i , j
and cj :=

1 Xi occurs in Cj

0 otherwise

fi := a1 . . . anc1 . . . ck where aj :=

1 i = j

0 i , j
and cj :=

1 ¬Xi occurs in Cj

0 otherwise

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 15 of 36

Example

(X1 ∨ X2 ∨ X3) ∧ (¬X1 ∨ ¬X4) ∧ (X4 ∨ X5 ∨ ¬X2 ∨ ¬X3)

X1 X2 X3 X4 X5 C1 C2 C3

t1 = 1 0 0 0 0 1 0 0
f1 = 1 0 0 0 0 0 1 0
t2 = 1 0 0 0 1 0 0
f2 = 1 0 0 0 0 0 1
t3 = 1 0 0 1 0 0
f3 = 1 0 0 0 0 1
t4 = 1 0 0 0 1
f4 = 1 0 0 1 0
t5 = 1 0 0 1
f5 = 1 0 0 0

m1,1 = 1 0 0
m1,2 = 1 0 0
m2,1 = 0 1 0
m3,1 = 0 0 1
m3,2 = 0 0 1
m3,3 = 0 0 1

t = 1 1 1 1 1 3 2 4

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 16 of 36

Sat ≤p Subset Sum

Further, for each clause Ci take r := |Ci| − 1 integers mi,1, . . . , mi,r

where mi,j := ci . . . ck with c` :=

1 ` = i

0 ` , i
Definition of S: Let

S := {ti, fi | 1 ≤ i ≤ n} ∪ {mi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ |Ci| − 1}

Target: Finally, choose as target

t := a1 . . . anc1 . . . ck where ai := 1 and ci := |Ci|

Claim: There is T ⊆ S with
∑

ai∈T ai = t iff ϕ is satisfiable.

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 17 of 36

Example

(X1 ∨ X2 ∨ X3) ∧ (¬X1 ∨ ¬X4) ∧ (X4 ∨ X5 ∨ ¬X2 ∨ ¬X3)

X1 X2 X3 X4 X5 C1 C2 C3

t1 = 1 0 0 0 0 1 0 0
f1 = 1 0 0 0 0 0 1 0
t2 = 1 0 0 0 1 0 0
f2 = 1 0 0 0 0 0 1
t3 = 1 0 0 1 0 0
f3 = 1 0 0 0 0 1
t4 = 1 0 0 0 1
f4 = 1 0 0 1 0
t5 = 1 0 0 1
f5 = 1 0 0 0

m1,1 = 1 0 0
m1,2 = 1 0 0
m2,1 = 0 1 0
m3,1 = 0 0 1
m3,2 = 0 0 1
m3,3 = 0 0 1

t = 1 1 1 1 1 3 2 4

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 18 of 36

NP-Completeness of Subset Sum

Let ϕ :=
∧

Ci Ci: clauses

Show: If ϕ is satisfiable, then there is T ⊆ S with
∑

s∈T s = t.

Let β be a satisfying assigment for ϕ

Set T1 := {ti | β(Xi) = 1, 1 ≤ i ≤ m} ∪

{fi | β(Xi) = 0, 1 ≤ i ≤ m}

Further, for each clause Ci let ri be the number of satisfied literals in Ci (with resp. to β).

Set T2 := {mi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ |Ci| − ri}

and define T := T1 ∪ T2.

It follows:
∑

s∈T s = t

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 19 of 36

NP-Completeness of Subset Sum

Show: If there is T ⊆ S with
∑

s∈T s = t, then ϕ is satisfiable.

Let T ⊆ S such that
∑

s∈T s = t

Define β(Xi) =

1 if ti ∈ T

0 if fi ∈ T

This is well defined as for all i: ti ∈ T or fi ∈ T but not both.

