



## COMPLEXITY THEORY

Lecture 10: Polynomial Space

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach Knowledge-Based Systems

TU Dresden, 14th Nov 2023

More recent versions of ins since deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Complexity\_Theory/@

# Review

## The Class PSpace

We defined PSpace as:

$$\mathsf{PSpace} = \bigcup_{d \ge 1} \mathsf{DSpace}(n^d)$$

and we observed that

$$P \subseteq NP \subseteq PSpace = NPSpace \subseteq ExpTime$$
.

We can also define a corresponding notion of PSpace-hardness:

#### **Definition 10.1:**

- A language **H** is PSpace-hard, if  $L \leq_p H$  for every language  $L \in PSpace$ .
- A language **C** is PSpace-complete, if **C** is PSpace-hard and **C** ∈ PSpace.

## Quantified Boolean Formulae (QBF)

A QBF is a formula of the following form:

$$Q_1X_1.Q_2X_2.\cdots Q_\ell X_\ell.\varphi[X_1,\ldots,X_\ell]$$

where  $Q_i \in \{\exists, \forall\}$  are quantifiers,  $X_i$  are propositional logic variables, and  $\varphi$  is a propositional logic formula with variables  $X_1, \dots, X_\ell$  and constants  $\top$  (true) and  $\bot$  (false)

#### Semantics:

- Propositional formulae without variables (only constants ⊤ and ⊥) are evaluated as
  usual
- $\exists X. \varphi[X]$  is true if either  $\varphi[X/\top]$  or  $\varphi[X/\bot]$  are true
- ∀X.φ[X] is true if both φ[X/T] and φ[X/L] are true
   (where φ[X/T] is "φ with X replaced by T, and similar for L)

# **Deciding QBF Validity**

### TRUE QBF

Input: A quantified Boolean formula  $\varphi$ .

Problem: Is  $\varphi$  true (valid)?

**Observation:** We can assume that the quantified formula is in CNF or 3-CNF (same transformations possible as for propositional logic formulae)

## **Deciding QBF Validity**

#### TRUE QBF

Input: A quantified Boolean formula  $\varphi$ .

Problem: Is  $\varphi$  true (valid)?

**Observation:** We can assume that the quantified formula is in CNF or 3-CNF (same transformations possible as for propositional logic formulae)

Consider a propositional logic formula  $\varphi$  with variables  $X_1, \ldots, X_\ell$ :

**Example 10.2:** The QBF  $\exists X_1 \cdots \exists X_\ell . \varphi$  is true if and only if  $\varphi$  is satisfiable.

**Example 10.3:** The QBF  $\forall X_1 \cdots \forall X_\ell . \varphi$  is true if and only if  $\varphi$  is a tautology.

### The Power of QBF

**Theorem 10.4: True QBF** is PSpace-complete.

#### **Proof:**

- (1) TRUE QBF ∈ PSpace:Give an algorithm that runs in polynomial space.
- (2) **True QBF** is PSpace-hard: Proof by reduction from the word problem of any polynomially space-bounded TM.

# Solving True QBF in PSpace

```
01 \mathbf{TrueQBF}(\varphi) {
02    if \varphi has no quantifiers :
03     return "evaluation of \varphi"
04    else if \varphi = \exists X.\psi :
05     return (\mathbf{TrueQBF}(\psi[X/\top]) OR \mathbf{TrueQBF}(\psi[X/\bot]))
06    else if \varphi = \forall X.\psi :
07     return (\mathbf{TrueQBF}(\psi[X/\top]) AND \mathbf{TrueQBF}(\psi[X/\bot]))
08 }
```

- Evaluation in line 03 can be done in polynomial space
- Recursions in lines 05 and 07 can be executed one after the other, reusing space
- Maximum depth of recursion = number of variables (linear)
- Store one variable assignment per recursive call
- → polynomial space algorithm

## PSpace-Hardness of True QBF

Express TM computation in logic, similar to Cook-Levin

#### Given:

An arbitrary polynomially space-bounded NTM, that is:

- a polynomial *p*
- a *p*-space bounded 1-tape NTM  $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}})$

### Intended reduction

Given a word w, define a QBF  $\varphi_{p,\mathcal{M},w}$  such that  $\varphi_{p,\mathcal{M},w}$  is true if and only if  $\mathcal{M}$  accepts w in space p(|w|).

