

COMPLEXITY THEORY

Lecture 3: Undecidability

Markus Krötzsch Knowledge-Based Systems

TU Dresden, 17th Oct 2017

Decidability and Computability

Review: A language is

- recognisable (or semi-decidable, or recursively enumerable) if it is the language of all words recognised by some Turing machine
- decidable (or recursive) if it is the language of a Turing machine that allways halts, even on inputs that are not accepted
- undedicable if it is not decidable

Decidability and Computability

Review: A language is

- recognisable (or semi-decidable, or recursively enumerable) if it is the language of all words recognised by some Turing machine
- decidable (or recursive) if it is the language of a Turing machine that allways halts, even on inputs that are not accepted
- undedicable if it is not decidable

Instead of acceptance of words, we can also consider other computations:

Definition 3.1: A TM \mathcal{M} computes a partial function $f_{\mathcal{M}}: \Sigma^* \to \Sigma^*$ as follows. We have $f_{\mathcal{M}}(w) = v$ for a word $w \in \Sigma^*$ if \mathcal{M} halts on input w with a tape that contains only the word $v \in \Sigma^*$ (followed by blanks).

In this case, the function $f_{\mathcal{M}}$ is called computable.

Total, computable functions are called recursive.

Functions may therefore be computable or uncomputable.

Undecidability is Real

A fundamental insight of computer science and mathematics is that there are undecidable languages:

Theorem 3.2: There are undecidable languages over every alphabet Σ .

Proof: See exercise.

Analoguously, there are uncomputable functions.

Unknown ≠ Undecidable

How do we find concrete undecidable problems?

Unknown ≠ Undecidable

How do we find concrete undecidable problems?

It is not enough to not know how to solve a problem algorithmically!

Example 3.3: Let L_{π} be the set of all finite number sequences, that occur in the decimal representation of π . For example, $14159265 \in L_{\pi}$ and $41 \in L_{\pi}$.

Unknown ≠ Undecidable

How do we find concrete undecidable problems?

It is not enough to not know how to solve a problem algorithmically!

Example 3.3: Let L_{π} be the set of all finite number sequences, that occur in the decimal representation of π . For example, $14159265 \in L_{\pi}$ and $41 \in L_{\pi}$.

We do not know if the language \mathbf{L}_{π} is decidable, but it might be (e.g., if every finite sequence of digits occurred in π , which, however, is not known to be true today).

Unknown ≠ Undecidable (2)

There are even case, where we are sure that a problem is decidable without knowning how to solve it.

Unknown ≠ Undecidable (2)

There are even case, where we are sure that a problem is decidable without knowning how to solve it.

Example 3.4 (after Uwe Schöning): Let $L_{\pi 7}$ be the set of all number sequences of the form 7^n that occur in the decimal representation of π .

Unknown ≠ Undecidable (2)

There are even case, where we are sure that a problem is decidable without knowning how to solve it.

Example 3.4 (after Uwe Schöning): Let $L_{\pi 7}$ be the set of all number sequences of the form 7^n that occur in the decimal representation of π .

\mathbf{L}_{π^7} is decidable:

- Option 1: π contains sequences of arbitrary many 7. Then $\mathbf{L}_{\pi 7}$ is decided by a TM that accepts all words of the form $\mathbf{7}^n$.
- Option 2: π contains sequences of 7s only up to a certain maximal length ℓ. Then L_{π7} is decided by a TM that accepts all words of the form 7ⁿ with n ≤ ℓ.

In each possible case, we have a practical algorithm – we just don't know which one is correct.

Question: If a TM halts, how long may this take in the worst case?

Question: If a TM halts, how long may this take in the worst case?

Answer: Arbitrarily long, since:

- (a) the input might be arbitrarily long
- (b) the TM can be arbitrarily large

Question: If a TM halts, how long may this take in the worst case?

Answer: Arbitrarily long, since:

(a) the input might be arbitrarily long

(b) the TM can be arbitrarily large

Question: If a TM with n States and a two-element tape alphabet $\Gamma = \{\mathbf{x}, \square\}$ halts

on the empty input tape, how long may this take in the worst case?