Further, for each clause, there must be one literal set to 1 as for all i,

the mi,j ∈ S do not sum up to the number of literals in the clause. �

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 20 of 36

Towards More NP-Complete Problems

Starting with Sat, one can readily show more problems P to be NP-complete, each time
performing two steps:

(1) Show that P ∈ NP

(2) Find a known NP-complete problem P′ and reduce P′ ≤p P

Thousands of problem have now been shown to be NP-complete.
(See Garey and Johnson for an early survey)

In this course:

Sat

≤p Clique ≤p Independent Set

≤p 3-Sat ≤p Dir. Hamiltonian Path

≤p Subset Sum ≤p Knapsack

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 21 of 36

NP-completeness of Knapsack

Knapsack

Input: A set I := {1, . . . , n} of items
each of value vi and weight wi for 1 ≤ i ≤ n,
target value t and weight limit `

Problem: Is there T ⊆ I such that∑
i∈T vi ≥ t and

∑
i∈T wi ≤ `?

Theorem 8.5: Knapsack is NP-complete.

Proof:

(1) Knapsack ∈ NP: Take T to be the certificate.

(2) Knapsack is NP-hard: Subset Sum ≤p Knapsack

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 22 of 36

Subset Sum ≤p Knapsack

Subset Sum:

Given: S := {a1, . . . , an} collection of positive integers

t target integer

Problem: Is there a subset T ⊆ S such that
∑

ai∈T ai = t?

Reduction: From this input to Subset Sum construct

• set of items I := {1, . . . , n}

• weights and values vi = wi = ai for all 1 ≤ i ≤ n

• target value t′ := t and weight limit ` := t

Clearly: For every T ⊆ S

∑
ai∈T

ai = t iff

∑
ai∈T vi ≥ t′ = t∑
ai∈T wi ≤ ` = t

Hence: The reduction is correct and in polynomial time.

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 23 of 36

A Polynomial Time Algorithm for Knapsack

Knapsack can be solved in time O(n`) using dynamic programming

Initialisation:

• Create an (` + 1) × (n + 1) matrix M

• Set M(w, 0) := 0 for all 1 ≤ w ≤ ` and M(0, i) := 0 for all 1 ≤ i ≤ n

Computation: Assign further M(w, i) to be the largest total value obtainable by selecting
from the first i items with weight limit w:

For i = 0, 1, . . . , n − 1 set M(w, i + 1) as

M(w, i + 1) := max
{
M(w, i), M(w − wi+1, i) + vi+1

}
Here, if w − wi+1 < 0 we always take M(w, i).

Acceptance: If M contains an entry ≥ t, accept. Otherwise reject.

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 24 of 36

Example

Input I = {1, 2, 3, 4} with
Values: v1 = 1 v2 = 3 v3 = 4 v4 = 2

Weight: w1 = 1 w2 = 1 w3 = 3 w4 = 2

Weight limit: ` = 5 Target value: t = 7

weight max. total value from first i items

limit w i = 0 i = 1 i = 2 i = 3 i = 4

0 0 0 0 0 0

1 0 1 3 3 3

2 0 1 4 4 4

3 0 1 4 4 5

4 0 1 4 7 7

5 0 1 4 8 8

Set M(w, 0) := 0 for all 1 ≤ w ≤ ` and M(0, i) := 0 for all 1 ≤ i ≤ n For i = 0, 1, . . . , n − 1
set M(w, i + 1) := max

{
M(w, i), M(w − wi+1, i) + vi+1

}
Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 25 of 36

A Polynomial Time Algorithm for Knapsack

Knapsack can be solved in time O(n`) using dynamic programming

Initialisation:

• Create an (` + 1) × (n + 1) matrix M

• Set M(w, 0) := 0 for all 1 ≤ w ≤ ` and M(0, i) := 0 for all 1 ≤ i ≤ n

Computation: Assign further M(w, i) to be the largest total value obtainable by selecting
from the first i items with weight limit w:

For i = 0, 1, . . . , n − 1 set M(w, i + 1) as

M(w, i + 1) := max
{
M(w, i), M(w − wi+1, i) + vi+1

}
Here, if w − wi+1 < 0 we always take M(w, i).

Acceptance: If M contains an entry ≥ t, accept. Otherwise reject.