### **Notes**

- We show the reduction for NTMs, which is more than needed, but makes little difference in logic and allows us to reuse our previous formulae from Cook-Levin
- The proof actually shows many reductions, one for every polyspace NTM, showing PSpace-hardness from first principles

# Review: Encoding Configurations

### Use propositional variables for describing configurations:

 $Q_q$  for each  $q \in Q$  means " $\mathcal{M}$  is in state  $q \in Q$ "

 $P_i$  for each  $0 \le i < p(n)$  means "the head is at Position i"

 $S_{a,i}$  for each  $a \in \Gamma$  and  $0 \le i < p(n)$  means "tape cell i contains Symbol a"

## Represent configuration $(q, p, a_0 \dots a_{p(n)})$

by assigning truth values to variables from the set

$$\overline{C} := \{Q_q, P_i, S_{a,i} \mid q \in Q, \quad a \in \Gamma, \quad 0 \le i < p(n)\}$$

using the truth assignment  $\beta$  defined as

$$\beta(Q_s) := \begin{cases} 1 & s = q \\ 0 & s \neq q \end{cases} \qquad \beta(P_i) := \begin{cases} 1 & i = p \\ 0 & i \neq p \end{cases} \qquad \beta(S_{a,i}) := \begin{cases} 1 & a = a_i \\ 0 & a \neq a_i \end{cases}$$

# Review: Validating Configurations

We define a formula  $Conf(\overline{C})$  for a set of configuration variables

$$\overline{C} = \{Q_q, P_i, S_{a,i} \mid q \in Q, \quad a \in \Gamma, \quad 0 \le i < p(n)\}$$

as follows:

$$\begin{aligned} \mathsf{Conf}(\overline{C}) := \\ \bigvee_{q \in \mathcal{Q}} \left( Q_q \land \bigwedge_{q' \neq q} \neg Q_{q'} \right) \\ \land \bigvee_{p < p(n)} \left( P_p \land \bigwedge_{p' \neq p} \neg P_{p'} \right) \\ \land \bigwedge_{0 \leq i < p(n)} \bigvee_{a \in \Gamma} \left( S_{a,i} \land \bigwedge_{b \neq a \in \Gamma} \neg S_{b,i} \right) \end{aligned}$$

"the assignment is a valid configuration":

"TM in exactly one state  $q \in Q$ "

"head in exactly one position p < p(n)"

"exactly one  $a \in \Gamma$  in each cell"

# Review: Validating Configurations

For an assignment  $\beta$  defined on variables in  $\overline{C}$  define

$$\operatorname{conf}(\overline{C},\beta) := \left\{ \begin{aligned} &\beta(Q_q) = 1, \\ (q,p,w_0 \dots w_{p(n)}) \mid & \beta(P_p) = 1, \\ &\beta(S_{w_i,i}) = 1 \text{ for all } 0 \leq i < p(n) \end{aligned} \right\}$$

Note:  $\beta$  may be defined on other variables besides those in  $\overline{C}$ .

**Lemma 10.5:** If  $\beta$  satisfies  $\text{Conf}(\overline{C})$  then  $|\text{conf}(\overline{C},\beta)|=1$ . We can therefore write  $\text{conf}(\overline{C},\beta)=(q,p,w)$  to simplify notation.

#### Observations:

- $conf(\overline{C}, \beta)$  is a potential configuration of  $\mathcal{M}$ , but it may not be reachable from the start configuration of  $\mathcal{M}$  on input w.
- Conversely, every configuration  $(q, p, w_1 \dots w_{p(n)})$  induces a satisfying assignment  $\beta$  for which  $conf(\overline{C}, \beta) = (q, p, w_1 \dots w_{p(n)})$ .