Question: If a TM halts, how long may this take in the worst case?

Answer: Arbitrarily long, since:

(a) the input might be arbitrarily long

(b) the TM can be arbitrarily large

Question: If a TM with n States and a two-element tape alphabet $\Gamma = \{\mathbf{x}, \square\}$ halts

on the empty input tape, how long may this take in the worst case?

Answer: That depends on $n \dots$

Question: If a TM halts, how long may this take in the worst case?

Answer: Arbitrarily long, since:

(a) the input might be arbitrarily long

(b) the TM can be arbitrarily large

Question: If a TM with *n* States and a two-element tape alphabet $\Gamma = \{x, \Box\}$ halts

on the empty input tape, how long may this take in the worst case?

Answer: That depends on $n \dots$

Definition 3.5: We define S(n) as the largest number of steps that any DTM with n states and tape alphabet $\Gamma = \{\mathbf{x}, \Box\}$ executes on the empty tape, before it eventually halts.

Observation: S is well defined.

- The number of TMs with at most *n* states is finite
- Among the relevant n-state TMs there must be a largest number of steps before halting (TMs that do not halt are ignored)

Busy Beaver

A small variation of the step counter function leads to the Busy-Beaver Problem:

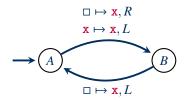
Tibor Radó, BB inventor

Definition 3.6: The Busy-Beaver function $\Sigma: \mathbb{N} \to \mathbb{N}$ is a total function, where $\Sigma(n)$ is the maximal number of \mathbf{x} that a DTM with at most n states and tape alphabet $\Gamma = \{\mathbf{x}, \square\}$ can write when starting on the empty tape an dbefore it eventually halts.

Note: The exact value of $\Sigma(n)$ depends on details of the TM definition. Most works in this area assume a two-sided infinite tape that can be extended to the left and to the right if necessary.

Example

The Busy-Beaver number $\Sigma(2)$ is 4 when using a two-way infinite tape. The following TM implements this behaviour:



We obtain: $A \square \vdash xB \square \vdash Axx \vdash B \square xx \vdash A \square xxx \vdash xBxxx$

How hard could this possibly be?

How hard could this possibly be?

Theorem 3.7: The Busy-Beaver function is not computable.

How hard could this possibly be?

Theorem 3.7: The Busy-Beaver function is not computable.

How hard could this possibly be?

Theorem 3.7: The Busy-Beaver function is not computable.

Proof sketch: Suppose for a contradiction that Σ is computable.

• Then we can define a TM \mathcal{M}_{Σ} with tape alphabet $\{\mathbf{x}, \square\}$ that computes $\mathbf{x}^n \mapsto \mathbf{x}^{\Sigma(n)}$.

How hard could this possibly be?

Theorem 3.7: The Busy-Beaver function is not computable.

- Then we can define a TM \mathcal{M}_{Σ} with tape alphabet $\{\mathbf{x}, \square\}$ that computes $\mathbf{x}^n \mapsto \mathbf{x}^{\Sigma(n)}$.
- Let \mathcal{M}_{+1} be a TM that computes $\mathbf{x}^n \mapsto \mathbf{x}^{n+1}$.

How hard could this possibly be?

Theorem 3.7: The Busy-Beaver function is not computable.

- Then we can define a TM \mathcal{M}_{Σ} with tape alphabet $\{\mathbf{x}, \square\}$ that computes $\mathbf{x}^n \mapsto \mathbf{x}^{\Sigma(n)}$.
- Let \mathcal{M}_{+1} be a TM that computes $\mathbf{x}^n \mapsto \mathbf{x}^{n+1}$.
- Let $\mathcal{M}_{\times 2}$ be a TM that computes $\mathbf{x}^n \mapsto \mathbf{x}^{2n}$.

How hard could this possibly be?

Theorem 3.7: The Busy-Beaver function is not computable.

