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Towards More NP-Complete Problems

Starting with Sat, one can readily show more problems P to be NP-complete, each time
performing two steps:

(1) Show that P ∈ NP

(2) Find a known NP-complete problem P′ and reduce P′ ≤p P

Thousands of problem have now been shown to be NP-complete.
(See Garey and Johnson for an early survey)

In this course:

Sat

≤p Clique ≤p Independent Set

≤p 3-Sat ≤p Dir. Hamiltonian Path

≤p Subset Sum ≤p Knapsack
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3-Sat, Hamiltonian Path, and Subset Sum
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NP-Completeness of 3-Sat

3-Sat: Satisfiability of formulae in CNF with ≤ 3 literals per clause

Theorem 8.1: 3-Sat is NP-complete.

Proof: Hardness by reduction Sat ≤p 3-Sat:

• Given: ϕ in CNF

• Construct ϕ′ by replacing clauses Ci = (L1 ∨ · · · ∨ Lk) with k > 3 by

C′i := (L1 ∨ Y1) ∧ (¬Y1 ∨ L2 ∨ Y2) ∧ ... ∧ (¬Yk−1 ∨ Lk)

Here, the Yj are fresh variables for each clause.

• Claim: ϕ is satisfiable iff ϕ′ is satisfiable.
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Example

Let ϕ := (X1 ∨ X2 ∨ ¬X3 ∨ X4) ∧ (¬X4 ∨ ¬X2 ∨ X5 ∨ ¬X1)

Then ϕ′ := (X1 ∨ Y1) ∧

(¬Y1 ∨ X2 ∨ Y2) ∧

(¬Y2 ∨ ¬X3 ∨ Y3) ∧

(¬Y3 ∨ X4) ∧

(¬X4 ∨ Z1) ∧

(¬Z1 ∨ ¬X2 ∨ Z2) ∧

(¬Z2 ∨ X5 ∨ Z3) ∧

(¬Z3 ∨ ¬X1)
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Proving NP-Completeness of 3-Sat

“⇒” Given ϕ :=
∧m

i=1 Ci with clauses Ci, show that if ϕ is satisfiable then ϕ′ is satisfiable

For a satisfying assignment β for ϕ, define an assignment β′ for ϕ′:

For each C := (L1 ∨ · · · ∨ Lk), with k > 3, in ϕ there is

C′ = (L1 ∨ Y1) ∧ (¬Y1 ∨ L2 ∨ Y2) ∧ ... ∧ (¬Yk−1 ∨ Lk) in ϕ′

As β satisfies ϕ, there is i ≤ k s.th. β(Li) = 1 i.e.
β(X) = 1 if Li = X

β(X) = 0 if Li = ¬X

Set

β′(Yj) = 1 for j < i

β′(Yj) = 0 for j ≥ i

β′(X) = β(X) for all variables in ϕ

This is a satisfying asignment for ϕ′
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Proving NP-Completeness of 3-Sat

“⇐” Show that if ϕ′ is satisfiable then so is ϕ

Suppose β is a satisfying assignment for ϕ′ – then β satisfies ϕ:

Let C := (L1 ∨ · · · ∨ Lk) be a clause of ϕ

(1) If k ≤ 3 then C is a clause of ϕ′

(2) If k > 3 then

C′ = (L1 ∨ Y1) ∧ (¬Y1 ∨ L2 ∨ Y2) ∧ ... ∧ (¬Yk−1 ∨ Lk) in ϕ′

β must satisfy at least one Li, 1 ≤ i ≤ k

Case (2) follows since, if β(Li) = 0 for all i ≤ k then C′ can be reduced to

C′ = (Y1) ∧ (¬Y1 ∨ Y2) ∧ ... ∧ (¬Yk−1)

≡ Y1 ∧ (Y1 → Y2) ∧ ... ∧ (Yk−2 → Yk−1) ∧ ¬Yk−1

which is not satisfiable. �

Markus Krötzsch, 9th Nov 2021 Complexity Theory slide 7 of 36



NP-Completeness of Directed Hamiltonian Path

Directed Hamiltonian Path

Input: A directed graph G.

Problem: Is there a directed path in G containing every ver-
tex exactly once?

Theorem 8.2: Directed Hamiltonian Path is NP-complete.

Proof:

(1) Directed Hamiltonian Path ∈ NP:
Take the path to be the certificate.

(2) Directed Hamiltonian Path is NP-hard:
3-Sat ≤p Directed Hamiltonian Path
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Digression: How to design reductions

Task: Show that problem P (Directed Hamiltonian Path) is NP-hard.

• Arguably, the most important part is to decide where to start from.

That is, which problem to reduce to Directed Hamiltonian Path?