## Review: Transitions Between Configurations

Consider the following formula  $Next(\overline{C}, \overline{C}')$  defined as

 $\mathsf{Conf}(\overline{C}) \wedge \mathsf{Conf}(\overline{C}') \wedge \mathsf{NoChange}(\overline{C}, \overline{C}') \wedge \mathsf{Change}(\overline{C}, \overline{C}').$ 

$$\mathsf{NoChange} := \bigvee_{0 \leq p < p(n)} \left( P_p \land \bigwedge_{i \neq p, a \in \Gamma} (S_{a,i} \to S'_{a,i}) \right)$$

$$\mathsf{Change} := \bigvee_{0 \leq p < p(n)} \left( P_p \wedge \bigvee_{q \in Q \atop a \in \Gamma} \left( Q_q \wedge S_{a,p} \wedge \bigvee_{(q',b,D) \in \delta(q,a)} (Q'_{q'} \wedge S'_{b,p} \wedge P'_{D(p)}) \right) \right)$$

where D(p) is the position reached by moving in direction D from p.

**Lemma 10.6:** For any assignment  $\beta$  defined on  $\overline{C} \cup \overline{C}'$ :

$$\beta$$
 satisfies Next $(\overline{C}, \overline{C}')$  if and only if  $\operatorname{conf}(\overline{C}, \beta) \vdash_{\mathcal{M}} \operatorname{conf}(\overline{C}', \beta)$ 

### Review: Start and End

### Defined so far:

- Conf( $\overline{C}$ ):  $\overline{C}$  describes a potential configuration
- $\operatorname{Next}(\overline{C}, \overline{C}')$ :  $\operatorname{conf}(\overline{C}, \beta) \vdash_{\mathcal{M}} \operatorname{conf}(\overline{C}', \beta)$

Start configuration: Let  $w = w_0 \cdots w_{n-1} \in \Sigma^*$  be the input word

$$\operatorname{Start}_{\mathcal{M},w}(\overline{C}) := \operatorname{Conf}(\overline{C}) \wedge Q_{q_0} \wedge P_0 \wedge \bigwedge_{i=0}^{n-1} S_{w_i,i} \wedge \bigwedge_{i=n}^{p(n)-1} S_{\omega,i}$$

Then an assignment  $\beta$  satisfies  $\mathsf{Start}_{\mathcal{M},w}(\overline{C})$  if and only if  $\overline{C}$  represents the start configuration of  $\mathcal{M}$  on input w.

### Accepting stop configuration:

$$\mathsf{Acc}\text{-}\mathsf{Conf}(\overline{C}) := \mathsf{Conf}(\overline{C}) \land Q_{q_{\mathsf{accept}}}$$

Then an assignment  $\beta$  satisfies  $Acc\text{-Conf}(\overline{C})$  if and only if  $\overline{C}$  represents an accepting configuration of  $\mathcal{M}$ .

For Cook-Levin, we used one set of configuration variables for every computating step: polynomially time  $\rightarrow$  polynomially many variables

Problem: For polynomial space, we have  $2^{O(p(n))}$  possible steps . . .

For Cook-Levin, we used one set of configuration variables for every computating step: polynomially time  $\rightarrow$  polynomially many variables

Problem: For polynomial space, we have  $2^{O(p(n))}$  possible steps . . .

What would Savitch do?

For Cook-Levin, we used one set of configuration variables for every computating step: polynomially time  $\rightarrow$  polynomially many variables

Problem: For polynomial space, we have  $2^{O(p(n))}$  possible steps . . .

#### What would Savitch do?

Define a formula CanYield<sub>i</sub>( $\overline{C}_1$ ,  $\overline{C}_2$ ) to state that  $\overline{C}_2$  is reachable from  $\overline{C}_1$  in at most  $2^i$  steps:

$$\begin{split} & \mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ & \mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \exists \overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_i(\overline{C}_1,\overline{C}) \wedge \mathsf{CanYield}_i(\overline{C},\overline{C}_2) \end{split}$$

For Cook-Levin, we used one set of configuration variables for every computating step: polynomially time  $\rightarrow$  polynomially many variables

Problem: For polynomial space, we have  $2^{O(p(n))}$  possible steps . . .