- Then we can define a TM \mathcal{M}_{Σ} with tape alphabet $\{\mathbf{x}, \square\}$ that computes $\mathbf{x}^n \mapsto \mathbf{x}^{\Sigma(n)}$.
- Let \mathcal{M}_{+1} be a TM that computes $\mathbf{x}^n \mapsto \mathbf{x}^{n+1}$.
- Let $\mathcal{M}_{\times 2}$ be a TM that computes $\mathbf{x}^n \mapsto \mathbf{x}^{2n}$.
- Let k be the total number of states in \mathcal{M}_{Σ} , \mathcal{M}_{+1} , and $\mathcal{M}_{\times 2}$. There is a TM \mathcal{I}_k with k states that writes the word \mathbf{x}^k to the empty tape.

How hard could this possibly be?

Theorem 3.7: The Busy-Beaver function is not computable.

- Then we can define a TM \mathcal{M}_{Σ} with tape alphabet $\{\mathbf{x}, \square\}$ that computes $\mathbf{x}^n \mapsto \mathbf{x}^{\Sigma(n)}$.
- Let \mathcal{M}_{+1} be a TM that computes $\mathbf{x}^n \mapsto \mathbf{x}^{n+1}$.
- Let $\mathcal{M}_{\times 2}$ be a TM that computes $\mathbf{x}^n \mapsto \mathbf{x}^{2n}$.
- Let k be the total number of states in \mathcal{M}_{Σ} , \mathcal{M}_{+1} , and $\mathcal{M}_{\times 2}$. There is a TM \mathcal{I}_k with k states that writes the word \mathbf{x}^k to the empty tape.
- When executing I_k, M_{×2}, M_Σ, and M₊₁ after another, the result is a TM with 2k states that writes Σ(2k) + 1 times x before halting.

How hard could this possibly be?

Theorem 3.7: The Busy-Beaver function is not computable.

- Then we can define a TM \mathcal{M}_{Σ} with tape alphabet $\{\mathbf{x}, \square\}$ that computes $\mathbf{x}^n \mapsto \mathbf{x}^{\Sigma(n)}$.
- Let \mathcal{M}_{+1} be a TM that computes $\mathbf{x}^n \mapsto \mathbf{x}^{n+1}$.
- Let $\mathcal{M}_{\times 2}$ be a TM that computes $\mathbf{x}^n \mapsto \mathbf{x}^{2n}$.
- Let k be the total number of states in \mathcal{M}_{Σ} , \mathcal{M}_{+1} , and $\mathcal{M}_{\times 2}$. There is a TM \mathcal{I}_k with k states that writes the word \mathbf{x}^k to the empty tape.
- When executing I_k, M_{×2}, M_Σ, and M₊₁ after another, the result is a TM with 2k states that writes Σ(2k) + 1 times x before halting.
- Hence $\Sigma(2k) \ge \Sigma(2k) + 1$ contradiction.

Proof Notes

Note 1: The proof involves an interesting idea of using TMs as "sub-routines" in other TMs. We will use this again later on.

Note 2: If a TM can compute $f: \mathbb{N} \to \mathbb{N}$ in the usual inary encoding, it is not hard to get a TM for $\mathbf{x}^n \mapsto \mathbf{x}^{f(n)}$ by just using unary encoding instead.

Note 3: Transforming an arbitrary TM into one that uses only symbols $\{x, \Box\}$ on its tape is slightly more involved, but doable.

"Maybe the theoretical uncomputability is not really relevant after all – in practice, we surely can find values for practically relevant sizes of TMs, no?"

"Maybe the theoretical uncomputability is not really relevant after all – in practice, we surely can find values for practically relevant sizes of TMs, no?"

Well, progress since the 1960s has been rather modest:

n: 1 2

 $\Sigma(n)$: 1 4

"Maybe the theoretical uncomputability is not really relevant after all – in practice, we surely can find values for practically relevant sizes of TMs, no?"

Well, progress since the 1960s has been rather modest:

 $\frac{n: \ 1 \ 2 \ 3}{\Sigma(n): \ 1 \ 4 \ 6}$

"Maybe the theoretical uncomputability is not really relevant after all – in practice, we surely can find values for practically relevant sizes of TMs, no?"