• Considerations:
– Is there an NP-complete problem similar to P?

(for example, Clique and Independent Set)
– It is not always beneficial to choose a problem of the same type

(for example, reducing a graph problem to a graph problem)
• For instance, Clique, Independent Set are “local” problems

(is there a set of vertices inducing some structure)
• Hamiltonian Path is a global problem

(find a structure – the Hamiltonian path – containing all vertices)

• How to design the reduction:
– Does your problem come from an optimisation problem?

If so: a maximisation problem? a minimisation problem?
– Learn from examples, have good ideas.
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NP-Completeness of Directed Hamiltonian Path

Directed Hamiltonian Path
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NP-Completeness of Directed Hamiltonian Path

Proof (Proof idea): (see blackboard for details)
Let ϕ :=

∧k
i=1 Ci and Ci := (Li,1 ∨ Li,2 ∨ Li,3)

• For each variable X occurring in ϕ, we construct a directed graph (“gadget”) that
allows only two Hamiltonian paths: “true” and “false”

• Gadgets for each variable are “chained” in a directed fashion, so that all variables
must be assigned one value

• Clauses are represented by vertices that are connected to the gadgets in such a
way that they can only be visited on a Hamiltonian path that corresponds to an
assignment where they are true

Details are also given in [Sipser, Theorem 7.46].

Example 8.3: ϕ := C1 ∧ C2 where C1 := (X ∨ ¬Y ∨ Z) and C2 := (¬X ∨ Y ∨ ¬Z)
(see blackboard)
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Towards More NP-Complete Problems

Starting with Sat, one can readily show more problems P to be NP-complete, each time
performing two steps:

(1) Show that P ∈ NP

(2) Find a known NP-complete problem P′ and reduce P′ ≤p P

Thousands of problem have now been shown to be NP-complete.
(See Garey and Johnson for an early survey)

In this course:

Sat

≤p Clique ≤p Independent Set

≤p 3-Sat ≤p Dir. Hamiltonian Path

≤p Subset Sum ≤p Knapsack
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NP-Completeness of Subset Sum

Subset Sum

Input: A collection1 of positive integers

S = {a1, . . . , ak} and a target integer t.

Problem: Is there a subset T ⊆ S such that
∑

ai∈T ai = t?

Theorem 8.4: Subset Sum is NP-complete.

Proof:

(1) Subset Sum ∈ NP: Take T to be the certificate.

(2) Subset Sum is NP-hard: Sat ≤p Subset Sum

1) This “collection” is supposed to be a multi-set, i.e., we allow the same number to occur several
times. The solution “subset” can likewise use numbers multiple times, but not more often than they
occured in the given collection.
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Example

(X1 ∨ X2 ∨ X3) ∧ (¬X1 ∨ ¬X4) ∧ (X4 ∨ X5 ∨ ¬X2 ∨ ¬X3)

X1 X2 X3 X4 X5 C1 C2 C3

t1 = 1 0 0 0 0 1 0 0
f1 = 1 0 0 0 0 0 1 0
t2 = 1 0 0 0 1 0 0
f2 = 1 0 0 0 0 0 1
t3 = 1 0 0 1 0 0
f3 = 1 0 0 0 0 1
t4 = 1 0 0 0 1
f4 = 1 0 0 1 0
t5 = 1 0 0 1
f5 = 1 0 0 0

m1,1 = 1 0 0
m1,2 = 1 0 0
m2,1 = 0 1 0
m3,1 = 0 0 1
m3,2 = 0 0 1
m3,3 = 0 0 1

t = 1 1 1 1 1 3 2 4
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Sat ≤p Subset Sum

Given: ϕ := C1 ∧ · · · ∧ Ck in conjunctive normal form.

(w.l.o.g. at most 9 literals per clause)

Let X1, . . . , Xn be the variables in ϕ. For each Xi let

ti := a1 . . . anc1 . . . ck where aj :=

1 i = j

0 i , j
and cj :=

1 Xi occurs in Cj

0 otherwise

fi := a1 . . . anc1 . . . ck where aj :=

1 i = j

0 i , j
and cj :=

1 ¬Xi occurs in Cj

0 otherwise
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Example

(X1 ∨ X2 ∨ X3) ∧ (¬X1 ∨ ¬X4) ∧ (X4 ∨ X5 ∨ ¬X2 ∨ ¬X3)

