Finite and Algorithmic Model Theory

Lecture 1 (Dresden 12.10.22, Short version (corrected 20.10.22))

Lecturer: Bartosz "Bart" Bednarczyk

Technische Universität Dresden \& Uniwersytet Wroceawski

TECHNISCHE
 UNIVERSITÄT DRESDEN

Established by the European Commission

Today's agenda

1. Basic information regarding the course.
2. An informal definition of a logic with examples.
3. Potential applications and further research options.

Query languages?

Formal verification?

Formal languages?

Complexity?

4. Recap from BSc studies: Syntax \& Semantics of First-Order Logic (FO).
5. Basic notations, provability, and Gödel's theorem " \models equals \vdash ".
6. Gödel's Compactness theorem with a proof and an application.

Feel free to ask questions and interrupt me!
Don't be shy! If needed send me an email (bartosz.bednarczyk@cs.uni.wroc.pl) or approach me after the lecture!
Reminder: this is an advanced lecture. Target: people that had fun learning logic during BSc studies!

Course Information

https://iccl.inf.tu-dresden.de/web/Finite_and_algorithmic_model_theory_(22/23)_(WS2022)/en Contact me via email: bartosz.bednarczyk@cs.uni.wroc.pl

1. Lectures: Wednesday 14:50-16:20 (APB/E007), Tutorials: Thursday 13:00-14:30 (APB/2026) (important) 2. Course website: (at [ICCL] $) \leftarrow$ check for slides, notes, and exercise lists.
2. Each week a new exercise list will be published. Do not worry if you can't solve all of them.
3. Oral exam: question about the basic understanding + selected theorems. Intended to be easy!
4. Goal: understand power/limitations of 1st-order logic and selected fragments (with a bit of complexity).

Books and literature.

+ Lecture notes by Martin Otto [HERE] and lecture notes by Erich Grädel [HERE]

Last but Not Least: I offer MSc/PHD research projects for motivated students!

What is a "logic"? A running example.

Naively: a "formal language" for expressing properties of relational structures (\approx hypergraphs).
Made formal via abstract model theory, c.f. article at ncatlab.org and Lindström's theorems.

over a signature $\tau:=\left\{\mathrm{G}^{(1)}, \mathrm{R}^{(1)}, \mathrm{E}^{(2)}\right\}$

$$
\begin{array}{r}
G^{\mathfrak{A}}:=\{1,4\}, \quad R^{\mathfrak{A}}:=\{2,3\} \\
E^{\mathfrak{A}}:=\{(1,2),(2,3),(3,1),(3,3)(3,4),(4,3)\}
\end{array}
$$

A signature contains (at most countably* many) constant and relation symbols (each with a fixed arity).
Structure $=$ Domain + interpretation of symbols, e.g. $\mathfrak{A}:=\left(A,{ }^{\mathfrak{A}}\right)$ depicted above,
where $A=\{1,2,3,4\}$ and $\cdot{ }^{24}(\mathrm{G}),{ }^{\cdot 2}(\mathrm{R}),{ }^{2}(\mathrm{E})$ are as above.
Example (ofela First-Order Logid (FO)iformula)lours, binary (resp. higher-arity) relations \approx (hyper)edges (in a coloured graph:) Any node is either green or red.

$$
\varphi:=\forall x(\mathrm{G}(x) \vee \mathrm{R}(x)) \wedge(\mathrm{G}(x) \leftrightarrow \neg \mathrm{R}(x))
$$

We write $\mathfrak{A} \models \varphi$ to indicate that \mathfrak{A} satisfies φ or \mathfrak{A} is a model of φ.

Formulae often employ: Variables: x, y, z, X, Y, \ldots Boolean connectives: $\wedge, \vee, \neg, \leftrightarrow, \vee_{i=0}^{\infty}, \ldots$ Quantifiers: $\forall, \exists, \exists^{\text {even }}, \exists=42, \exists \exists^{35 \%}, \exists S e t, \diamond$, Predicates (relational symbols): P, $\in,=, \sim$, and more?

More examples I.

Exercise (An FO[\{E $\left.\left.\mathrm{E}^{(2)}\right\}\right]$ formula/query testing if a graph is a 4-element clique [here $\mathrm{E}=$ edge relation].)

