



International Center for Computational Logic

## COMPLEXITY THEORY

#### Lecture 8: NP-Complete Problems

Markus Krötzsch

**Knowledge-Based Systems** 

TU Dresden, 9th Nov 2021

More recent versions of this slide deck might be available. For the most current version of this course, see https://iccl.inf.tu-dresden.de/web/Complexity\_Theory/en

### Towards More NP-Complete Problems

Starting with **SAT**, one can readily show more problems **P** to be NP-complete, each time performing two steps:

- (1) Show that  $\mathbf{P} \in NP$
- (2) Find a known NP-complete problem  $\mathbf{P}'$  and reduce  $\mathbf{P}' \leq_p \mathbf{P}$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

## 3-Sat, Hamiltonian Path, and Subset Sum

### NP-Completeness of 3-SAT

**3-SAT**: Satisfiability of formulae in CNF with  $\leq 3$  literals per clause

Theorem 8.1: 3-SAT is NP-complete.

**Proof:** Hardness by reduction **Sat**  $\leq_p$  **3-Sat**:

- Given:  $\varphi$  in CNF
- Construct  $\varphi'$  by replacing clauses  $C_i = (L_1 \vee \cdots \vee L_k)$  with k > 3 by

 $C'_i := (L_1 \vee Y_1) \land (\neg Y_1 \vee L_2 \vee Y_2) \land \dots \land (\neg Y_{k-1} \vee L_k)$ 

Here, the  $Y_j$  are fresh variables for each clause.

• Claim:  $\varphi$  is satisfiable iff  $\varphi'$  is satisfiable.

### Example

Let  $\varphi := (X_1 \lor X_2 \lor \neg X_3 \lor X_4) \land (\neg X_4 \lor \neg X_2 \lor X_5 \lor \neg X_1)$ Then  $\varphi' := (X_1 \vee Y_1) \wedge$  $(\neg Y_1 \lor X_2 \lor Y_2) \land$  $(\neg Y_2 \lor \neg X_3 \lor Y_3) \land$  $(\neg Y_3 \lor X_4) \land$  $(\neg X_4 \lor Z_1) \land$  $(\neg Z_1 \lor \neg X_2 \lor Z_2) \land$  $(\neg Z_2 \lor X_5 \lor Z_3) \land$  $(\neg Z_3 \lor \neg X_1)$ 

### Proving NP-Completeness of 3-SAT

" $\Rightarrow$ " Given  $\varphi := \bigwedge_{i=1}^{m} C_i$  with clauses  $C_i$ , show that if  $\varphi$  is satisfiable then  $\varphi'$  is satisfiable For a satisfying assignment  $\beta$  for  $\varphi$ , define an assignment  $\beta'$  for  $\varphi'$ : For each  $C := (L_1 \lor \cdots \lor L_k)$ , with k > 3, in  $\varphi$  there is

 $C' = (L_1 \lor Y_1) \land (\neg Y_1 \lor L_2 \lor Y_2) \land \dots \land (\neg Y_{k-1} \lor L_k) \text{ in } \varphi'$ 

As  $\beta$  satisfies  $\varphi$ , there is  $i \le k$  s.th.  $\beta(L_i) = 1$  i.e.  $\beta(X) = 1$  if  $L_i = X$  $\beta(X) = 0$  if  $L_i = \neg X$ 

$$\begin{split} \beta'(Y_j) &= 1 & \text{ for } j < i \\ \text{Set } & \beta'(Y_j) = 0 & \text{ for } j \geq i \\ & \beta'(X) &= \beta(X) & \text{ for all variables in } \varphi \end{split}$$

This is a satisfying asignment for  $\varphi'$ 

### Proving NP-Completeness of 3-SAT

"
—" Show that if  $\varphi'$  is satisfiable then so is  $\varphi$ 

Suppose  $\beta$  is a satisfying assignment for  $\varphi'$  – then  $\beta$  satisfies  $\varphi$ :

