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Abstract

Relative observability has been introduced and studieldériramework of partially observed discrete-event systasns condition stronger
than observability, but weaker than normality. Howevetjkgnobservability, relative observability is closed undnguage unions, which
makes it interesting for practical applications. In thigp@a we investigate this notion in the framework of coortlora control. We

prove that conditional normality is a stronger conditioartrconditional (strong) relative observability, hence dibanal strong relative
observability can be used in coordination control instefacbaditional normality, and present a distributive prasedfor the computation
of a conditionally controllable and conditionally obsdria sublanguage of the specification that contains the mgireonditionally

strong relative observable sublanguage.
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1 Introduction tended to non-prefix-closed specification languages in [7],
and for partial observations in [8].

Supervisory control theory of discrete-event systems has
been proposed in [10] as a formal approach to solve the Relative observability has been introduced and studied]in [
safety issue and nonblockingness. Coordination contrl ha in the framework of partially observed discrete-event sys-
been proposed for modular discrete-event systems in [9] as &ems as a condition stronger than observability, but weaker
reasonable trade-off between a purely modular control syn-than normality. Relative observability has been shown to be
thesis, which is in some cases unrealistic, and a global con-closed under language unions, which makes it an interesting
trol synthesis, which is naturally prohibitive for compigx ~ notion that can replace normality in practical applicasion
reasons. The idea is to compute a coordinator that takes car@efore relative observability, normality was the weakest n
of the communication between subsystems. This approachtion known to be closed under language unions.
has been further developed in [6,7,8]. In [6], a procedure fo
the distributive computation of the supremal conditiopall  In this paper, we study the concept of relative observabilit
controllable sublanguages (the necessary and sufficieat co in the coordination control framework. In the same man-
dition for the existence of a solution) of prefix-closed spec ner as we have introduced the notions of conditional nor-
ification languages and controllers with complete observa- mality and conditional observability, we introduce and-dis
tions has been proposed. The approach has been later excuss the new concept obnditional relative observabilitin

the coordination control framework. Surprisingly, comgzir
* Corresponding author: T. Masopust, TU Dresden, Germany  to relative observability, conditional relative obseriipis

Email addresseskomenda@ipm.cz (Jan Komenda), not closed under language unions meaning that the supre-
masopust@math.cas.cz (Tomas Masopust), mal conditionally relative observable sublanguages do not
jan.h.van.schuppen@xs4all.nl (Jan H. van Schuppen). always exist. Therefore, we further propose a stronger con-
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cept calledconditional strong relative observabilityvhich

Let G be a generator over an event Zetind letk C Ly (G)

we show to be closed under language unions. Moreover, webe a specification. The aim of supervisory control theory is

prove that the previously defined notion of conditional nor-
mality [8] implies conditional (strong) relative observiab
ity, which means that conditional strong relative obseitvab
ity can be used in coordination control with partial obser-

to find a nonblocking supervis@such that_n(S/G) = K;

the nonblockingness means thai(S/G) = L(S/G), hence
L(S/G) =K. Itis known that such a supervisor exists if and
only if K is (i) controllablewith respect td_(G) andZ,, that

vations instead of conditional normality, and we present a isKZ,NL(G) CK, (ii) Lm(G)-closedthatisKk = KNLy(G),

distributive procedure for the computation of a condition-
ally controllable and conditionally observable sublargpia
of the specification that contains the supremal conditignal
strong relative observable sublanguage.

2 Preliminaries

We first briefly recall the basic elements of supervisory con-
trol theory. The reader is referred to [2] for more detailst L

> be afinite nonempty set efzentsand let=* denote the set

of all finite words overz. Theempty wordis denoted bye.

A generatoiis a quintupléG = (Q, Z, f, o, Qm), whereQis a
finite nonempty set aftates is anevent setf : Qx> — Q

is a partial transition function qo € Q is theinitial state,
andQm C Q is the set ofmarked statesln the usual way,
the transition functionf can be extended to the domain
Q x Z* by induction. The behavior o6 is described in
terms of languages. The languaggneratedy G is the set
L(G) ={se Z*| f(qo,s) € Q} and the languagmarkedby
Gis the setLn(G) = {s€ Z* | f(do,S) € Qm} C L(G).