1. There are precisely 4 elements \qquad
$\exists x_{1} \exists x_{2} \exists x_{3} \exists x_{4}\left(x_{1} \neq x_{2} \wedge x_{1} \neq x_{3} \wedge x_{1} \neq x_{4} \wedge x_{2} \neq x_{3} \wedge x_{2} \neq x_{4} \wedge x_{3} \neq x_{4}\right.$

$$
\left.\wedge \forall x\left[x=x_{1} \vee x=x_{2} \vee x=x_{3} \vee x=x_{4}\right]\right)
$$

2. and any two of them are linked by E .
$\wedge \forall x \forall y \mathrm{E}(x, y)$.

Exercise (Write a formula over $\left\{\mathrm{E}^{(2)}\right\}$ checking if a graph is two-colorable.)

$\varphi_{2 C O L}=\exists \mathrm{G} \exists \mathrm{R}(x \in \mathrm{G} \vee x \in \mathrm{R}) \wedge(x \in \mathrm{G} \leftrightarrow x \notin \mathrm{R}) \wedge \varphi_{o k}$

$$
\varphi_{o k}=\forall x(x \in \mathrm{G} \rightarrow(\forall y E(x, y) \rightarrow y \in \mathrm{R})) \wedge \forall x(x \in \mathrm{R} \rightarrow(\forall y E(x, y) \rightarrow y \in \mathrm{G}))
$$

More examples II.

Exercise (Write an $\mathrm{FO}\left[\left\{\mathrm{E}^{(2)}, \mathrm{a}, \mathrm{b}\right\}\right]$ formula $\varphi_{k}^{\text {reach }(\mathrm{a}, \mathrm{b})}$ testing if there is a path from a to b of length k.)

1. Case $k=0$ is trivial: Take $\varphi_{0}^{\text {reach }(\mathrm{a}, \mathrm{b})}:=\mathrm{a}=\mathrm{b}$
2. Case $k=1$ is easy too: Take $\varphi_{1}^{\text {reach }(\mathrm{a}, \mathrm{b})}:=\mathrm{E}(\mathrm{a}, \mathrm{b})$
3. Case $k=2$ is a tiny bit harder: Take $\varphi_{2}^{\text {reach }(\mathrm{a}, \mathrm{b})}:=\exists x_{1} \mathrm{E}\left(\mathrm{a}, x_{1}\right) \wedge \mathrm{E}\left(x_{1}, \mathrm{~b}\right)$
4. Case $k=3$ is a similar: Take $\varphi_{3}^{\text {reach }(\mathrm{a}, \mathrm{b})}:=\exists x_{1} \exists x_{2} \mathrm{E}\left(\mathrm{a}, x_{1}\right) \wedge \mathrm{E}\left(x_{1}, x_{2}\right) \wedge \mathrm{E}\left(x_{2}, \mathrm{~b}\right)$
5. So for any $k \geq 2$ just take: Take $\varphi_{k}^{\text {reach }(\mathrm{a}, \mathrm{b})}:=\exists x_{1} \ldots \exists x_{k-1} \mathrm{E}\left(\mathrm{a}, x_{1}\right) \wedge \wedge_{i=1}^{k-2} \mathrm{E}\left(x_{i}, x_{i+1}\right) \wedge \mathrm{E}\left(x_{k-1}, \mathrm{~b}\right)$

Question (Can we do better in terms the total number of quantifiers?)
Current state of the art: $\log _{2}(k)-\mathcal{O}(1) \leq ? ? ? \leq 3 \log _{3}(k)+\mathcal{O}(1)$ by Fagin at al. [MFCS 2022]

Exercise (Write a formula $\varphi^{\text {conn }}$ over $\left\{\mathrm{E}^{(2)}\right\}$ testing if a structure is E -connected.)
$\varphi^{\mathrm{reach}(\mathrm{a}, \mathrm{b})}:=\forall x \forall y \vee_{i=0}^{\infty} \varphi_{k}^{\text {reach }(\mathrm{a}, \mathrm{b})}[\mathrm{a} / x, \mathrm{~b} / y]$

Is there a chance to get an FO formula?
No. And we will show it today!

Motivations I: why do we care about logic?

Query: Give me IDs of all candidates who applied for "computer science".