Well, progress since the 1960s has been rather modest:

n: 1 2 3 4

 $\Sigma(n)$: 1 4 6 13

"Maybe the theoretical uncomputability is not really relevant after all – in practice, we surely can find values for practically relevant sizes of TMs, no?"

$$\frac{n: \quad 1 \quad 2 \quad 3 \quad 4 \quad 5}{\Sigma(n): \quad 1 \quad 4 \quad 6 \quad 13 \quad \ge 4098}$$

"Maybe the theoretical uncomputability is not really relevant after all – in practice, we surely can find values for practically relevant sizes of TMs, no?"

<i>n</i> :	1	2	3	4	5	6
$\Sigma(n)$:	1	4	6	13	≥ 4098	$\geq 3,5 \times 10^{18267}$

"Maybe the theoretical uncomputability is not really relevant after all – in practice, we surely can find values for practically relevant sizes of TMs, no?"

n:	1	2	3	4	5	6	7
$\Sigma(n)$:	1	4	6	13	≥ 4098	$\geq 3,5 \times 10^{18267}$	gigantic

"Maybe the theoretical uncomputability is not really relevant after all – in practice, we surely can find values for practically relevant sizes of TMs, no?"

	n:	1	2	3	4	5	6	7	8
Σ ((n):	1	4	6	13	≥ 4098	$\geq 3,5 \times 10^{18267}$	gigantic	insane

"Maybe the theoretical uncomputability is not really relevant after all – in practice, we surely can find values for practically relevant sizes of TMs, no?"

Well, progress since the 1960s has been rather modest:

$$\frac{n: \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8}{\Sigma(n): \quad 1 \quad 4 \quad 6 \quad 13 \quad \geq 4098 \quad \geq 3, 5 \times 10^{18267} \quad \text{gigantic} \quad \text{insane}}$$

For n=10, one has found a lower bound of the form $\Sigma(10)>3^{3^3}$, where the complete expression has more than 7.6×10^{12} occurrences of the number 3.

Universality

The Universal Machine

A first important observation of Turing was that TMs are powerful enough to simluate other TMs:

Step 1: Encode Turing Machines \mathcal{M} as words $\langle \mathcal{M} \rangle$

Step 2: Construct a universal Turing Machine \mathcal{U} , which gets $\langle \mathcal{M} \rangle$ as input and then simulates \mathcal{M}

Step 1: encoding Turing Machines

Any reasonable encxoding of a TM $\mathcal{M} = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}} \rangle$ is usable, e.g., the following (for DTMs):

- We use an alphabet {0, 1, #}
- States are enumerated in any order (beginning with q₀), and encoded in binary:

$$Q = \{q_0, \dots, q_n\} \rightsquigarrow \langle Q \rangle = bin(0) \# \cdots \#bin(n)$$

- We also encode Γ and the directions $\{R, L\}$ in binary
- A transition δ(q_i, σ_n) = ⟨q_j, σ_m, D⟩ is encoded as 5-tuple: enc(q_i, σ_n) = bin(i)#bin(n)#bin(j)#bin(m)#bin(D)
- The transition function is encoded as a list of all these tuples, separated with #: $\langle \delta \rangle = (\text{enc}(q_i, \sigma_n) \#)_{q_i \in O, \sigma_i \in \Gamma}$
- Combining everything, we set $\langle \mathcal{M} \rangle = \langle \mathcal{Q} \rangle \# \langle \mathcal{L} \rangle \#$

We can also encode arbitrary words to match this encoding:

• For a word $w = a_1 \cdots a_\ell$ we define $\langle w \rangle = \text{bin}(a_1) \# \cdots \# \text{bin}(a_\ell)$

Step 2: The Universal Turing Machine

We define the universal TM $\mathcal U$ as multi-tape TM:

Tape 1: Input tape of \mathcal{U} : contains $\langle \mathcal{M} \rangle$ ## $\langle w \rangle$

