Complexity Theory
Exercise 10: Randomised Computation
26th January 2022

Exercise 10.1. Show that MajSat is in PP.

$$
\begin{aligned}
\mathbf{M A J S A T} & =\{\varphi \mid \\
& \varphi \text { is some propositional logic formula that } \\
& \text { is satisfied by more than half of its assignments }\}
\end{aligned}
$$

Exercise 10.2. Show $\mathrm{BPP}=\mathrm{coBPP}$.

* Exercise 10.3. Show $\mathrm{BPP}^{\mathrm{BPP}}=\mathrm{BPP}$.

Exercise 10.4. Find the error in the following proof that shows $\mathrm{PP}=\mathrm{BPP}:$ Let $\boldsymbol{L} \in \mathrm{PP}$. Then there exists a poly-time bounded PTM accepting \boldsymbol{L} with error probability smaller than $\frac{1}{2}$. Using error amplification, we can make this error arbitrarily small, and in particular smaller than $\frac{1}{3}$. Hence, $\boldsymbol{L} \in \mathrm{BPP}$.

Exercise 10.5. Let \mathcal{M} be a polynomial-time probabilistic Turing machine. We say that \mathcal{M} has error probability smaller than $\frac{1}{3}$ if and only if

$$
\operatorname{Pr}[\mathcal{M} \text { accepts } w]<\frac{1}{3} \quad \text { or } \quad \operatorname{Pr}[\mathcal{M} \text { accepts } w] \geq \frac{2}{3}
$$

for all inputs w. Show that deciding whether a polynomial-time probabilistic TM has error probability smaller than $\frac{1}{3}$ is undecidable.