	SELECT CandID
	FROM Candidate
	WHERE Major $=$ Computer Science"

Theorem (Codd 1971)
Basic SQL \approx First-Order Logic

Other useful logic: Datalog $\approx \mathrm{SQL}+$ recursion

1. VLog: a rule engine for querying data graphs
2. Vadalog: querying data graphs based on Datalog

Nice lecture on VadaLog by Gottlob [here], and a course on knowledge graphs by Krötzsch [here].

Description logics: a family of logics for knowledge representation.

Dublin Core Metadata Initiative
Making it easier to find information

Motivations II: why do we care about logic?

1. Temporal logics as specification languages

2. COQ: verified algorithms!, c.f. [here]
3. Separation logic: verifying Cpp/Java Nice lecture [here]. (rm there unning with a micl)

Check also Infer tool by Facebook!

bartoszbednarczyk@Minsky-Machine: ~/Downloads/Infer

```
- vim hello.c
```

// hello.c

```
// hello.c
#include <stdlib.h>
#include <stdlib.h>
void test() {
void test() {
    int *s = NULL;
    int *s = NULL;
    *s = 42;
```

```
    *s = 42;
```

```
てヵ\&1
\}
```

Capturing in make/cc mode.
Found 1 source file to analyze in /Users/bartoszbednarczyk/Downloads/Infer/infer-out
Analysis finished in 775mss
Found 1 issue
hello.c:6: error: NULL_DEREFERENCE
pointer 's' last assigned on line 5 could be null and is dereferenced at line 6, column 3.
4. void test() {
int *s = NULL;
*s = 42;
7.>
Summary of the reports

```
p)

\section*{Motivations III: why do we care about logic?}

In "standard" computational complexity we measure resources, e.g. space and time.
Déscriptive Co(mplexity; how strong the language must be to dedesoriBe the problem?
A \(\operatorname{logic} \mathcal{L}\) characterises the complexity class \(\mathcal{C}\) if for every property of finite structures \(\mathcal{P}\) :
1. \(\mathcal{P}\) is expressible in \(\mathcal{L}\) if and only if
2. There is an algorithm in \(\mathcal{C}\) deciding \(\mathcal{P}\).

\section*{Theorem (Fagin'1973)}

Existential Second Order Logic characterises NP.


Is there a logic for PTime?
No idea since 1988.


\section*{Motivations IV: why do we care about logic?}

Meta algorithms: say what you want instead of writing a code! Hot topic nowadays!
Is every property of graphs expressible in FO is checkable in linear time for all graphs from class \(\mathcal{C}\) ?

Theorem (Courcelle 1990)
\(\mathcal{C}:=\) graphs of bounded-treewidth.
Theorem (Seese 1996)
\(\mathcal{C}:=\) graphs of bounded-degree.
Theorem (Dvorák et al. 2010)
\(\mathcal{C}:=\) graphs of bounded-expansion.
Theorem (Bonnet et al. 2022)
\(\mathcal{C}:=\) graphs of bounded-twinwidth.
Theorem (Grohe, Kreutzer, Siebertz 2014)
\(\mathcal{O}\left(|\varphi|^{1+\varepsilon}\right)\) for \(\mathcal{C}:=\) nowhere-dense graphs.


\section*{Signatures (vocabularies)}

Signature \(\sigma\) is a (countable) collection of symbols: \(\left(\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{R}_{1}, \mathrm{R}_{2}, \ldots\right)\)
Constant symbols, e.g. \(\emptyset, 7\), Bartek
Relational symbols, e.g. \(\in, \subseteq\), isEven \(\bullet\) with an associated arity, e.g. \(\operatorname{ar}(\subseteq)=2, \operatorname{ar}(\) isEven \()=1\)

\section*{Structures}