X1 X2 X3 X4 X5 C1 C2 C3

t1 = 1 0 0 0 0 1 0 0
f1 = 1 0 0 0 0 0 1 0
t2 = 1 0 0 0 1 0 0
f2 = 1 0 0 0 0 0 1
t3 = 1 0 0 1 0 0
f3 = 1 0 0 0 0 1
t4 = 1 0 0 0 1
f4 = 1 0 0 1 0
t5 = 1 0 0 1
f5 = 1 0 0 0

m1,1 = 1 0 0
m1,2 = 1 0 0
m2,1 = 0 1 0
m3,1 = 0 0 1
m3,2 = 0 0 1
m3,3 = 0 0 1

t = 1 1 1 1 1 3 2 4
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Sat ≤p Subset Sum

Further, for each clause Ci take r := |Ci| − 1 integers mi,1, . . . , mi,r

where mi,j := ci . . . ck with c` :=

1 ` = i

0 ` , i
Definition of S: Let

S := {ti, fi | 1 ≤ i ≤ n} ∪ {mi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ |Ci| − 1}

Target: Finally, choose as target

t := a1 . . . anc1 . . . ck where ai := 1 and ci := |Ci|

Claim: There is T ⊆ S with
∑

ai∈T ai = t iff ϕ is satisfiable.
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Example

(X1 ∨ X2 ∨ X3) ∧ (¬X1 ∨ ¬X4) ∧ (X4 ∨ X5 ∨ ¬X2 ∨ ¬X3)

X1 X2 X3 X4 X5 C1 C2 C3

t1 = 1 0 0 0 0 1 0 0
f1 = 1 0 0 0 0 0 1 0
t2 = 1 0 0 0 1 0 0
f2 = 1 0 0 0 0 0 1
t3 = 1 0 0 1 0 0
f3 = 1 0 0 0 0 1
t4 = 1 0 0 0 1
f4 = 1 0 0 1 0
t5 = 1 0 0 1
f5 = 1 0 0 0

m1,1 = 1 0 0
m1,2 = 1 0 0
m2,1 = 0 1 0
m3,1 = 0 0 1
m3,2 = 0 0 1
m3,3 = 0 0 1

t = 1 1 1 1 1 3 2 4
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NP-Completeness of Subset Sum

Let ϕ :=
∧

Ci Ci: clauses

Show: If ϕ is satisfiable, then there is T ⊆ S with
∑

s∈T s = t.

Let β be a satisfying assigment for ϕ

Set T1 := {ti | β(Xi) = 1, 1 ≤ i ≤ m} ∪

{fi | β(Xi) = 0, 1 ≤ i ≤ m}

Further, for each clause Ci let ri be the number of satisfied literals in Ci (with resp. to β).

Set T2 := {mi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ |Ci| − ri}

and define T := T1 ∪ T2.

It follows:
∑

s∈T s = t
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NP-Completeness of Subset Sum

Show: If there is T ⊆ S with
∑

s∈T s = t, then ϕ is satisfiable.

Let T ⊆ S such that
∑

s∈T s = t

Define β(Xi) =

1 if ti ∈ T

0 if fi ∈ T

This is well defined as for all i: ti ∈ T or fi ∈ T but not both.

Further, for each clause, there must be one literal set to 1 as for all i,

the mi,j ∈ S do not sum up to the number of literals in the clause. �
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Towards More NP-Complete Problems

Starting with Sat, one can readily show more problems P to be NP-complete, each time
performing two steps:

(1) Show that P ∈ NP

(2) Find a known NP-complete problem P′ and reduce P′ ≤p P

Thousands of problem have now been shown to be NP-complete.
(See Garey and Johnson for an early survey)

In this course:

Sat

≤p Clique ≤p Independent Set

≤p 3-Sat ≤p Dir. Hamiltonian Path

≤p Subset Sum ≤p Knapsack
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NP-completeness of Knapsack

Knapsack

Input: A set I := {1, . . . , n} of items
each of value vi and weight wi for 1 ≤ i ≤ n,
target value t and weight limit `

Problem: Is there T ⊆ I such that∑
i∈T vi ≥ t and

∑
i∈T wi ≤ `?

Theorem 8.5: Knapsack is NP-complete.

Proof:

(1) Knapsack ∈ NP: Take T to be the certificate.

(2) Knapsack is NP-hard: Subset Sum ≤p Knapsack
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Subset Sum ≤p Knapsack

Subset Sum:

Given: S := {a1, . . . , an} collection of positive integers

t target integer

Problem: Is there a subset T ⊆ S such that
∑

ai∈T ai = t?