Tape 2: Working tape of $\mathcal U$

Tape 3: Stores the state of the simulated TM

Tape 4: Working tape of the simulated TM

Step 2: The Universal Turing Machine

We define the universal TM $\mathcal U$ as multi-tape TM:

Tape 1: Input tape of \mathcal{U} : contains $\langle \mathcal{M} \rangle$ ## $\langle w \rangle$

Tape 2: Working tape of $\mathcal U$

Tape 3: Stores the state of the simulated TM

Tape 4: Working tape of the simulated TM

The working principle of \mathcal{U} is easily sketched:

- \mathcal{U} validates the inpurt, copies $\langle w \rangle$ to Tape 4, moves the head on Tape 4 to the start and initialises Tape 3 with bin(0) (i.e., $\langle q_0 \rangle$).
- In each step $\mathcal U$ reads an (encoded) symbol from the head position on Tape 4, and searches for the simulated state (Tape 3) a matching transition in $\langle \mathcal M \rangle$ on Tape 1 (w.l.o.g. assume that the final states of the encoded TM have no transitions):
 - Transition found: update state on Tape 3; replace the encoded symbol on Tape 4 by the new symbol; move the head on Tape 4 accordingly
 - Transition not found: if the state on Tape 3 is $q_{\rm accept}$, then go to the final accepting state; else go to the final rejecting state

The Theory of Software

Theorem 3.8: There is a universal Turing Machine \mathcal{U} , that, when given an input $\langle \mathcal{M} \rangle$ ## $\langle w \rangle$, simulates the behaviour of a DTM \mathcal{M} on w:

- If \mathcal{M} halts on w, then \mathcal{U} halts on (\mathcal{M}) ##(w) with the same result
- If \mathcal{M} does not halt on w, then \mathcal{U} does not halt on $\langle \mathcal{M} \rangle \# \# \langle w \rangle$ either

Our construction is for DTMs that recognise languages ("Turing acceptors") – DTMs that compute partila functions can be simulated in a similar fashion.

The Theory of Software

Theorem 3.8: There is a universal Turing Machine \mathcal{U} , that, when given an input $\langle \mathcal{M} \rangle$ ## $\langle w \rangle$, simulates the behaviour of a DTM \mathcal{M} on w:

- If \mathcal{M} halts on w, then \mathcal{U} halts on (\mathcal{M}) ##(w) with the same result
- If \mathcal{M} does not halt on w, then \mathcal{U} does not halt on $\langle \mathcal{M} \rangle$ ## $\langle w \rangle$ either

Our construction is for DTMs that recognise languages ("Turing acceptors") – DTMs that compute partila functions can be simulated in a similar fashion.

Practical consequences:

- Universal computers are possible
- We don't have to buy a new computer for every application
- Software exists

Undecidable Problems and Reductions

The Halting Problem

A classical undecidable problem:

Definition 3.9: The Halting Problem consists in the following question:

Given a TM \mathcal{M} and a word w, will \mathcal{M} ever halt on input w?

The Halting Problem

A classical undecidable problem:

Definition 3.9: The Halting Problem consists in the following question:

Given a TM \mathcal{M} and a word w, will \mathcal{M} ever halt on input w?

We can fomulate the Halting Problem as a word problem by encoding M and w:

Definition 3.10: The Halting Problem is the word problem for the language

 $\mathbf{P}_{\mathsf{Halt}} = \{\langle \mathcal{M} \rangle \# (w) \mid \mathcal{M} \text{ halts on input } w\},\$

where $\langle \mathcal{M} \rangle$ und $\langle w \rangle$ are suitable encodings of \mathcal{M} and w, for which ## can be used as separator.

Remark: Wrongly encoded inputs are rejected.

Theorem 3.11: The Halting Problem **P**_{Halt} is undecidable.

Theorem 3.11: The Halting Problem **P**_{Halt} is undecidable.

"**Proof:**" The opposite would be too good to be true. Many unsolved problems could then be solved immediately.

Theorem 3.11: The Halting Problem **P**_{Halt} is undecidable.