A (regular) language Lover an event sef is a setL C
>* such that there exists a genera@®rwith Lin(G) = L.
The prefix closure of a languade is the setL = {w ¢
>* | there existas € * such thatvu € L}. A languagel is
prefix-closedf L =L.

A (natural) projection P. Z* — X, for someX, C %, is a
homomorphism defined so th&(a) = ¢, for ac X\ Z,,
and P(a) = a, for a € %,. The inverse imageof P, de-
noted byP~1: 5% — 2% is defined a®1(s) = {we Z* |
P(w) = s}. The definitions can naturally be extended
languages. Therojection of a generator As a genera-
tor P(G) whose behavior satisfid§P(G)) = P(L(G)) and
Lm(P(G)) = P(Lm(G))-

to

A controlled generatois a structurdG,2¢,P,I"), whereG
is a generator ovelt, > C  is the set otontrollable events
>, =X\ X is the set ofuncontrollable eventd : * — ¥
is the projection, and” = {y C 2 | 5, C y} is the set of
control patterns A supervisorfor the controlled generator
(G,%¢,P N isamapS: P(L(G)) — I'. A closed-loop system
associated with the controlled generat@rZ¢,P,I") and the
supervisoSis defined as the minimal langualges/G) C =*
such that (i)e € L(S/G) and (ii) if se L(S/G), sac L(G),
anda e S(P(s)), thensae L(S/G). The marked behavior of
the closed-loop system is definedlag(S/G) = L(S/G)N
Lm(G).

and (iii) observablewith respect toL(G), %,, andZ, that

is for all wordss,s' € Z* such thatQ(s) = Q(S) it holds

that for allo € 2, so € K, § € K, andso € L(G) imply

thats'o € K, whereQ: £* — 5. Note that it is sufficient to
considero € X, because foo € %, the condition follows
from controllability, cf. [2].

The synchronous product of two languagesC >] and
L, C 33 is defined byl || Lo = Py H(L1) NP Y(Lp) C =7,
whereB : Z* — X, fori =1, 2, are projections to local event
sets. In terms of generators, it is known thé6; || G,) =
L(Gl) || L(Gz) andLm(Gl H Gz) = Lm(Gl) H Lm(Gz), see [2]

3 Coordination Control Framework

A languageK C (23 UZ;)* is conditionally decomposable
with respect to event selg, 2, andZy, wherez; N, C Xy,

if K =Ppii(K) || Pyk(K), whereR i (231U 22)" — (iU

3y)* is a projection, fori = 1,2. Note that>y can always

be extended so that the languagdecomes conditionally
decomposable. A polynomial algorithm to compute such an
extension can be found in [5]. On the other hand, however,
to find the minimal extension (with respect to set inclusion)
is NP-hard [7].

Now we recall the coordination control problem that is dis-
cussed in this paper.

Problem 1. Consider two generatoiG; and G, over the
event set&; andX,, respectively, and a generatey (called
a coordinaton over the event se¥y satisfying the inclu-
sionsZ N C 2 C XU, Let K CLn(Gy H G2 || Gk)
be a specification language. Assume tKaand its prefix-
closureK are conditionally decomposable with respect to
event setsxq, 2o, and Zx. The aim of coordination con-
trol is to determine nonblocking supervisdgs, S, and
S for the respective generators such thai(S./Gk) C
R(K), Lm(S/[Gi || (S¢/G)]) € Ruk(K), for i = 1,2, and
Lm(S1/[G1 || (Se/Gi)]) |l Lm(S2/ Gz || (Sc/G)]) = K.

One possible way how to construct a coordinator is to set
Gk = R(G1) || F(Gy), see [6,7] for more details. An ad-
vantage of this construction is that the coordinator does no
affect the system, that i€, || G, || Gk = G || Go.

The notion of conditional controllability introduced in][9
and further studied in [6,7,8] plays the central role in co-
ordination control. In what follows, we use the notation
% u=Z;NZ, to denote the set of uncontrollable events of
the event sek;.