Let  $C := (L_1 \lor \cdots \lor L_k)$  be a clause of  $\varphi$ 

- (1) If  $k \leq 3$  then *C* is a clause of  $\varphi'$
- (2) If k > 3 then

 $C' = (L_1 \vee Y_1) \land (\neg Y_1 \vee L_2 \vee Y_2) \land \dots \land (\neg Y_{k-1} \vee L_k) \text{ in } \varphi'$ 

 $\beta$  must satisfy at least one  $L_i$ ,  $1 \le i \le k$ 

Case (2) follows since, if  $\beta(L_i) = 0$  for all  $i \le k$  then C' can be reduced to

$$C' = (Y_1) \land (\neg Y_1 \lor Y_2) \land \dots \land (\neg Y_{k-1})$$
$$\equiv Y_1 \land (Y_1 \to Y_2) \land \dots \land (Y_{k-2} \to Y_{k-1}) \land \neg Y_{k-1}$$

which is not satisfiable.

Markus Krötzsch, 9th Nov 2021

### NP-Completeness of Directed Hamiltonian Path

#### DIRECTED HAMILTONIAN PATH

Input: A directed graph G.

Problem: Is there a directed path in *G* containing every vertex exactly once?

Theorem 8.2: DIRECTED HAMILTONIAN PATH is NP-complete.

#### Proof:

- (1) **DIRECTED HAMILTONIAN PATH**  $\in$  NP: Take the path to be the certificate.
- (2) DIRECTED HAMILTONIAN PATH is NP-hard: 3-Sat  $\leq_p$  Directed Hamiltonian Path

### Digression: How to design reductions

#### Task: Show that problem **P** (DIRECTED HAMILTONIAN PATH) is NP-hard.

• Arguably, the most important part is to decide where to start from.

That is, which problem to reduce to DIRECTED HAMILTONIAN PATH?

- Considerations:
  - Is there an NP-complete problem similar to **P**? (for example, **CLIQUE** and **INDEPENDENT SET**)
  - It is not always beneficial to choose a problem of the same type (for example, reducing a graph problem to a graph problem)
    - For instance, **CLIQUE**, **INDEPENDENT SET** are "local" problems (is there a set of vertices inducing some structure)
    - Hamiltonian Path is a global problem (find a structure – the Hamiltonian path – containing all vertices)
- How to design the reduction:
  - Does your problem come from an optimisation problem?
    - If so: a maximisation problem? a minimisation problem?
  - Learn from examples, have good ideas.

### NP-Completeness of Directed Hamiltonian Path

#### DIRECTED HAMILTONIAN PATH

Input: A directed graph G.

Problem: Is there a directed path in *G* containing every vertex exactly once?

Theorem 8.2: DIRECTED HAMILTONIAN PATH is NP-complete.

#### Proof:

- (1) **DIRECTED HAMILTONIAN PATH**  $\in$  NP: Take the path to be the certificate.
- (2) Directed Hamiltonian Path is NP-hard: 3-Sat  $\leq_p$  Directed Hamiltonian Path

### NP-Completeness of Directed Hamiltonian Path

#### Proof (Proof idea): (see blackboard for details)

Let  $\varphi := \bigwedge_{i=1}^{k} C_i$  and  $C_i := (L_{i,1} \vee L_{i,2} \vee L_{i,3})$ 

- For each variable X occurring in φ, we construct a directed graph ("gadget") that allows only two Hamiltonian paths: "true" and "false"
- Gadgets for each variable are "chained" in a directed fashion, so that all variables must be assigned one value
- Clauses are represented by vertices that are connected to the gadgets in such a way that they can only be visited on a Hamiltonian path that corresponds to an assignment where they are true

Details are also given in [Sipser, Theorem 7.46].

**Example 8.3:**  $\varphi := C_1 \land C_2$  where  $C_1 := (X \lor \neg Y \lor Z)$  and  $C_2 := (\neg X \lor Y \lor \neg Z)$  (see blackboard)

### Towards More NP-Complete Problems

Starting with **SAT**, one can readily show more problems **P** to be NP-complete, each time performing two steps:

- (1) Show that  $\mathbf{P} \in NP$
- (2) Find a known NP-complete problem  $\mathbf{P}'$  and reduce  $\mathbf{P}' \leq_p \mathbf{P}$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

### NP-Completeness of SUBSET SUM

#### SUBSET SUM

| Input: | A collection <sup>1</sup> | of positive integers |
|--------|---------------------------|----------------------|
|--------|---------------------------|----------------------|

 $S = \{a_1, \ldots, a_k\}$  and a target integer *t*.