#### What would Savitch do?

Define a formula CanYield<sub>i</sub>( $\overline{C}_1$ ,  $\overline{C}_2$ ) to state that  $\overline{C}_2$  is reachable from  $\overline{C}_1$  in at most  $2^i$  steps:

$$\begin{split} & \mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ & \mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \exists \overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_i(\overline{C}_1,\overline{C}) \wedge \mathsf{CanYield}_i(\overline{C},\overline{C}_2) \end{split}$$

But what is  $\overline{C}_1 = \overline{C}_2$  supposed to mean here?

For Cook-Levin, we used one set of configuration variables for every computating step: polynomially time  $\rightarrow$  polynomially many variables

Problem: For polynomial space, we have  $2^{O(p(n))}$  possible steps . . .

#### What would Savitch do?

Define a formula CanYield<sub>i</sub>( $\overline{C}_1$ ,  $\overline{C}_2$ ) to state that  $\overline{C}_2$  is reachable from  $\overline{C}_1$  in at most  $2^i$  steps:

$$\begin{split} & \mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ & \mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \exists \overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_i(\overline{C}_1,\overline{C}) \wedge \mathsf{CanYield}_i(\overline{C},\overline{C}_2) \end{split}$$

But what is  $\overline{C}_1 = \overline{C}_2$  supposed to mean here? It is short for:

$$\bigwedge_{q \in Q} Q_q^1 \leftrightarrow Q_q^2 \wedge \bigwedge_{0 \leq i < p(n)} P_i^1 \leftrightarrow P_i^2 \wedge \bigwedge_{a \in \Gamma, 0 \leq i < p(n)} S_{a,i}^1 \leftrightarrow S_{a,i}^2$$

## **Putting Everything Together**

We define the formula  $\varphi_{p,\mathcal{M},w}$  as follows:

$$\varphi_{p,\mathcal{M},w} := \exists \overline{C}_1.\exists \overline{C}_2.\mathsf{Start}_{\mathcal{M},w}(\overline{C}_1) \land \mathsf{Acc\text{-}Conf}(\overline{C}_2) \land \mathsf{CanYield}_{dp(p)}(\overline{C}_1,\overline{C}_2)$$

where we select d to be the least number such that  $\mathcal{M}$  has less than  $2^{dp(n)}$  configurations in space p(n).

**Lemma 10.7:**  $\varphi_{p,\mathcal{M},w}$  is satisfiable if and only if  $\mathcal{M}$  accepts w in space p(|w|).

Note: we used only existential quantifiers when defining  $\varphi_{p,\mathcal{M},w}$ :

$$\begin{split} & \mathsf{CanYield}_0(\overline{C}_1, \overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1, \overline{C}_2) \\ & \mathsf{CanYield}_{i+1}(\overline{C}_1, \overline{C}_2) := \exists \overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C}_1, \overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C}, \overline{C}_2) \\ & \varphi_{p,\mathcal{M},w} := \exists \overline{C}_1. \exists \overline{C}_2.\mathsf{Start}_{\mathcal{M},w}(\overline{C}_1) \wedge \mathsf{Acc\text{-Conf}}(\overline{C}_2) \wedge \mathsf{CanYield}_{dp(n)}(\overline{C}_1, \overline{C}_2) \end{split}$$

Note: we used only existential quantifiers when defining  $\varphi_{p,\mathcal{M},w}$ :

$$\begin{split} & \mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ & \mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \exists \overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C}_1,\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C},\overline{C}_2) \\ & \varphi_{p,\mathcal{M},w} := \exists \overline{C}_1.\exists \overline{C}_2.\mathsf{Start}_{\mathcal{M},w}(\overline{C}_1) \wedge \mathsf{Acc\text{-}Conf}(\overline{C}_2) \wedge \mathsf{CanYield}_{dp(n)}(\overline{C}_1,\overline{C}_2) \end{split}$$

Now that's quite interesting ...