"**Proof:**" The opposite would be too good to be true. Many unsolved problems could then be solved immediately.

Example 3.12: Goldbach's Conjecture (Christian Goldbach, 1742) states that every even number $n \ge 4$ is the sum of two primes. For instance, 4 = 2 + 2 and 100 = 47 + 53.

Theorem 3.11: The Halting Problem **P**_{Halt} is undecidable.

"**Proof:**" The opposite would be too good to be true. Many unsolved problems could then be solved immediately.

Example 3.12: Goldbach's Conjecture (Christian Goldbach, 1742) states that every even number $n \ge 4$ is the sum of two primes. For instance, 4 = 2 + 2 and 100 = 47 + 53.

On can easily give an algorithm \mathcal{A} that verifies Goldbach's conjecture systematically by testing it for every even number starting with 4:

- Success: Test the next even number
- Failure: Terminate with output "Goldbach was wrong!"

The question "Will $\mathcal A$ halt?" therefore is equivalent of the question "Is Goldbach's conjecture wrong?"

Many other important open problems could be solved in this way.

Theorem 3.11: The Halting Problem **P**_{Halt} is undecidable.

Theorem 3.11: The Halting Problem **P**_{Halt} is undecidable.

Proof: By contradiction: Suppose there is a decider \mathcal{H} for the Halting Problem.

Theorem 3.11: The Halting Problem **P**_{Halt} is undecidable.

Proof: By contradiction: Suppose there is a decider \mathcal{H} for the Halting Problem.

Then one can construct a TM \mathcal{D} that does the following:

- (1) Check if the given input is a TM encoding $\langle \mathcal{M} \rangle$
- (2) Simulate $\mathcal H$ on input $\langle \mathcal M \rangle \# \langle \langle \mathcal M \rangle \rangle$, that is, check if $\mathcal M$ halts on $\langle \mathcal M \rangle$
- (3) If yes, enter an infinite loop;if no, halt and accept

Theorem 3.11: The Halting Problem **P**_{Halt} is undecidable.

Proof: By contradiction: Suppose there is a decider ${\mathcal H}$ for the Halting Problem.

Then one can construct a TM $\mathcal D$ that does the following:

- (1) Check if the given input is a TM encoding $\langle \mathcal{M} \rangle$
- (2) Simulate $\mathcal H$ on input $\langle \mathcal M \rangle \# \langle \langle \mathcal M \rangle \rangle$, that is, check if $\mathcal M$ halts on $\langle \mathcal M \rangle$
- (3) If yes, enter an infinite loop; if no, halt and accept

Will \mathcal{D} accept the input $\langle \mathcal{D} \rangle$?

Theorem 3.11: The Halting Problem **P**_{Halt} is undecidable.

Proof: By contradiction: Suppose there is a decider \mathcal{H} for the Halting Problem.

Then one can construct a TM $\mathcal D$ that does the following:

- (1) Check if the given input is a TM encoding $\langle \mathcal{M} \rangle$
- (2) Simulate $\mathcal H$ on input $\langle \mathcal M \rangle \# (\langle \mathcal M \rangle)$, that is, check if $\mathcal M$ halts on $\langle \mathcal M \rangle$
- (3) If yes, enter an infinite loop; if no, halt and accept

Will \mathcal{D} accept the input $\langle \mathcal{D} \rangle$?

 $\mathcal D$ halts and accepts if and only if $\mathcal D$ does not halt

Contradiction.

Theorem 3.11: The Halting Problem **P**_{Halt} is undecidable.

Theorem 3.11: The Halting Problem **P**_{Halt} is undecidable.

Proof: Suppose that the Halting Problem is decidable.

Theorem 3.11: The Halting Problem **P**_{Halt} is undecidable.

Proof: Suppose that the Halting Problem is decidable.

An algorithm:

- Input: natural number k (in binary)
- Iterate over all Turing machines M that have k states and tape alphabet {x, □}:
 - Decide if \mathcal{M} halts on the empty input ε (possible if the Halting problem is decidable)
 - If yes, then simulate M on the empty input and, when M has halted, count the number of x on the tape
 (possible, since there are universal TMs)
- Output: the maximal number of x written.