Problem: Is there a subset  $T \subseteq S$  such that  $\sum_{a_i \in T} a_i = t$ ?

Theorem 8.4: SUBSET SUM is NP-complete.

#### Proof:

- (1) **SUBSET SUM**  $\in$  NP: Take *T* to be the certificate.
- (2) SUBSET SUM is NP-hard: SAT  $\leq_p$  SUBSET SUM

<sup>1</sup>) This "collection" is supposed to be a multi-set, i.e., we allow the same number to occur several times. The solution "subset" can likewise use numbers multiple times, but not more often than they occured in the given collection.

Markus Krötzsch, 9th Nov 2021

### Example

#### $(X_1 \lor X_2 \lor X_3) \land (\neg X_1 \lor \neg X_4) \land (X_4 \lor X_5 \lor \neg X_2 \lor \neg X_3)$

#### $X_1 X_2 X_3 X_4 X_5 C_1 C_2 C_3$

| $\begin{array}{c} t_1 \\ f_1 \\ t_2 \\ f_2 \\ t_3 \\ f_3 \\ t_4 \\ f_4 \\ t_5 \\ f_5 \end{array}$ |                       | 1 | 0<br>0<br>1<br>1 | 0<br>0<br>0<br>1<br>1 | 0<br>0<br>0<br>0<br>0<br>0<br>1<br>1 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1 | $     1 \\     0 \\     1 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\    $ | 0<br>1<br>0<br>0<br>0<br>0<br>0<br>1<br>0<br>0 | 0<br>0<br>1<br>0<br>1<br>1<br>0<br>1<br>0 |   |
|---------------------------------------------------------------------------------------------------|-----------------------|---|------------------|-----------------------|--------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------|---|
| $m_{1,1} \ m_{1,2} \ m_{2,1} \ m_{3,1} \ m_{3,2} \ m_{3,3}$                                       | =<br>=<br>=<br>=<br>= |   |                  |                       |                                      |                                           | 1<br>1<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>0<br>1<br>0<br>0                          | 0<br>0<br>1<br>1                          |   |
| t                                                                                                 | =                     | 1 | 1                | 1                     | 1                                    | 1                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                              | 4                                         | _ |

Sat 
$$\leq_p$$
 Subset Sum

**Given:**  $\varphi := C_1 \land \cdots \land C_k$  in conjunctive normal form.

(w.l.o.g. at most 9 literals per clause)

Let  $X_1, \ldots, X_n$  be the variables in  $\varphi$ . For each  $X_i$  let

$$t_i := a_1 \dots a_n c_1 \dots c_k \text{ where } a_j := \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \text{ and } c_j := \begin{cases} 1 & X_i \text{ occurs in } C_j \\ 0 & \text{otherwise} \end{cases}$$
$$f_i := a_1 \dots a_n c_1 \dots c_k \text{ where } a_j := \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \text{ and } c_j := \begin{cases} 1 & \neg X_i \text{ occurs in } C_j \\ 0 & \text{otherwise} \end{cases}$$