Over a signature \(\sigma\) we define \(\sigma\)-structures \(\mathfrak{A}=\left(A,,^{\mathfrak{A}}\right)\) composed of:
- Non-empty set \(A\) called the domain of \(\mathfrak{A}+\) Interpretation function \({ }^{\mathfrak{A}}\) such that: \(\mathrm{E}^{\mathfrak{B}}\)
1. For each constant symbol \(c\), we have \(\cdot \mathfrak{A}: c \mapsto\left(c^{\mathfrak{A}} \in A\right)\)
2. For each relational symbol R , we have \(\cdot{ }^{\mathfrak{A}}: \mathrm{R} \mapsto\left(\mathrm{R}^{\mathfrak{A}} \subseteq A^{\operatorname{ar}(\mathrm{R})}\right)\)


\section*{Morphisms}

Let \(\mathfrak{A}, \mathfrak{B}\) be \(\sigma\)-structures. A homomorphism from \(\mathfrak{A}\) to \(\mathfrak{B}\) is \(\mathfrak{h}: A \rightarrow B\) satisfying:
- For all constant symbols \(c \in \sigma\) we have \(\mathfrak{h}\left(c^{\mathfrak{A}}\right)=c^{\mathfrak{B}}\), and
- For all relational symbols \(\mathrm{R} \in \sigma, \mathrm{R}^{\mathfrak{A}}\left(a_{1}, \ldots, a_{\operatorname{ar}(\mathrm{R})}\right)\) implies \(\mathrm{R}^{\mathfrak{B}}\left(\mathfrak{h}\left(a_{1}\right), \ldots, \mathfrak{h}\left(a_{\operatorname{ar}(\mathrm{R})}\right)\right)\).

An isomorphism \(\mathfrak{h}\) between \(\mathfrak{A}\) and \(\mathfrak{B}\) is a bijection s.t. \(\mathfrak{h}, \mathfrak{h}^{-1}\) are homomorphisms.

\section*{Syntax of \(\mathrm{FO}[\sigma]\)}
- Let Var \(:=\{x, y, z, u, v, \ldots\}\) be a countably-infinite set of variables.
- The set of terms is \(\operatorname{Terms}(\sigma):=\operatorname{Var} \cup\{\mathrm{c} \mid \mathrm{c}\) is a constant from \(\sigma\}\).
- The set of atomic formulae \(\operatorname{Atoms}(\sigma)\) is the smallest set such that:
1. If \(t_{1}, t_{2}\) are terms from \(\operatorname{Terms}(\sigma)\) then \(t_{1}=t_{2}\) belongs to \(\operatorname{Atoms}(\sigma)\).
2. If \(t_{1}, \ldots, t_{\operatorname{ar}(\mathrm{R})} \in \operatorname{Terms}(\sigma)\), and \(\mathrm{R} \in \sigma\) is relational implies \(\mathrm{R}\left(t_{1}, \ldots, t_{\operatorname{ar}(\mathrm{R})}\right) \in \operatorname{Atoms}(\sigma)\).
- The set \(\mathrm{FO}[\sigma]\) of First-Order formulae over \(\sigma\) is the closure of Atoms \((\sigma)\) under
\[
\wedge, \vee, \rightarrow, \leftrightarrow, \neg, \exists x, \forall x \text { (for all variables } x \in \operatorname{Var})
\]

\section*{Free variables}
\(\exists x(E(x, y) \wedge \forall z(E(z, y) \rightarrow x=z))\)
\(\exists x(E(x, y) \wedge \exists y \neg E(y, x))\)
Formally, we define the set of free variables of \(\varphi\), denoted with \(\operatorname{FVar}(\varphi)\), as follows:
- \(\mathrm{F} \operatorname{Var}(x)=\{x\}, \mathrm{F} \operatorname{Var}(\mathrm{c})=\emptyset\) for all \(x \in \operatorname{Var}\) and constant symbols c from \(\sigma\).
- \(\operatorname{FVar}\left(t_{1}=t_{2}\right)=\mathrm{F} \operatorname{Var}\left(t_{1}\right) \cup \mathrm{F} \operatorname{Var}\left(t_{2}\right)\) for all \(t_{1}, t_{2} \in \operatorname{Terms}(\sigma)\).
- \(\operatorname{FVar}(\neg \varphi)=\mathrm{F} \operatorname{Var}(\varphi)\) and \(\operatorname{FVar}(\varphi \wedge \psi)=\mathrm{F} \operatorname{Var}(\varphi) \cup \mathrm{F} \operatorname{Var}(\psi)\). (and similarly for \(\rightarrow, \leftrightarrow, \vee, \top, \perp\) )