Reduction: From this input to Subset Sum construct

• set of items I := {1, . . . , n}

• weights and values vi = wi = ai for all 1 ≤ i ≤ n

• target value t′ := t and weight limit ` := t

Clearly: For every T ⊆ S

∑
ai∈T

ai = t iff

∑
ai∈T vi ≥ t′ = t∑
ai∈T wi ≤ ` = t

Hence: The reduction is correct and in polynomial time.
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A Polynomial Time Algorithm for Knapsack

Knapsack can be solved in time O(n`) using dynamic programming

Initialisation:

• Create an (` + 1) × (n + 1) matrix M

• Set M(w, 0) := 0 for all 1 ≤ w ≤ ` and M(0, i) := 0 for all 1 ≤ i ≤ n

Computation: Assign further M(w, i) to be the largest total value obtainable by selecting
from the first i items with weight limit w:

For i = 0, 1, . . . , n − 1 set M(w, i + 1) as

M(w, i + 1) := max
{
M(w, i), M(w − wi+1, i) + vi+1

}
Here, if w − wi+1 < 0 we always take M(w, i).

Acceptance: If M contains an entry ≥ t, accept. Otherwise reject.
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Example

Input I = {1, 2, 3, 4} with
Values: v1 = 1 v2 = 3 v3 = 4 v4 = 2

Weight: w1 = 1 w2 = 1 w3 = 3 w4 = 2

Weight limit: ` = 5 Target value: t = 7

weight max. total value from first i items

limit w i = 0 i = 1 i = 2 i = 3 i = 4

0 0 0 0 0 0

1 0 1 3 3 3

2 0 1 4 4 4

3 0 1 4 4 5

4 0 1 4 7 7

5 0 1 4 8 8

Set M(w, 0) := 0 for all 1 ≤ w ≤ ` and M(0, i) := 0 for all 1 ≤ i ≤ n For i = 0, 1, . . . , n − 1
set M(w, i + 1) := max

{
M(w, i), M(w − wi+1, i) + vi+1

}
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Did we prove P = NP?

Summary:
• Theorem 8.5: Knapsack is NP-complete

• Knapsack can be solved in time O(n`) using dynamic programming

What went wrong?

Knapsack

Input: A set I := {1, . . . , n} of items
each of value vi and weight wi for 1 ≤ i ≤ n,
target value t and weight limit `

Problem: Is there T ⊆ I such that∑
i∈T vi ≥ t and

∑
i∈T wi ≤ `?
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Pseudo-Polynomial Time

The previous algorithm is not sufficient to show that Knapsack is in P

• The algorithm fills a (` + 1) × (n + 1) matrix M

• The size of the input to Knapsack is O(n log `)

{ the size of M is not bounded by a polynomial in the length of the input!

Definition 8.6 (Pseudo-Polynomial Time): Problems decidable in time polyno-
mial in the sum of the input length and the value of numbers occurring in the in-
put.

Equivalently: Problems decidable in polynomial time when using unary encoding
for all numbers in the input.

• If Knapsack is restricted to instances with ` ≤ p(n) for a polynomial p, then we obtain
a problem in P.

• Knapsack is in polynomial time for unary encoding of numbers.
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Strong NP-completeness
Pseudo-Polynomial Time: Algorithms polynomial in the maximum of the input length and
the value of numbers occurring in the input.

Examples:
• Knapsack
• Subset Sum

Strong NP-completeness: Problems which remain NP-complete even if all numbers are
bounded by a polynomial in the input length (equivalently: even for unary coding of
numbers).

Examples:
• Clique
• Sat
• Hamiltonian Cycle
• . . .

Note: Showing Sat ≤p Subset Sum required exponentially large numbers.
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Beyond NP
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The Class coNP

Recall that coNP is the complement class of NP.

Definition 8.7:

• For a language L ⊆ Σ∗ let L := Σ∗ \ L be its complement

• For a complexity class C, we define coC := {L | L ∈ C}

• In particular coNP = {L | L ∈ NP}

A problem belongs to coNP, if no-instances have short certificates.

Examples:

• No Hamiltonian Path: Does the graph G not have a Hamiltonian path?

• Tautology: Is the propositional logic formula ϕ a tautology (true under all
assignments)?

• . . .
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coNP-completeness

Definition 8.8: A language C ∈ coNP is coNP-complete, if L ≤p C for all L ∈
coNP.

Theorem 8.9:

(1) P = coP

(2) Hence, P ⊆ NP ∩ coNP

Open questions:

• NP = coNP?

Most people do not think so.

• P = NP ∩ coNP?

Again, most people do not think so.
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Example: Chess Problems

Mate in 3 moves; White’s turn
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Example: Chess Problems

Mate in 262 moves; White’s turn
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Summary and Outlook

3-Sat and Hamiltonian Path are also NP-complete

So are SubSet Sum and Knapsack, but only if numbers are encoded effiently
(pseudo-polynomial time)

There do not seem to be polynomial certificates for coNP instances; and for some
problems there seem to be certificates neither for instances nor for non-instances

What’s next?

• Space

• Games

• Relating complexity classes
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