### Example

#### $(X_1 \lor X_2 \lor X_3) \land (\neg X_1 \lor \neg X_4) \land (X_4 \lor X_5 \lor \neg X_2 \lor \neg X_3)$

#### $X_1 X_2 X_3 X_4 X_5 C_1 C_2 C_3$

| $\begin{array}{c} t_1 \\ f_1 \\ t_2 \\ f_2 \\ t_3 \\ f_3 \\ t_4 \\ f_4 \\ t_5 \\ f_5 \end{array}$ |                       | 1 | 0<br>0<br>1<br>1 | 0<br>0<br>0<br>1<br>1 | 0<br>0<br>0<br>0<br>0<br>0<br>1<br>1 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1 | $     1 \\     0 \\     1 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\    $ | 0<br>1<br>0<br>0<br>0<br>0<br>0<br>1<br>0<br>0 | 0<br>0<br>1<br>0<br>1<br>1<br>0<br>1<br>0 |   |
|---------------------------------------------------------------------------------------------------|-----------------------|---|------------------|-----------------------|--------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------|---|
| $m_{1,1} \ m_{1,2} \ m_{2,1} \ m_{3,1} \ m_{3,2} \ m_{3,3}$                                       | =<br>=<br>=<br>=<br>= |   |                  |                       |                                      |                                           | 1<br>1<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>0<br>1<br>0<br>0                          | 0<br>0<br>1<br>1                          |   |
| t                                                                                                 | =                     | 1 | 1                | 1                     | 1                                    | 1                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                              | 4                                         | _ |

### $\mathbf{Sat} \leq_p \mathbf{Subset} \ \mathbf{Sum}$

Further, for each clause  $C_i$  take  $r := |C_i| - 1$  integers  $m_{i,1}, \ldots, m_{i,r}$ 

where 
$$m_{i,j} := c_i \dots c_k$$
 with  $c_\ell := \begin{cases} 1 & \ell = i \\ 0 & \ell \neq i \end{cases}$   
Definition of *S*: Let

$$S := \{t_i, f_i \mid 1 \le i \le n\} \cup \{m_{i,j} \mid 1 \le i \le k, \quad 1 \le j \le |C_i| - 1\}$$

Target: Finally, choose as target

$$t := a_1 \dots a_n c_1 \dots c_k$$
 where  $a_i := 1$  and  $c_i := |C_i|$ 

Claim: There is  $T \subseteq S$  with  $\sum_{a_i \in T} a_i = t$  iff  $\varphi$  is satisfiable.

Markus Krötzsch, 9th Nov 2021

Complexity Theory

### Example

#### $(X_1 \lor X_2 \lor X_3) \land (\neg X_1 \lor \neg X_4) \land (X_4 \lor X_5 \lor \neg X_2 \lor \neg X_3)$

#### $X_1 X_2 X_3 X_4 X_5 C_1 C_2 C_3$

| $\begin{array}{c} t_1 \\ f_1 \\ t_2 \\ f_2 \\ t_3 \\ f_4 \\ f_4 \\ t_5 \\ f_5 \end{array}$ |   | 1 | 0<br>0<br>1<br>1 | 0<br>0<br>0<br>1<br>1 | 0<br>0<br>0<br>0<br>0<br>1<br>1 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1 | $     1 \\     0 \\     1 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\    $ | 0<br>1<br>0<br>0<br>0<br>0<br>0<br>1<br>0<br>0 | 0<br>0<br>1<br>0<br>1<br>0<br>1<br>0 |  |
|--------------------------------------------------------------------------------------------|---|---|------------------|-----------------------|---------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------|--|
| $m_{1,1}$                                                                                  | = |   |                  |                       |                                 |                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                              | 0                                    |  |
| $m_{1,2}$                                                                                  | = |   |                  |                       |                                 |                                           | 1<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>1                                         | 0<br>0                               |  |
| $m_{2,1}$                                                                                  | = |   |                  |                       |                                 |                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                              | 1                                    |  |
| $m_{3,1}$                                                                                  | _ |   |                  |                       |                                 |                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                              | i                                    |  |
| $m_{3,2}$                                                                                  | = |   |                  |                       |                                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                              |                                      |  |
| $m_{3,3}$                                                                                  | = |   |                  |                       |                                 |                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                              | 1                                    |  |
| t                                                                                          | = | 1 | 1                | 1                     | 1                               | 1                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                              | 4                                    |  |

### NP-Completeness of SUBSET SUM

Let  $\varphi := \bigwedge C_i$   $C_i$ : clauses

Show: If  $\varphi$  is satisfiable, then there is  $T \subseteq S$  with  $\sum_{s \in T} s = t$ .

