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Previously . . .
• Game trees can be succinctly represented by state-based game models.
• Minimax Tree Search can be used to solve sequential (two-player

zero-sum) games with perfect information.
• Alpha-Beta Pruning allows to reduce the search space without

sacrificing solutions.
• Heuristic Evaluation of states can be used to reduce search depth.
• Further heuristics may reduce the search space (typically with sacrifices).
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Overview

Monte Carlo Tree Search

Selection Policy: UCT
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Tree Search: Shannon’s Type A and Type B
In Claude Shannon’s 1950 paper Programming a Computer for Playing Chess,
he suggests two types of tree search strategies:

wide, but shallow

Type A
Alpha-Beta Tree Search

narrow, but deep

Type B
Monte Carlo Tree Search
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Teaching Feedback
10min to fill out the feedback form:

QR-Code zum Fragebogen der Veranstaltung „Algorithmic Game Theory“ 
 

Dieser QR-Code kann beliebig häufig verwendet werden, um den Fragebogen auszufüllen. 

 

 
https://befragung.zqa.tu-dresden.de/uz/ 

Token: Tirvolilih https://tud.link/gr85
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Monte Carlo Tree Search
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Monte Carlo Tree Search
Terminology

AMonte Carlo algorithm is a randomised algorithm whose output may be
incorrect with a certain (typically small) probability.

Main Idea of Monte Carlo Tree Search: Simulate random move sequences
from current to terminal states and do statistics on moves leading to wins.
Some relevant notions:
• Playout: Complete move sequence from a state to a terminal state.
• Random move sequences only inform about random play, so a

playout policy is needed to bias simulation towards optimal play.
• In pure Monte Carlo search, we do N simulations starting in the current

state and record average payoffs for all moves.
• Selection policy: Determines from which nodes to start simulations;

faces the fundamental issue to balance exploitation and exploration.
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Monte Carlo Tree Search: Example (1)

1. Selection

2. Expansion

3. Simulation

4. Backpropagation
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Monte Carlo Tree Search: Example (2)

1. Selection

2. Expansion

3. Simulation

4. Backpropagation
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Monte Carlo Tree Search: Algorithm
function monte-carlo-tree-search(s : state) {

tree := get-tree-below(s)
while is-time-remaining() do {

leaf := select(tree)
child := expand(leaf )
result := simulate(child)
back-propagate(tree, child, result) }

return move-to-node-with-most-playouts(tree) }

• get-tree-below returns the search tree below the node for the state
• is-time-remaining checks whether we are still within the time limit
• select uses the selection policy to find a node to expand next
• expand adds a new child to the given node (makes a move)
• simulate does a full playout, returning only the result (utility value)
• back-propagate propagates the result value up the search tree
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Selection Policy: UCT
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Selection Policy: UCT
An effective policy: UCT – “upper confidence bounds applied to trees”.
UCT ranks moves according to their “upper confidence bound” value.
Definition
The upper confidence bound value for a node n is obtained thus:

UCB1(n) := U(n)
N(n) + c ·

√
lnN(n′)
N(n)

where
• n′ is the unique parent of n in the search tree,
• U(n) is the total utility of node n (summed up over all playouts),
• N(m) is the total number of playouts through nodem,
• c is a constant that is typically chosen empirically (theoretically c =

√
2).

Constant c balances exploitation (first fraction) and exploration (square root).
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UCT: Example

UCB1(n1) =
60
79 +

√
2 · ln 98
79

≈ 0.76 + 0.34 = 1.1

UCB1(n2) =
1
10 +

√
2 · ln 98
10

≈ 0.1 + 0.96 = 1.06

UCB1(n3) =
0
9 +

√
2 · ln 98

9
≈ 1
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Digression: Multi-Armed Bandits (1)

• A K-armed bandit problem is given by random variables Xi,n for 1 ≤ i ≤ K

and n ≥ 1, where each i is the index of a gambling machine (the “arm” of a
bandit).

• Successive plays of machine i yield rewards Xi,1, Xi,2, . . . which are
independent and identically distributed according to an unknown law
with unknown expectation μi.

• Rewards across machines are also independent (and not identically
distributed): Xi,s and Xj,t are independent for 1 ≤ i < j ≤ K and s, t ≥ 1.

• A policy is a function mapping past plays and rewards to the next arm to
play.

• The regret of a policy is the difference between the maximally possible
payoff and the actually obtained payoff.
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Digression: Multi-Armed Bandits (2)

• UCB1 is a specific policy of “playing” multi-armed bandits that achieves
logarithmic regret (in the number n of plays; known to be optimal):

deterministic policy ucb1:

initialisation: play each machine once
loop:

play machine j that maximises x̄j +
√
2 lnn
nj

where

• x̄j is the average reward obtained from machine j,
• nj is the number of times machine j has been played so far,
• n is the overall number of plays done so far.
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MCTS with UCT: Remarks

• The definition of the UCB1 values guarantees that the node with the
highest number of playouts is also the one with the highest average
utility.

• In addition, the number of playouts also reflects the confidence in the
average utility value.

• The time to compute the result of a playout is linear in the height of the
game tree.

• We still need a playout policy to achieve “realistic” playout values.
• AlphaZero [Silver et al., 2018] learns a playout policy from self-play using

neural networks (interleaving learning and MCTS).
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Advances in Computer Go
• Go is estimated to have 10172 states and a branching factor of at least 361
• Heuristic evaluation of states is not very effective because material value

is not very important and most positions are in flux until the endgame
⇝ Alpha-Beta Tree Search is not well-suited for Go playing
• Go-playing AIs were weak (beaten by humans) until the late 2000s
• Monte Carlo Tree Search [Coulom, 2007] improved computer Go playing
• Adaptive Multistage Sampling (AMS) algorithm incorporated UCB1 into

Monte Carlo sampling [Chang et al., 2005]
• UCT algorithm incorporated UCB1 into MCTS [Kocsis & Szepesvári, 2006]
• Deep reinforcement learning to obtain a playout policy [Silver et al., 2018]
• Computer victory (AlphaGo) over human champions

(2015 Fan Hui, 2016 Lee Sedol, 2017 Ke Jie)
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The End?
Example: Attackability

Gleave et al. [2023] recently presented an attack on a super-human Go AI:
• Using reinforcement learning against a fixed victim (KataGo), they are

able to discover systematic weaknesses in KataGo’s gameplay.
• They use AlphaZero-style training, but where AZ plays against itself, they

train an attacker to play against KataGo.
• The trained attacker achieves significant win rates against the victim, with

and without search.
• The discovered exploit is interpretable and can be learnt by (expert)

human players, who can then in turn reliably win against KataGo.

⇝ If there are single moves that can turn the game, MCTS might fail to
consider those moves due to its stochastic mode of operation.
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Conclusion

Summary

• Monte Carlo Tree Search uses random playouts to evaluate moves and
keeps statistics on which moves led to which payoffs how many times.

• A selection policy balances exploitation and exploration.
• UCT is an effective selection policy that applies UCB1 to trees.
• A playout policy steers playout simulations towards realistic play.
• MCTS and deep reinforcement learning led to expert-level Go programs.

Action Points

• Implement a MCTS-based program for playing Tic-Tac-Toe.
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