Let G; andG; be generators over the event sEtsand,,
respectively, and leGy be a coordinator over the event set
. Let B X — X and Py i 2F — (5 UZ)* be projec-
tions. A languageK C Lm(Gy || G || Gk) is conditionally
controllablewith respect to generatof3;, Gz, G and un-
controllable event set&; , X5y, Zky if (i) RA(K) is con-
trollable with respect td.(Gyx) andZy, and (ii) P k(K) is
controllable with respect ta(G;) || R(K) and Zjx, for

i =1,2, whereZj y, = (% UZx) N Z,. The supremal condi-
tionally controllable sublanguage always exists and exjoal
the union of all conditionally controllable sublanguagék [

Theorem 3([8]). Consider the setting of Problem 1. There
exist nonblocking supervisorg,&, S as required in Prob-
lem 1 if and only if the specification K is (i) conditionally
controllable with respect to generators G5,, Gy andy ,
Zo.us Zku, (i) conditionally closed with respect to generators
G1, Gy, Gy, and (iii) conditionally observable with respect
to Gi, Gy, Gy, event setsy ¢, 2o¢, Xk, and projections
Quik Qi K fromZ to Zi ), fori=1+k2+kk. O
Note that for prefix-closed languages, we do not need non-
conflictingness and conditional closedness, because they a
automatically satisfied for prefix-closed languages.

Consider the setting of Problem 1 and define the languages

supG = supQR(K),L(Gk), 2k u)

1

Suqurk = SupC(PIJrk(K)v L(Gl) H SUp Q(vzi+k,u) ( )
fori=1,2, where sup(K,L,Z,) denotes the supremal con-
trollable sublanguage &€ with respect td_ andX, see [2].
Let supcGK,L, (Z1u,22u,2ky)) denote the supremal con-
ditionally controllable sublanguage & with respect to
L=L(Gy || G2 | Gk) and sets of uncontrollable everitg,,,
2o u Ziu- IN [7], we have shown tha®(sup G, ) C supG
and that if in addition the converse inclusion also holdsnth
SUpQ.+k H SupC2+k = SUquKaLa(zl,u722,u7zk,u))- This
has been further improved by introducing a weaker condi-
tion for nonconflicting supervisors in [8]. Recall that two

languages.; andL, arenonconflictingf L, || L, =L4 || Lo.

Theorem 2 ([8]). Consider the setting of Problem 1 and

4 Conditional Relative Observability

As mentioned above, relative observability (with respect t
C, or justC-observability) has been introduced and studied
in [1] as a weaker condition than normality, but stronger
than observability. It has been shown there that supremal
relatively observable sublanguages exist.

In this section, we introduce the notion of conditiom!
observability (or conditional relative observability Wite-
spect toC) in a similar way we have defined conditional
observability or conditional normality, as a counterpdrt o
relative observability for coordination control. Firstewe-
call the definition of relative observability.

Let K CC C Ln(G). The languagk is C-observablewith
respect to a planG and a projectiorQ : ¥* — % (we also
say thatK is relatively observable with respect@® G, and

the languages defined in (1). Assume that the languagesq)if for all words s, s € 5* such thaQ(s) = Q(s) it holds

supG,« andsupG,,  are nonconflicting. If Rsup G )N
R(supG_) is controllable with respect to(Gy) and >y,

then supG_ || supG. = supcGK,L, (X1, Z2.u, Zku)),
where L=L(G1 || G2 || Gk). O

For coordination control, the notion of conditional observ
ability is of the same importance as observability for super
visory control theory.

Let G; and G, be generators over the event s&tsand
35, respectively, and leGy be a coordinator oveky. A
languageK C Lim(Gy || Gz || Gy) is conditionally observable
with respect to generato@;, Gy, Gy, controllable setg ,
25 ¢, Zkc, and projection® k, Qo4k, Q, whereQ; : Z —
T, fori=1+k2+kk, if (i) P(K) is observable with
respect td_(Gy), Zi ¢, andQy, and (i) P «(K) is observable
with respect td_(G;) || F«(K), Zijkc, andQj i, fori=1,2,
WhereZHk,c =2:N (Zi @] Zk).