Let  $\beta$  be a satisfying assignment for  $\varphi$ 

Set  $T_1 := \{t_i \mid \beta(X_i) = 1, 1 \le i \le m\} \cup \{f_i \mid \beta(X_i) = 0, 1 \le i \le m\}$ 

Further, for each clause  $C_i$  let  $r_i$  be the number of satisfied literals in  $C_i$  (with resp. to  $\beta$ ).

Set  $T_2 := \{m_{i,j} \mid 1 \le i \le k, \quad 1 \le j \le |C_i| - r_i\}$ and define  $T := T_1 \cup T_2$ . It follows:  $\sum_{s \in T} s = t$ 

### NP-Completeness of SUBSET SUM

Show: If there is  $T \subseteq S$  with  $\sum_{s \in T} s = t$ , then  $\varphi$  is satisfiable.

```
Let T \subseteq S such that \sum_{s \in T} s = t
```

```
Define \beta(X_i) = \begin{cases} 1 & \text{if } t_i \in T \\ 0 & \text{if } f_i \in T \end{cases}
```

This is well defined as for all  $i: t_i \in T$  or  $f_i \in T$  but not both.

Further, for each clause, there must be one literal set to 1 as for all i,

the  $m_{i,j} \in S$  do not sum up to the number of literals in the clause.

### Towards More NP-Complete Problems

Starting with **Sat**, one can readily show more problems **P** to be NP-complete, each time performing two steps:

- (1) Show that  $\mathbf{P} \in NP$
- (2) Find a known NP-complete problem  $\mathbf{P}'$  and reduce  $\mathbf{P}' \leq_p \mathbf{P}$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

### NP-completeness of **Кнарѕаск**

| KNAPSACK |                                                              |
|----------|--------------------------------------------------------------|
| Input:   | A set $I := \{1,, n\}$ of items                              |
|          | each of value $v_i$ and weight $w_i$ for $1 \le i \le n$ ,   |
|          | target value $t$ and weight limit $\ell$                     |
| Problem: | Is there $T \subseteq I$ such that                           |
|          | $\sum_{i\in T} v_i \ge t$ and $\sum_{i\in T} w_i \le \ell$ ? |

**Theorem 8.5: К**NAPSACK is NP-complete.

#### Proof:

- (1) **KNAPSACK**  $\in$  NP: Take *T* to be the certificate.
- (2) Knapsack is NP-hard: Subset Sum  $\leq_p$  Knapsack

Subset Sum  $\leq_p$  Knapsack

Given: $S := \{a_1, \ldots, a_n\}$ collection of positive integersSubset Sum:ttarget integer

Problem: Is there a subset  $T \subseteq S$  such that  $\sum_{a_i \in T} a_i = t$ ?

Reduction: From this input to SUBSET SUM construct

- set of items  $I := \{1, ..., n\}$
- weights and values  $v_i = w_i = a_i$  for all  $1 \le i \le n$
- target value t' := t and weight limit  $\ell := t$

Clearly: For every  $T \subseteq S$ 

$$\sum_{a_i \in T} a_i = t \qquad \text{iff} \qquad \qquad \sum_{a_i \in T} v_i \ge t' = t$$
$$\sum_{a_i \in T} w_i \le \ell = t$$

#### Hence: The reduction is correct and in polynomial time.

Markus Krötzsch, 9th Nov 2021

### A Polynomial Time Algorithm for **KNAPSACK**

Киарзаск can be solved in time  $O(n\ell)$  using dynamic programming

Initialisation:

- Create an  $(\ell + 1) \times (n + 1)$  matrix *M*
- Set M(w, 0) := 0 for all  $1 \le w \le \ell$  and M(0, i) := 0 for all  $1 \le i \le n$

Computation: Assign further M(w, i) to be the largest total value obtainable by selecting from the first *i* items with weight limit *w*:

For i = 0, 1, ..., n - 1 set M(w, i + 1) as

 $M(w, i + 1) := \max \{ M(w, i), \ M(w - w_{i+1}, i) + v_{i+1} \}$ 

Here, if  $w - w_{i+1} < 0$  we always take M(w, i).

Acceptance: If *M* contains an entry  $\geq t$ , accept. Otherwise reject.