Note: we used only existential quantifiers when defining  $\varphi_{p,\mathcal{M},w}$ :

$$\begin{split} & \mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ & \mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \exists \overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C}_1,\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C},\overline{C}_2) \\ & \varphi_{p,\mathcal{M},w} := \exists \overline{C}_1.\exists \overline{C}_2.\mathsf{Start}_{\mathcal{M},w}(\overline{C}_1) \wedge \mathsf{Acc\text{-}Conf}(\overline{C}_2) \wedge \mathsf{CanYield}_{dp(n)}(\overline{C}_1,\overline{C}_2) \end{split}$$

Now that's quite interesting ...

With only (non-negated) ∃ quantifiers, TRUE QBF coincides with SAT

Note: we used only existential quantifiers when defining  $\varphi_{p,\mathcal{M},w}$ :

$$\begin{split} & \mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ & \mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \exists \overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C}_1,\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C},\overline{C}_2) \\ & \varphi_{p,\mathcal{M},w} := \exists \overline{C}_1.\exists \overline{C}_2.\mathsf{Start}_{\mathcal{M},w}(\overline{C}_1) \wedge \mathsf{Acc\text{-}Conf}(\overline{C}_2) \wedge \mathsf{CanYield}_{dp(n)}(\overline{C}_1,\overline{C}_2) \end{split}$$

Now that's quite interesting ...

- With only (non-negated) ∃ quantifiers, True QBF coincides with Sat
- SAT is in NP

Note: we used only existential quantifiers when defining  $\varphi_{p,\mathcal{M},w}$ :

$$\begin{split} & \mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ & \mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \exists \overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C}_1,\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C},\overline{C}_2) \\ & \varphi_{p,\mathcal{M},w} := \exists \overline{C}_1.\exists \overline{C}_2.\mathsf{Start}_{\mathcal{M},w}(\overline{C}_1) \wedge \mathsf{Acc\text{-}Conf}(\overline{C}_2) \wedge \mathsf{CanYield}_{dp(n)}(\overline{C}_1,\overline{C}_2) \end{split}$$

Now that's quite interesting ...

- With only (non-negated) ∃ quantifiers, TRUE QBF coincides with SAT
- SAT is in NP
- So we showed that the word problem for PSpace NTMs to be in NP

Note: we used only existential quantifiers when defining  $\varphi_{p,\mathcal{M},w}$ :

$$\begin{split} & \mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ & \mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \exists \overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C}_1,\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C},\overline{C}_2) \\ & \varphi_{p,\mathcal{M},w} := \exists \overline{C}_1.\exists \overline{C}_2.\mathsf{Start}_{\mathcal{M},w}(\overline{C}_1) \wedge \mathsf{Acc\text{-}Conf}(\overline{C}_2) \wedge \mathsf{CanYield}_{dp(n)}(\overline{C}_1,\overline{C}_2) \end{split}$$

Now that's quite interesting ...

- With only (non-negated) ∃ quantifiers, TRUE QBF coincides with SAT
- SAT is in NP
- So we showed that the word problem for PSpace NTMs to be in NP

So we found that NP = PSpace!

Note: we used only existential quantifiers when defining  $\varphi_{p,\mathcal{M},w}$ :

$$\begin{split} & \mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ & \mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \exists \overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C}_1,\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C},\overline{C}_2) \\ & \varphi_{p,\mathcal{M},w} := \exists \overline{C}_1.\exists \overline{C}_2.\mathsf{Start}_{\mathcal{M},w}(\overline{C}_1) \wedge \mathsf{Acc\text{-}Conf}(\overline{C}_2) \wedge \mathsf{CanYield}_{dp(n)}(\overline{C}_1,\overline{C}_2) \end{split}$$

Now that's quite interesting ...

- With only (non-negated) ∃ quantifiers, TRUE QBF coincides with SAT
- SAT is in NP
- So we showed that the word problem for PSpace NTMs to be in NP

So we found that NP = PSpace!

Strangely, most textbooks claim that this is not known to be true ... Are we up for the next Turing Award, or did we make a mistake?