Analogously to the notion of,(G)-closed languages, we
recall the notion of conditionally-closed languages define
in [4]. A nonempty languag& over the event s&X is con-
ditionally closedwith respect to generatofs;, Gy, Gy if

(i) P(K) is Lm(Gk)-closed, and (ii)Rk(K) is (Lm(Gi) ||
R(K))-closed, fori =1,2.

thatforallo € Z,s0 €K, s € C, ands'o € L(G) imply that
do € K. Note that forC = K the definition coincides with
the definition of observability.

Definition 4. LetG; andG; be generators over the event sets
>, andy, respectively, and leBy be a coordinator over the
event sefy. LetK C C C Ln(Gy || G || Gk). The language

K is conditionally C-observablevith respect to generators
G1, Gz, Gk, and projection®y , k, Q2«, Qq, whereQ; : Z —
3o fori=1+k 2+kkif

(1) R(K) is P(C)-observable with respect tio(Gy) and
Qx, and
(2) P.k(K) is B.«(C)-observable with respect 10G;) ||

RA(K) andQ;_k, fori =1,2.

As relative observability implies observability [1], we im
mediately obtain the following result from Theorem 3.

Theorem 5. Consider the setting of Problem 1. Let&C C
Lm(Gy || G2 || Gy). If the specification K is conditionally con-
trollable with respectto @ G, Gy andZy , 22 , Zk y, condi-
tionally closed with respect to GG», Gk, and conditionally
C-observable with respect generatorg,G,,Gy and pro-
jections Q.k, Qz4k, Qk from%; to 2}, fori =14k, 2+ kK,

i,0!



then there exist nonblocking supervisors S, S as re-
quired in Problem 1.

In the following example we show that, unlike relative ob-
servability, conditional relative observability is notskd
under language unions.

Example 6. Let L(G;) = {a,Ta}, L(G,) = {1}, K1 = {a},
Ko = {1}, Zx = {1} and %, = {a}. Define Gy = R(G1) ||
R(Gy). It can be verified that botlK; and K, are con-
ditionally C-observable, foiIC = K; UK. We now show
that K; UK> is not conditionally C-observable. To see
this, let Qi k : {a,T}* — {a}* be the observation pro-
jection. ThenQq(€) = Qu«(T), €a € Pk(KiUKp) =
{a,7} =P1«(C) > T andtac Ly || (K1UK2) = L, but
ra¢ Pl+k(K1U Kz).

To cope with this issue, we now modify the definition to ob-
tain a stronger version that is closed under language unions

The modification is that we do not requiRe, «(K) to be

R. «(C)-observable with respect 10(G;) || P(K), but with
respect to a bigger languag€G;) || L(G).

Definition 7. LetG; andG; be generators over the event sets

>, and2y, respectively, and leBy be a coordinator over the
event sefy. LetK CC C Lin(Gy || Gz || Gk). The language
K is conditionally strong C-observablgith respect to gen-
eratorsGy, Gy, Gy, and projection®Q1.k, Qo.k, Qk, where
Qi X = I, fori=1+k24kKkif

(1) R(K) is P(C)-observable with respect tio(Gy) and
Q«, and

(2) P.k(K) is B.«(C)-observable with respect 10(G;) ||
L(Gx) andQj i, fori=1,2.

Note that, by definition, iK' C K is conditionally (strong)
C-observable, it is also conditionally (strong§jobservable.

We can now prove that the supremal conditionally strong

relative observable sublanguage always exists.

Theorem 8. For a given C, the supremal conditionally

strong C-observable sublanguage always exists and equals
to the union of all conditionally strong C-observable sub-

languages.

Proof. Letl be anindex set, and foe |, letK; C C be a con-
ditionally strongC-observable sublanguagelfC Ly(Gy ||
G || Gk) with respect to generato;, Gz, G and projec-
tions Q1. k, Q21 k, Qk- We prove thatJi|K; is conditionally
strongC-observable.

To prove thab (Ui K;) is F(C)-observable with respect to

L(Gk) andQ, let sac R (Uie Ki) = Uic A(K), S € R(C),
sac L(Gk), andQx(s) = Qk(s). Thensae R(K;), for some
i €1, andP(C)-observability o (K;) with respect td_(G)

andQ implies thatsa € A (K;) € F(UierKi) = P(Uial Ki).