Theorem 3.11: The Halting Problem **P**_{Halt} is undecidable.

Proof: Suppose that the Halting Problem is decidable.

An algorithm:

- Input: natural number k (in binary)
- Iterate over all Turing machines M that have k states and tape alphabet {x, □}:
 - Decide if \mathcal{M} halts on the empty input ε (possible if the Halting problem is decidable)
 - If yes, then simulate M on the empty input and, when M has halted, count the number of x on the tape
 (possible, since there are universal TMs)
- Output: the maximal number of x written.

This algorithm would compute the Busy-Beaver funktion $\Sigma : \mathbb{N} \to \mathbb{N}$.

We have already shown that this is impossible – contradiction.

Turing Reductions

Our previous proof constructs an algorithm for one task (Busy Beaver) by calling subroutines for another task (the Halting Problem)

Turing Reductions

Our previous proof constructs an algorithm for one task (Busy Beaver) by calling subroutines for another task (the Halting Problem)

This idea can be generalised:

Informal Definition 3.13: A problem \mathbf{P} is Turing reducible to a problem \mathbf{Q} (in Symbols: $\mathbf{P} \leq_T \mathbf{Q}$), if \mathbf{P} can be solved by a program that may call \mathbf{Q} as a sub-program.

Turing Reductions

Our previous proof constructs an algorithm for one task (Busy Beaver) by calling subroutines for another task (the Halting Problem)

This idea can be generalised:

Informal Definition 3.13: A problem \mathbf{P} is Turing reducible to a problem \mathbf{Q} (in Symbols: $\mathbf{P} \leq_T \mathbf{Q}$), if \mathbf{P} can be solved by a program that may call \mathbf{Q} as a sub-program.

Example 3.14: Our proof uses a reduction of the Busy-Beaver computation to the Halting problem. Note that the subroutine might be called exponentially many times here.

To make this more formal, we need orcales.

Oracles

Definition 3.15: An Oracle Turing Machine (OTM) is a Turing machine \mathcal{M} with a special tape, called the oracle tape, and distinguished states $q_?$, q_{yes} , and q_{no} . For a language \mathbf{O} , the oracle machine $\mathcal{M}^{\mathbf{O}}$ can, in addition to the normal TM operations, do the following:

Whenever $\mathcal{M}^{\mathbf{0}}$ reaches $q_{?}$, its next state is q_{yes} if the content of the oracle tape is in $\mathbf{0}$, and q_{no} otherwise.

Oracles

Definition 3.15: An Oracle Turing Machine (OTM) is a Turing machine \mathcal{M} with a special tape, called the oracle tape, and distinguished states $q_?$, q_{yes} , and q_{no} . For a language \mathbf{O} , the oracle machine $\mathcal{M}^{\mathbf{O}}$ can, in addition to the normal TM operations, do the following:

Whenever $\mathcal{M}^{\mathbf{0}}$ reaches $q_{?}$, its next state is q_{yes} if the content of the oracle tape is in $\mathbf{0}$, and q_{no} otherwise.

- The word problem for **O** might be very hard or even undecidable
- Nevertheless, asking the oracle always takes just one step
- For dramatic effect, we might assert that the contents of the oracle tape is consumed (emptied) during this mysterious operation. However, this does not usually make a difference to our results.

Oracles

Definition 3.15: An Oracle Turing Machine (OTM) is a Turing machine \mathcal{M} with a special tape, called the oracle tape, and distinguished states $q_?$, q_{yes} , and q_{no} . For a language \mathbf{O} , the oracle machine $\mathcal{M}^{\mathbf{O}}$ can, in addition to the normal TM operations, do the following:

Whenever $\mathcal{M}^{\mathbf{0}}$ reaches $q_{?}$, its next state is q_{yes} if the content of the oracle tape is in $\mathbf{0}$, and q_{no} otherwise.