- \(\operatorname{FVar}(\exists x \varphi)=\mathrm{FVar}(\varphi) \backslash\{x\}\) for all \(x \in \operatorname{Var}\).

\section*{Notation regarding formulae}

We write \(\varphi\left(x_{1}, x_{2}, \ldots, x_{k}\right)\) to indicate that the variables \(x_{1}, \ldots, x_{k}\) are free in \(\varphi\).
Formula without free-variables is called a sentence.
Formula without occurrences of \(\forall, \exists\) is called a quantifier-free.
A set of sentences is called a theory.

\section*{Semantics of FO}

For a \(\sigma\)-structure \(\mathfrak{A}\) we define inductively, for each term \(t\left(x_{1}, x_{2}, \ldots, x_{n}\right)\)
the value of \(t^{2 l}\left(a_{1}, \ldots, a_{n}\right)\), where \(\left(a_{1}, \ldots, a_{n}\right) \in A^{n}\) as follows:
1. For a constant symbol \(c \in \sigma\), the value of \(c\) in \(\mathfrak{A}\) is \(c^{\mathfrak{A}}\).
2. The value of \(x_{i}\) in \(t^{24}\left(a_{1}, a_{2}, \ldots, a_{n}\right)\) is \(a_{j}\).

Now we define \(\models\) for \(\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)\) :
- If \(\varphi \equiv t_{1}=t_{2}\), then \(\mathfrak{A} \models \varphi(\bar{a})\) iff \(t_{1}^{\mathfrak{M}}(\bar{a})=t_{2}^{\mathfrak{M}}(\bar{a})\).
- If \(\varphi \equiv \mathrm{R}\left(t_{1}, t_{2}, \ldots, t_{n}\right)\), then \(\mathfrak{A} \models \varphi(\bar{a})\) iff \(\left(t_{1}^{\mathfrak{A}}(\bar{a}), \ldots, t_{n}^{\mathfrak{A}}(\bar{a}) \in \mathrm{R}^{\mathfrak{A}}\right.\).
- \(\mathfrak{A} \models \neg \varphi\) iff not \(\mathfrak{A} \models \varphi ; \quad \mathfrak{A} \models \varphi \wedge \psi\) iff \(\mathfrak{A} \models \varphi\) and \(\mathfrak{A} \models \psi\) (similarly for other connectives)
- If \(\varphi \equiv \exists x \psi(x, \bar{y})\), then \(\mathfrak{A} \models \varphi(\bar{a})\) iff \(\mathfrak{A} \models \psi\left(a^{\prime}, \bar{a}\right)\) for some \(a^{\prime} \in A\) (similarly for \(\forall\) quantifier)

The last bunch of notations. Proof systems.
A formula \(\varphi\) is satisfiable if it has a model (there is a structure \(\mathfrak{A}\) s.t. \(\mathfrak{A} \models \varphi\) ).
For a theory \(\mathcal{T}\) (set of sentences) we write \(\mathfrak{A} \models \mathcal{T}\) instead of \(\mathfrak{A} \models \wedge_{\varphi \in \mathcal{T}} \varphi\).
\(\varphi\) is a tautology iff every structure satisfies \(\varphi\) (written: \(\models \varphi\) ). Note: \(\varphi\) is a tautology iff \(\neg \varphi\) is unsatisfiable.
We write \(\mathcal{T} \models \varphi\) to say that every model of \(\mathcal{T}\) is a model of \(\varphi\). Note: \(\mathcal{T} \models \perp\) iff \(\mathcal{T}\) is unSAT.
Warning! Models can be of any size: finite, countably-infinite and even larger!
\[
\text { Löwenheim-Skolem } 1922
\]

If a countable theory \(\mathcal{T}\) has an infinite model then \(\mathcal{T}\) has a countably-inf one.


FO has dedicated proof systems, e.g. Gentzen's sequents. Check Tim Lyon's lectures! [HERE]
\(\mathcal{T} \vdash \varphi\) means \(\varphi\) is provable from \(\mathcal{T}\) with sequents.
(we treat \(\mathcal{T}\) as extra axioms, note that proofs are finite)
Gödel 1929: \(\mathcal{T} \models \varphi\) iff \(\mathcal{T} \vdash \varphi\)
SAT for FO is Recursively Enumerable