To prove thatPy «(UiciKi) is P k(C)-observable, assume
thatsae P, (Ui Ki) = Uil PLik(Ki), s € PLk(C), Sae
L(G1) || L(Gk), andQq.k(S) = Q1.1«(S). Then we have that
sae P k(Ki), for somei € I, andPy, «(C)-observability of
Pr.k(Ki) with respect toL(G1) || L(Gk) and Qq. implies
thatsa e P (Ki).

The case fo, «(UiclK;) is P, «(C)-observable is analo-
gous. O

We now recall definitions of normality and conditional nor-
mality, and compare the notion of conditional normality to
conditional (strong) relative observability.

Let G be a generator over the event Zetand letQ: 2* —
>: be a projection. A languagé C L(G) is normalwith
respect td_(G) andQ if K = Q 1Q(K) NL(G). It is known
that normality implies observability [2].

Let G; and G, be generators over the event s&tsand
3,5, respectively, and leGy be a coordinator oveky. A
languagek C Lm(G1 || G || Gk) is conditionally normatwith
respect to generato@, , G,, Gk and projection§; ., Q2. k,
Q«, whereQ : Z — 37, fori=1+k 24+ Kk kK, if (i) R(K)
is normal with respect tb(Gy) andQy, and (ii) B, «(K) is
normal with respect tb.(G;) || F(K) andQ;,, fori=1,2,
cf. [8].

The following theorem compares the notions of conditional
observability, conditional normality, conditional relag ob-
servability, and conditional strong relative observayill he
main point of this result is to show that we do not need to
use conditional normality in coordination control anymore
because the weaker condition of conditional strong redativ
observability can be used instead.

Theorem 9. The following holds:

(1) Conditional normality implies conditional strong rela
tive observability.

(2) Conditional strong relative observability implies con
ditional relative observability.

(3) Conditional relative observability implies conditiain
observability.

Proof. The implication (2) is obvious by definition, because

RA(K) C L(Gx), while (3) follows from [1] where it was
shown that relative observability implies observabilitye
now prove (1). LeK CC C Liy(Gy || G2 || Gk) be such thaK

is conditionally normal with respect to generatGs Gy, Gk
and projection®1.«, Q21k, Qk. Then, the assumption that
R(K) is normal with respect ta(Gy) implies thatP(K) is
R(C)-observable with respect to(Gy) by [1]. Moreover,
for i = 1,2, we have thaf (K) is normal with respect

to L(Gj) || A(K). By Lemma 12,L(G;) || P(K) is normal
with respect toL(G;) || L(Gk). Hence, by the transitivity



of normality (Lemma 11)R_«(K) is normal with respect
to L(G;) || L(Gk). Then, by [1], we obtain thal «(K) is
P.k(C)-observable with respect th(G;) || L(Gk), which
was to be shown. O

Note that the languagde; from Example 6 is conditionally
relative observable, but not conditionally strong relatbb-
servable (and therefore not conditionally normal). On the
other handK; is conditionally normal, hence also condition-
ally (strong) relative observable. Note also that condgio
strong relative observability does not imply conditionaf-n
mality, see, e.g., condition (i) of the definitions.

We have shown that the supremal conditionally controllable
and conditionally strong relative observable sublangexge
ists. We now present conditions under which a conditionally
controllable and conditionally observable sublanguage co
taining the supremal conditionally controllable and cendi
tionally strong relative observable sublanguage can be com
puted in a distributed way.