- The word problem for O might be very hard or even undecidable
- Nevertheless, asking the oracle always takes just one step
- For dramatic effect, we might assert that the contents of the oracle tape is consumed (emptied) during this mysterious operation. However, this does not usually make a difference to our results.

Definition 3.16: A problem **P** is Turing reducible to a problem **Q** (in Symbols: $\mathbf{P} \leq_T \mathbf{Q}$), if **P** is decided by an OTM $\mathcal{M}^{\mathbf{Q}}$ with oracle **Q**.

Undecidability via Turing Reductions

One can use Turing recductions to show undecidability:

Theorem 3.17: If **P** is undecidable and $P \leq_T \mathbf{Q}$, then **Q** is undecidable.

Undecidability via Turing Reductions

One can use Turing recductions to show undecidability:

Theorem 3.17: If **P** is undecidable and $P \leq_T \mathbf{Q}$, then **Q** is undecidable.

Proof: Via contrapositive: If $P \leq_T Q$ and Q is decidable, then we can implement the OTM that shows $P \leq_T Q$ as a regular TM, which shows that P is decidable.

Undecidability via Turing Reductions

One can use Turing recductions to show undecidability:

Theorem 3.17: If **P** is undecidable and $P \leq_T \mathbf{Q}$, then **Q** is undecidable.

Proof: Via contrapositive: If $P \leq_T Q$ and Q is decidable, then we can implement the OTM that shows $P \leq_T Q$ as a regular TM, which shows that P is decidable. \square

Here is a small application:

Theorem 3.18: The language $\mathbf{P}_{\overline{\text{Halt}}} = \{\langle \mathcal{M} \rangle \# \# \langle w \rangle \mid \mathcal{M} \text{ does not halt on } w \}$ (the "Non-Halting Problem") is undecidable.

Proof sketch: Decide Halting by using $P_{\overline{\text{Halt}}}$ as an oracle and inverting the result. Check TM encoding first (wrong encodings are rejected by Halting and Non-Halting).

Special cases of the Halting Problem are usually not simpler:

Definition 3.19: The ε -Halting Problem consists in the following question:

Given a TM \mathcal{M} ,

will \mathcal{M} ever halt on the empty input ε ?

Special cases of the Halting Problem are usually not simpler:

Definition 3.19: The ε -Halting Problem consists in the following question: Given a TM \mathcal{M} , will \mathcal{M} ever halt on the empty input ε ?

Theorem 3.20: The ε -Halting Problem is undecidable.

Special cases of the Halting Problem are usually not simpler:

Definition 3.19: The ε -Halting Problem consists in the following question: Given a TM \mathcal{M} , will \mathcal{M} ever halt on the empty input ε ?

Theorem 3.20: The ε -Halting Problem is undecidable.

Proof: We define an oracle machine for deciding Halting:

- Input: A Turing machine M and a word w.
- Construct a TM \mathcal{M}_w that runs in two phases:
 - (1) Delete the input tape and write the word w instead
 - (2) Process the input like \mathcal{M}
- Solve the ε -Halting problem for \mathcal{M}_w (oracle).
- Output: output of the ε -Halting Problem

Special cases of the Halting Problem are usually not simpler:

Definition 3.19: The ε -Halting Problem consists in the following question: Given a TM \mathcal{M} , will \mathcal{M} ever halt on the empty input ε ?

Theorem 3.20: The ε -Halting Problem is undecidable.

Proof: We define an oracle machine for deciding Halting:

- Input: A Turing machine M and a word w.
- Construct a TM \mathcal{M}_w that runs in two phases:
 - (1) Delete the input tape and write the word w instead
 - (2) Process the input like \mathcal{M}
- Solve the ε -Halting problem for \mathcal{M}_{w} (oracle).
- Output: output of the ε -Halting Problem

This Turing-reduces Halting to ε -halting, so the latter is also undecidable.

Summary and Outlook

Busy Beaver is uncomputable

Halting is undecidable (for many reasons)

Orcales and Turing reductions formalise the notion of a "subroutine" and help us to transfer our insights from one problem to another

What's next?

- Some more undecidability
- Recursion and self-referentiality
- · Actual complexity classes