\[
\left.\frac{\frac{A x}{\forall x[P(x)], \forall x[P(x) \rightarrow Q(x)], Q(a) \vdash Q(a)}}{\frac{\forall x[P(x)], \forall x[P(x) \rightarrow Q(x)], \neg P(a) \vee Q(a) \vdash Q(a)}{\forall x[P(x)], \forall x[P(x) \rightarrow Q(x)], \neg P(a) \vdash Q(a)}[\neg \vdash]}[\vee \vdash]\right)
\]

Let \(\mathcal{T}\) be an FO-theory and let \(\varphi\) be an FO sentence.
1. If \(\mathcal{T} \models \varphi\) then there is a finite \(\mathcal{T}_{0} \subseteq \mathcal{T}\) such that \(\mathcal{T}_{0} \models \varphi\).

Use case: Showing inexpressivity


Proofs are finite


\section*{1st excursion: Proving (1)}

Craft \(\mathcal{T}_{0} \quad\) Assume \(\mathcal{T} \models \varphi\). Then by Gödel's completeness theorem \(\mathcal{T} \vdash \varphi\). So there is a formal proof \(\mathcal{P}\) of \(\mathcal{T} \vdash \varphi\). Since proofs are finite the proof \(\mathcal{P}\) uses only finitely many axioms of \(\mathcal{T}\). Call them \(\mathcal{T}_{0}\). Thus \(\mathcal{T}_{0} \vdash \varphi\) holds (use the same proof as before!). After asking Gödel about " \(\vDash=\vdash\) " again we are done.

Ad absurdum
\(\mathcal{T}\) unSAT iff \(\mathcal{T} \models \perp\)

2nd excursion: Proving (2)
Towards a contradiction suppose \(\mathcal{T}\) is unsatisfiable. So \(\mathcal{T} \models \perp\). By (1) there is a finite \(\mathcal{T}_{0} \subseteq \mathcal{T}\) such that \(\mathcal{T}_{0} \models \perp\).
Thus \(\mathcal{T}\) has an unsatisfiable finite subset \(\left(\mathcal{T}_{0}\right)\). A contradiction!

\section*{Employing compactness I: Reachability in \(\{E\}\)-structures}

The general proof scheme to show that the property \(\mathcal{P}\) is not FO-definable. Ad absurdum suppose that \(\varphi\) defines \(\mathcal{P}\). \(\rightsquigarrow\) Manufacture a theory \(\mathcal{T}\) containing \(\varphi . \rightsquigarrow\) \(\rightsquigarrow\) Prove that \(\mathcal{T}\) is unsatisfiable \(\rightsquigarrow\) but its every finite subset is satisfiable. \(\rightsquigarrow\) Contradict Compactness.

There is no \(\mathrm{FO}[\{\mathrm{E}\}]\) formula for connectivity over \(\{\mathrm{E}\}\)-structures.
So there is no formula saying that between any two nodes there is a directed \(\{E\}\)-path.
No info about the finite models!

\section*{Proof:}

Assume that there is such \(\varphi\), and let \(\mathcal{T}\) be
\[
\mathcal{T}:=\{\varphi\} \cup\left\{\neg \varphi_{k}^{\text {reach }(\mathrm{a}, \mathrm{~b})} \mid k \geq 0\right\} .
\]


Since a and b are disconnected, \(\mathcal{T}\) is unSAT.
Let \(\mathcal{T}_{0}\) be any non-empty finite subset of \(\mathcal{T}\).
Let \(N\) be max such that \(\neg \varphi_{N}^{\text {reach }(\mathrm{a}, \mathrm{b})}\) is in \(\mathcal{T}_{0}\). Then:
\[
\begin{aligned}
& \varphi_{0}^{\text {reach }(\mathrm{a}, \mathrm{~b})}:=\mathrm{a}=\mathrm{b}, \varphi_{1}^{\text {reach }(\mathrm{a}, \mathrm{~b})}:=\mathrm{E}(\mathrm{a}, \mathrm{~b}), \varphi_{k}^{\text {reach }(\mathrm{a}, \mathrm{~b})}:= \\
& \exists x_{1} \ldots \exists x_{k-1} \mathrm{E}\left(\mathrm{a}, x_{1}\right) \wedge \wedge_{i=1}^{k-2} \mathrm{E}\left(x_{i}, x_{i+1}\right) \wedge \mathrm{E}\left(x_{k-1}, \mathrm{~b}\right)
\end{aligned}
\]