Consider the setting of Problem 1 and define the language

supCRQ = sup CRQA(K),L(Gy)) )
supCRQ, = supCRQPR «(K),L(G) || supCRQ) ()

fori=1,2, where supCR(K, L) denotes the supremal con-
trollable (with respect to the corresponding event set of un
controllable events) an@ NL)-observable (with respect to
corresponding projection to observable events) sublaggyua
of the languag&. The way how to compute the supremal

bility (Lemma 14) implies thaB «(supcCSRQis control-
lable with respectth(G;) || sup CRQ. Next, by definition of
conditional strong relative observabiliy;, «(sup cCSRQis

R. k(K)-observable with respect 10(G;) || L(Gk), hence it
is alsoC-observable with respect tqG;) || L(Gy), for every
P k(supcCSRQ C C C R k(K). As P k(supcCSRQ C

L(G)) || supCRQ, we also obtain tha®  «(supcCSRQ is

C’-observable with respect th(G;) || supCRQ, for ev-
ery B k(supcCSROQC C' C R «(K)N(L(G)) || supCRQ),

which means tha® ,(sup cCSRQ C sup CRQ, .

This says that if supCRQ, || supCRQ, is conditionally
controllable and conditionally observable, we have com-
puted a language that is at least as good a solution as the
supremal conditionally controllable and conditionallyosig
K-observable sublanguage, which is now the weakest known
condition for which the supremal sublanguage exists.

We now formulate the main result.

Theorem 10. Consider the setting of Problem 1 and
the languages defined in (2). Assume tisap CRQ

Sand supCRQ,, are nonconflicting, and let us denote

M =supCRQ, || supCRQ, and L= L(G; || G2 || Gk).

If P«(M) is controllable and R(C)-observable with respect
to L(Gk), Zxu, and Q, for some MC C C L, then M is
conditionally controllable with respect to 1GG,, Gk and
Z1u Z2u, Zku, and conditionally observable with respect
to G1, Go, Gk and Quik, Q2ik. Qk. Moreover, it contains
the languagesup cCSRO

Proof. Indeed M C Py, «(K) || P..k(K) = K by conditional

relatively observable sublanguage is described in [1]. For decomposability, and%(M) is controllable andP(M)-

K CL, let

SUpCCSRAK, L, (Z1,u, Z2,us Zku), (Qrks Q2k, Qi)

denote the supremal conditionally controllable and condi-
tionally strongK-observable sublanguage of the specifica-
tion languageK with respect to the plant languade=
L(G1 || G2 || Gk), the sets of uncontrollable evertts,, 5,
%y u, and projection®1, Qoyk, Qk, whereQ; : 3 — 37,

for i = 1+ k, 2+ k,k. For simplicity, denote supcCSRO

SUpCCSR%, L7 (zl,Ua ZZ,Ua ZK,U)7 (Ql+k7 Q2+ka Qk)) lt can
be shown that

supcCSRQOC supCRQ_ || supCRQ, . 3

By Lemma 15 we need to show thBt, «(supcCSRQ C
supCRQ,, for i = 1,2. By definition of conditional con-
trollability, P k(supcCSRQC P «(K) is controllable with
respect td_(G;) || R(supcCSRQ. SinceP(supcCSRQC
R(K) is controllable andi(K)-observable with respect to
L(Gk), R(supcCSRQ C supCRQ. Thus, F(supcCSRQ
is controllable with respect teup CRQ C L(Gy). Then, by
Lemma 13L(G;) || R«(supcCSRQ s controllable with re-
spect toL(G;) || supCRQ, and the transitivity of controlla-

observable with respect 10(G), Zxu, Qk by assumptions
(since R(C)-observability impliesR(C')-observability for
everyM C C' CC). Next,P; (M) =supCRQ_ || R«(M) is
controllable with respect tfL(G;) || supCRQ)] || A(M) =
L(G1) || (M) by Lemma 13 (because the nonconflicting-
ness of sup CRQ , and sup CRQ, , implies the nonconflict-
ingness of supCRQ, andR(M)) and Lemma 16. To show
thatPy k(M) C Pk (K)N(L(Gy) || supCRQ) is Py k(M)-
observable, leta € 23y, sas € P (M), sac L(Gy) |
A(M) € L(Gy) || supCRQ, and Qu.k(s) = Qu:k(S).
By the (P «(K) N (L(G1) || supCRQ))-observability of
supCRQ,, Sae supCRQ, . We have two cases: (i)
%1\ %, thenR(sa) = R(s) € A(M) C R(supCRQ ).
(i) If a€ %, thenR(s)a e A(M), R(s) € A(M), and
R(s)a € L(Gx) imply (by B(M)-observability of B(M))
thatR(s'a) € R(M) C B(supCRQ,,). Therefore, in both
casessa e supCRQ, || R(supCRQ, ) = P k(M) by
the nonconflictingness. The caseRf (M) is analogous,
henceM is conditionally controllable with respect G,
G2, Gk andXy y, 2o 4, Ziy, and conditionallyM-observable
(hence observable) with respect @, Gy, Gy and Qq,
Q24K Qk. Finally, supcCSRQ supCRQ, || supCRQ, ¢
as shown in (3) above. O