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 26 of 36

Example

Input I = {1, 2, 3, 4} with
Values: v1 = 1 v2 = 3 v3 = 4 v4 = 2

Weight: w1 = 1 w2 = 1 w3 = 3 w4 = 2

Weight limit: ` = 5 Target value: t = 7

weight max. total value from first i items

limit w i = 0 i = 1 i = 2 i = 3 i = 4

0 0 0 0 0 0

1 0 1 3 3 3

2 0 1 4 4 4

3 0 1 4 4 5

4 0 1 4 7 7

5 0 1 4 8 8

Set M(w, 0) := 0 for all 1 ≤ w ≤ ` and M(0, i) := 0 for all 1 ≤ i ≤ n For i = 0, 1, . . . , n − 1
set M(w, i + 1) := max

{
M(w, i), M(w − wi+1, i) + vi+1

}
Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 27 of 36

Did we prove P = NP?

Summary:
• Theorem 8.5: Knapsack is NP-complete

• Knapsack can be solved in time O(n`) using dynamic programming

What went wrong?

Knapsack

Input: A set I := {1, . . . , n} of items
each of value vi and weight wi for 1 ≤ i ≤ n,
target value t and weight limit `

Problem: Is there T ⊆ I such that∑
i∈T vi ≥ t and

∑
i∈T wi ≤ `?

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 28 of 36

Pseudo-Polynomial Time

The previous algorithm is not sufficient to show that Knapsack is in P

• The algorithm fills a (` + 1) × (n + 1) matrix M

• The size of the input to Knapsack is O(n log `)

{ the size of M is not bounded by a polynomial in the length of the input!

Definition 8.6 (Pseudo-Polynomial Time): Problems decidable in time polyno-
mial in the sum of the input length and the value of numbers occurring in the in-
put.

Equivalently: Problems decidable in polynomial time when using unary encoding
for all numbers in the input.

• If Knapsack is restricted to instances with ` ≤ p(n) for a polynomial p, then we obtain
a problem in P.

• Knapsack is in polynomial time for unary encoding of numbers.

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 29 of 36

Strong NP-completeness
Pseudo-Polynomial Time: Algorithms polynomial in the maximum of the input length and
the value of numbers occurring in the input.

Examples:
• Knapsack
• Subset Sum

Strong NP-completeness: Problems which remain NP-complete even if all numbers are
bounded by a polynomial in the input length (equivalently: even for unary coding of
numbers).

Examples:
• Clique
• Sat
• Hamiltonian Cycle
• . . .

Note: Showing Sat ≤p Subset Sum required exponentially large numbers.
Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 30 of 36

Beyond NP

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 31 of 36

The Class coNP

Recall that coNP is the complement class of NP.

Definition 8.7:

• For a language L ⊆ Σ∗ let L := Σ∗ \ L be its complement

• For a complexity class C, we define coC := {L | L ∈ C}

• In particular coNP = {L | L ∈ NP}

A problem belongs to coNP, if no-instances have short certificates.

Examples:

• No Hamiltonian Path: Does the graph G not have a Hamiltonian path?

• Tautology: Is the propositional logic formula ϕ a tautology (true under all
assignments)?

• . . .

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 32 of 36

coNP-completeness

Definition 8.8: A language C ∈ coNP is coNP-complete, if L ≤p C for all L ∈
coNP.

Theorem 8.9:

(1) P = coP

(2) Hence, P ⊆ NP ∩ coNP

Open questions:

• NP = coNP?

Most people do not think so.

• P = NP ∩ coNP?

Again, most people do not think so.

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 33 of 36

Example: Chess Problems

Mate in 3 moves; White’s turn

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 34 of 36

Example: Chess Problems

Mate in 262 moves; White’s turn

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 35 of 36

Summary and Outlook

3-Sat and Hamiltonian Path are also NP-complete

So are SubSet Sum and Knapsack, but only if numbers are encoded effiently
(pseudo-polynomial time)

There do not seem to be polynomial certificates for coNP instances; and for some
problems there seem to be certificates neither for instances nor for non-instances

What’s next?

• Space

• Games

• Relating complexity classes

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 36 of 36

	NP-Complete Problems
	3-Sat, Hamiltonian Path and Subset Sum
	Knapsack and Strong NP-Completeness
	Beyond NP