### How big is $\varphi_{p,\mathcal{M},w}$ ?

$$\begin{split} & \mathsf{CanYield}_0(\overline{C}_1, \overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1, \overline{C}_2) \\ & \mathsf{CanYield}_{i+1}(\overline{C}_1, \overline{C}_2) := \exists \overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C}_1, \overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C}, \overline{C}_2) \\ & \varphi_{p,\mathcal{M},w} := \exists \overline{C}_1. \exists \overline{C}_2.\mathsf{Start}_{\mathcal{M},w}(\overline{C}_1) \wedge \mathsf{Acc\text{-Conf}}(\overline{C}_2) \wedge \mathsf{CanYield}_{dp(n)}(\overline{C}_1, \overline{C}_2) \end{split}$$

How big is  $\varphi_{p,\mathcal{M},w}$ ?

$$\begin{split} &\mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ &\mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \exists \overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C}_1,\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C},\overline{C}_2) \\ &\varphi_{p,\mathcal{M},w} := \exists \overline{C}_1.\exists \overline{C}_2.\mathsf{Start}_{\mathcal{M},w}(\overline{C}_1) \wedge \mathsf{Acc\text{-}Conf}(\overline{C}_2) \wedge \mathsf{CanYield}_{dp(n)}(\overline{C}_1,\overline{C}_2) \end{split}$$

Size of CanYield<sub>i+1</sub> is more than twice the size of CanYield<sub>i</sub>  $\rightarrow$  Size of  $\varphi_{p,\mathcal{M},w}$  is in  $2^{O(p(n))}$ . Oops.

How big is  $\varphi_{p,\mathcal{M},w}$ ?

$$\begin{split} & \mathsf{CanYield}_0(\overline{C}_1,\overline{C}_2) := (\overline{C}_1 = \overline{C}_2) \vee \mathsf{Next}(\overline{C}_1,\overline{C}_2) \\ & \mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \exists \overline{C}.\mathsf{Conf}(\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C}_1,\overline{C}) \wedge \mathsf{CanYield}_{i}(\overline{C},\overline{C}_2) \\ & \varphi_{p,\mathcal{M},w} := \exists \overline{C}_1.\exists \overline{C}_2.\mathsf{Start}_{\mathcal{M},w}(\overline{C}_1) \wedge \mathsf{Acc\text{-}Conf}(\overline{C}_2) \wedge \mathsf{CanYield}_{dp(n)}(\overline{C}_1,\overline{C}_2) \end{split}$$

Size of CanYield<sub>i+1</sub> is more than twice the size of CanYield<sub>i</sub>  $\rightarrow$  Size of  $\varphi_{p,\mathcal{M},w}$  is in  $2^{O(p(n))}$ . Oops.

A correct reduction: We redefine CanYield by setting

$$\begin{aligned} &\mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \\ &\exists \overline{C}.\mathsf{Conf}(\overline{C}) \land \\ &\forall \overline{Z}_1. \forall \overline{Z}_2. (((\overline{Z}_1 = \overline{C}_1 \land \overline{Z}_2 = \overline{C}) \lor (\overline{Z}_1 = \overline{C} \land \overline{Z}_2 = \overline{C}_2)) \to \mathsf{CanYield}_i(\overline{Z}_1,\overline{Z}_2)) \end{aligned}$$

Let's analyse the size more carefully this time:

$$\begin{split} & \mathsf{CanYield}_{i+1}(\overline{C}_1,\overline{C}_2) := \\ & \overline{\exists}\overline{C}.\mathsf{Conf}(\overline{C}) \land \\ & \forall \overline{Z}_1. \forall \overline{Z}_2. (((\overline{Z}_1 = \overline{C}_1 \land \overline{Z}_2 = \overline{C}) \lor (\overline{Z}_1 = \overline{C} \land \overline{Z}_2 = \overline{C}_2)) \to \mathsf{CanYield}_i(\overline{Z}_1,\overline{Z}_2)) \end{split}$$

- CanYield<sub>i+1</sub>( $\overline{C}_1$ ,  $\overline{C}_2$ ) extends CanYield<sub>i</sub>( $\overline{C}_1$ ,  $\overline{C}_2$ ) by parts that are linear in the size of configurations  $\rightsquigarrow$  growth in O(p(n))
- Maximum index i used in  $\varphi_{p,\mathcal{M},w}$  is dp(n), that is in O(p(n))
- Therefore:  $\varphi_{p,\mathcal{M},w}$  has size  $O(p^2(n))$  and thus can be computed in polynomial time

### Exercise:

Why can we just use dp(n) in the reduction? Don't we have to compute it somehow? Maybe even in polynomial time?