Markus Krötzsch, 9th Nov 2021

Complexity Theory

### Example

Input  $I = \{1, 2, 3, 4\}$  with

Values:  $v_1 = 1$   $v_2 = 3$   $v_3 = 4$   $v_4 = 2$ 

Weight:  $w_1 = 1$   $w_2 = 1$   $w_3 = 3$   $w_4 = 2$ 

Weight limit:  $\ell = 5$  Target value: t = 7

| weight  | max. total value from first <i>i</i> items |              |              |              |              |  |  |
|---------|--------------------------------------------|--------------|--------------|--------------|--------------|--|--|
| limit w | <i>i</i> = 0                               | <i>i</i> = 1 | <i>i</i> = 2 | <i>i</i> = 3 | <i>i</i> = 4 |  |  |
| 0       | 0                                          | 0            | 0            | 0            | 0            |  |  |
| 1       | 0                                          | 1            | 3            | 3            | 3            |  |  |
| 2       | 0                                          | 1            | 4            | 4            | 4            |  |  |
| 3       | 0                                          | 1            | 4            | 4            | 5            |  |  |
| 4       | 0                                          | 1            | 4            | 7            | 7            |  |  |
| 5       | 0                                          | 1            | 4            | 8            | 8            |  |  |

Set M(w, 0) := 0 for all  $1 \le w \le \ell$  and M(0, i) := 0 for all  $1 \le i \le n$  For i = 0, 1, ..., n - 1set  $M(w, i + 1) := \max \{M(w, i), M(w - w_{i+1}, i) + v_{i+1}\}$ 

### A Polynomial Time Algorithm for **KNAPSACK**

Киарзаск can be solved in time  $O(n\ell)$  using dynamic programming

Initialisation:

- Create an  $(\ell + 1) \times (n + 1)$  matrix *M*
- Set M(w, 0) := 0 for all  $1 \le w \le \ell$  and M(0, i) := 0 for all  $1 \le i \le n$

Computation: Assign further M(w, i) to be the largest total value obtainable by selecting from the first *i* items with weight limit *w*:

For i = 0, 1, ..., n - 1 set M(w, i + 1) as

 $M(w, i + 1) := \max \{ M(w, i), \ M(w - w_{i+1}, i) + v_{i+1} \}$ 

Here, if  $w - w_{i+1} < 0$  we always take M(w, i).

Acceptance: If *M* contains an entry  $\geq t$ , accept. Otherwise reject.

Markus Krötzsch, 9th Nov 2021

Complexity Theory

### Example

Input  $I = \{1, 2, 3, 4\}$  with

Values:  $v_1 = 1$   $v_2 = 3$   $v_3 = 4$   $v_4 = 2$ 

Weight:  $w_1 = 1$   $w_2 = 1$   $w_3 = 3$   $w_4 = 2$ 

Weight limit:  $\ell = 5$  Target value: t = 7

| weight  | max. total value from first <i>i</i> items |              |              |              |              |  |  |
|---------|--------------------------------------------|--------------|--------------|--------------|--------------|--|--|
| limit w | <i>i</i> = 0                               | <i>i</i> = 1 | <i>i</i> = 2 | <i>i</i> = 3 | <i>i</i> = 4 |  |  |
| 0       | 0                                          | 0            | 0            | 0            | 0            |  |  |
| 1       | 0                                          | 1            | 3            | 3            | 3            |  |  |
| 2       | 0                                          | 1            | 4            | 4            | 4            |  |  |
| 3       | 0                                          | 1            | 4            | 4            | 5            |  |  |
| 4       | 0                                          | 1            | 4            | 7            | 7            |  |  |
| 5       | 0                                          | 1            | 4            | 8            | 8            |  |  |

Set M(w, 0) := 0 for all  $1 \le w \le \ell$  and M(0, i) := 0 for all  $1 \le i \le n$  For i = 0, 1, ..., n - 1set  $M(w, i + 1) := \max \{ M(w, i), M(w - w_{i+1}, i) + v_{i+1} \}$  Did we prove P = NP?