5 Auxiliary Results

This section provides auxiliary results needed in the paper

Lemma 11. Let KC L C M be languages such that K is
normal with respectto L and Q, and L is normal with respect
to M and Q. Then K is normal with respect to M and Q.

Proof. By the assumptio® 'Q(K)NL =K andQ*Q(L)N

M =L, henceQ 'QK) nM c Q* (E)HM: L. This im-
plies thatQ 'Q(K)NM = Q 1QK)NMNL=KNM =
K. O

Lemma 12. Let Ky C L over 2; and K C L, over 2,
be nonconflicting languages such that § normal with
respect to b and Q : 2] — X7, and K is normal with
respectto band Q: % — %5, where Iy and L, are prefix-
closed. Then K|| K is normal with respect to 4| L, and
Q: (ZlLJZz)* — (ZLOUZQ,O)*.

Proof. By definition we have thaQ1Q(Ky | K2) NLy ||
Lo € Q1Qu(Ky) || @'Qu(Ky) || L1 || Lo =Ky || Ko =
K1 || K2, where the first equality is by normality ¢, and
Kz, and the last equality is by nonconflictingness. As the
other inclusion always holds, the proof is complete. [

Lemma 13(Proposition 4.6 in [3]) Let L C X, fori=1,2,
be prefix-closed languages, and lgt&L; be controllable
with respect to Land Zj . LetZ =3, U2, If K1 and K
are nonconflicting, then K|| K is controllable with respect
toL; | L, andZ,. O

Lemma 14([6]). Let KC L C M be languages ovex such
that K is controllable with respect th and %, and L is
controllable with respect tM andZ,. Then K is controllable
with respect taMl and 3. O

Lemma 15([6]). Let s C X, fori=1,2, and let R: (X1
) — % bea prOJecnon Let A (Zluzz)* such that
Pi(A) C Lj_ and B(A) C Lp. Then AC L, || L. O

Lemma 16. Consider the setting of Problem 1, and the
languages defined in (2). Thep(Bup CRQ, ) C supCRQ,
fori=1,2.

Proof. By definition, R(sup CRQ, ) € sup CRQ N R(K).

We provesupCRQ N R(K) C supCRQ by showing that
supCRQ N K(K) is controllable with respect td.(Gy)

and Cy-observable with respect tb(Gy), for some fixed
C. Let se supCRQNPA(K), ue 3, andsue L(Gy).
By controllability of supCRQ, su€ supCRQ C R(K)
hence there existg such thatsuve supCRQ C R(K).
Hence suve sup CRQNRA(K), andsue sup CRQ N R(K).
Let s, € Z* and 0 € £ be such thatQu(s) = Qk(S)

so € sSupCRQNPA(K), s € Cy, andso € L(Gy). By Cy-
observability of supCRQ So € supCRQ, and similarly
as above we show thato € sup CRQ N R(K). O

6 Conclusion

In this paper, we have introduced and studied the notion of
conditional relative observability, and a coordinated pom
tation of a conditionally controllable and conditionallip-o
servable sublanguage that contains the supremal condition
ally controllable and conditionally strong relative obsssle
sublanguage of the specification language. It is worth men-
tioning that there exist conditions, namely the observer an
OCC (or LCC) properties, that can be fulfilled by a modifi-
cation of the coordinator event set, and that imply that the
assumptions for controllability of Theorem 10 are satisfied
On the other hand, however, to the best of our knowledge,
there are no known conditions that could be fulfilled by a
simple action on the event sets of the coordinator, so that it
would make the conditions for relative observability of The
orem 10 satisfied. This is an interesting topic for the future
investigation.
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