\section*{Employing compactness II: Parity of the domain}

The previous proof does not give us any information about the finite domain reasoning.
Even worse, Compactness fails in the finite setting (exercise). Can we use it nevertheless?

There is no FO[ \(\emptyset]\) formula expressing that the domain is even over \(\emptyset\)-structures.

\section*{Proof:}

Suppose that such a \(\varphi\) exists. Consider two theories \(\mathcal{T}_{1}\) and \(\mathcal{T}_{2}\) :
\(\mathcal{T}_{1}:=\{\varphi\} \cup\left\{\lambda_{k} \mid k \geq 0\right\}, \quad \mathcal{T}_{2}:=\{\neg \varphi\} \cup\left\{\lambda_{k} \mid k \geq 0\right\}\).
It's easy to see that any finite subset of \(\mathcal{T}_{1}\) and \(\mathcal{T}_{2}\) is satisfiable (WHY?).


Exploit \(\infty\) !

So by compactness \(\mathcal{T}_{1}\) and \(\mathcal{T}_{2}\) are also satisfiable ( \(\infty\) models!).
Thus, by Löwenheim-Skolem, \(\mathcal{T}_{1}, \mathcal{T}_{2}\) have countably-inf models \(\mathfrak{A}\) and \(\mathfrak{B}\). By \(\mathfrak{A} \models \mathcal{T}_{1}\) we get \(\mathfrak{A} \models \varphi\), and \(\mathfrak{B} \models \mathcal{T}_{2}\) we get \(\mathfrak{B} \models \neg \varphi\).
As there is a bijection between any two countably-inf sets, we get \(\mathfrak{A} \cong \mathfrak{B}\). Formulae are preserved by isomorphisms, so \(\mathfrak{B} \models \neg \varphi\) implies \(\mathfrak{A} \models \neg \varphi\) : Thus \(\mathfrak{A} \models \varphi\) and \(\mathfrak{A} \models \neg \varphi\). A contradiction (with the semantics of \(\models\) )!


\section*{Copyright of used icons and pictures}
1. Universities/DeciGUT/ERC logos downloaded from the corresponding institutional webpages.
2. Query icons created by Eucalyp - Flaticon flaticon.com/free-icons/query
3. Bug icons created by Freepik - Flaticon flaticon.com/free-icons/bug
4. Automation icons created by Eucalyp - Flaticon flaticon.com/free-icons/automation
5. Head icons created by Eucalyp - Flaticon flaticon.com/free-icons/head
6. A picture of Gödel from mathshistory.st-andrews.ac.uk/Biographies/Godel/pictdisplay/
7. Money icons created by Smashicons - Flaticon flaticon.com/free-icons/money
8. Book covers by ©Springer. No changes have been made.
9. Pepe frog meme picture from www.pngegg.com/en/png-bbzsj. Used for non-commercial use.
10. Codd's picture from Wikipedia
11. Protege/SnomedCT/W3C/Dublin Core and the DL logo from their corresponding pages.
12. Model checking picture by Nicolas Markey from
people.irisa.fr/Nicolas.Markey/PDF/Talks/170823-NM-TL4MAS.pdf
13. Descriptive complexity picture by Immerman from his [webpage]

\section*{Copyright of used icons and pictures: II}
1. Fagin's picture from Wikipedia
2. Holy grail icons created by Freepik - Flaticon c
3. Structural classes picture Felix Reidl. tcs.rwth-aachen.de/reidl/pictures/SparseClasses.svg
4. Picture of Löwenheim from mathshistory.st-andrews.ac.uk/Biographies/Lowenheim
5. Picture of Skolem from en.wikipedia.org/wiki/Thoralf_Skolem
6. Sequents by Thomas Carroll from tex.stackexchange.com/questions/44582/sequent-calculus.
7. Idea icon created by Vectors Market - Flaticon flaticon.com/free-icons/idea.
8. Warning icon created by Freepik - Flaticon flaticon.com/free-icons/warning.```