Summary:

- Theorem 8.5: Кнарзаск is NP-complete
- **KNAPSACK** can be solved in time  $O(n\ell)$  using dynamic programming

What went wrong?

| Knapsack |                                                                |
|----------|----------------------------------------------------------------|
| Input:   | A set $I := \{1, \ldots, n\}$ of items                         |
|          | each of value $v_i$ and weight $w_i$ for $1 \le i \le n$ ,     |
|          | target value $t$ and weight limit $\ell$                       |
| Problem: | Is there $T \subseteq I$ such that                             |
|          | $\sum_{i \in T} v_i \ge t$ and $\sum_{i \in T} w_i \le \ell$ ? |

### Pseudo-Polynomial Time

The previous algorithm is not sufficient to show that KNAPSACK is in P

- The algorithm fills a  $(\ell + 1) \times (n + 1)$  matrix *M*
- The size of the input to **KNAPSACK** is  $O(n \log \ell)$

 $\rightarrow$  the size of *M* is not bounded by a polynomial in the length of the input!

**Definition 8.6 (Pseudo-Polynomial Time):** Problems decidable in time polynomial in the sum of the input length and the value of numbers occurring in the input.

Equivalently: Problems decidable in polynomial time when using unary encoding for all numbers in the input.

- If KNAPSACK is restricted to instances with ℓ ≤ p(n) for a polynomial p, then we obtain a problem in P.
- KNAPSACK is in polynomial time for unary encoding of numbers.

### Strong NP-completeness

Pseudo-Polynomial Time: Algorithms polynomial in the maximum of the input length and the value of numbers occurring in the input.

Examples:

- KNAPSACK
- SUBSET SUM

Strong NP-completeness: Problems which remain NP-complete even if all numbers are bounded by a polynomial in the input length (equivalently: even for unary coding of numbers).

#### Examples:

- CLIQUE
- SAT
- HAMILTONIAN CYCLE
- ...

#### Note: Showing **Sat** $\leq_p$ **Subset Sum** required exponentially large numbers.

Markus Krötzsch, 9th Nov 2021

Complexity Theory

## Beyond NP

### The Class coNP

Recall that coNP is the complement class of NP.

#### Definition 8.7:

- For a language  $L\subseteq \Sigma^*$  let  $\overline{L}:=\Sigma^*\setminus L$  be its complement
- For a complexity class C, we define  $coC := \{L \mid \overline{L} \in C\}$
- In particular  $coNP = \{L \mid \overline{L} \in NP\}$

A problem belongs to coNP, if no-instances have short certificates.

#### Examples:

- No HAMILTONIAN PATH: Does the graph G not have a Hamiltonian path?
- **ΤΑυτοLOGY**: Is the propositional logic formula *φ* a tautology (true under all assignments)?

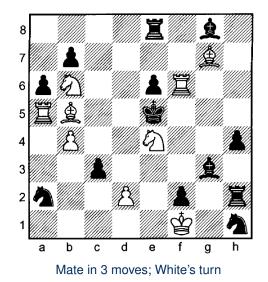
• ...

### coNP-completeness

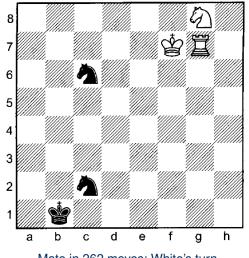
**Definition 8.8:** A language  $C \in coNP$  is coNP-complete, if  $L \leq_p C$  for all  $L \in coNP$ .

Theorem 8.9: (1) P = coP(2) Hence,  $P \subseteq NP \cap coNP$ 

Open questions:


• NP = coNP?

Most people do not think so.


•  $P = NP \cap coNP$ ?

```
Again, most people do not think so.
```

### Example: Chess Problems



### Example: Chess Problems



Mate in 262 moves; White's turn

### Summary and Outlook

#### 3-Sat and Hamiltonian Path are also NP-complete

# So are **SUBSET SUM** and **KNAPSACK**, but only if numbers are encoded effiently (pseudo-polynomial time)

There do not seem to be polynomial certificates for coNP instances; and for some problems there seem to be certificates neither for instances nor for non-instances

#### What's next?

- Space
- Games
- Relating complexity classes