### The Power of QBF

Theorem 10.4: True QBF is PSpace-complete.

#### **Proof:**

- (1) TRUE QBF ∈ PSpace:Give an algorithm that runs in polynomial space.
- (2) TRUE QBF is PSpace-hard: Proof by reduction from the word problem of any polynomially space-bounded TM.

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 14th Nov 2023

П

## A More Common Logical Problem in PSpace

#### Recall standard first-order logic:

- Instead of propositional variables, we have atoms (predicates with constants and variables)
- Instead of propositional evaluations we have first-order structures (or interpretations)
- First-order quantifiers can be used on variables
- Sentences are formulae where all variables are quantified
- A sentence can be satisfied or not by a given first-order structure

## A More Common Logical Problem in PSpace

#### Recall standard first-order logic:

- Instead of propositional variables, we have atoms (predicates with constants and variables)
- Instead of propositional evaluations we have first-order structures (or interpretations)
- First-order quantifiers can be used on variables
- Sentences are formulae where all variables are quantified
- A sentence can be satisfied or not by a given first-order structure

#### FOL MODEL CHECKING

Input: A first-order sentence  $\varphi$  and a finite first-order

structure I.

Problem: Is  $\varphi$  satisfied by I?

## First-Order Logic is PSpace-complete

Theorem 10.8: FOL Model Checking is PSpace-complete.

#### **Proof:**

- FOL Model Checking ∈ PSpace:
   Give algorithm that runs in polynomial space.
- (2) **FOL Model Checking** is PSpace-hard: Proof by reduction **True QBF**  $\leq_p$  **FOL Model Checking**.

# Checking FOL Models in Polynomial Space (Sketch)

```
01 EVAL(\varphi, I) {
02
      switch (\varphi):
         case p(c_1, \ldots, c_n): return \langle c_1, \ldots, c_n \rangle \in p^I
03
04
        case \neg \psi: return NOT Eval(\psi, I)
        case \psi_1 \wedge \psi_2: return Eval(\psi_1, I) AND Eval(\psi_2, I)
05
06
        case \exists x.\psi:
07
           for c \in \Delta^I:
08
              if EVAL(\psi[x \mapsto c], I): return TRUE
09 // eventually, if no success:
10
        return FALSE
11 }
```

- We can assume  $\varphi$  only uses  $\neg$ ,  $\wedge$  and  $\exists$  (easy to get)
- We use  $\Delta^{\mathcal{I}}$  to denote the (finite!) domain of  $\mathcal{I}$
- We allow domain elements to be used like constants in the formula

### Hardness of FOL Model Checking

Given: a QBF  $\varphi = Q_1 X_1 \cdots Q_\ell X_\ell . \psi$ 

### FOL Model Checking Problem:

- Interpretation domain  $\Delta^I := \{0, 1\}$
- Single predicate symbol true with interpretation  $true^{I} = \{\langle 1 \rangle\}$
- FOL formula  $\varphi'$  is obtained by replacing variables in input QBF with corresponding first-order expressions:

$$Q_1x_1...Q_\ell x_\ell.\psi[X_1 \mapsto \operatorname{true}(x_1),...,X_\ell \mapsto \operatorname{true}(x_\ell)]$$

**Lemma 10.9:**  $\langle I, \varphi' \rangle \in \mathsf{FOL}$  Model Checking if and only if  $\varphi \in \mathsf{True}$  QBF.

### First-Order Logic is PSpace-complete

Theorem 10.8: FOL Model Checking is PSpace-complete.

#### **Proof:**

- FOL Model Checking ∈ PSpace:
   Give algorithm that runs in polynomial space.
- (2) **FOL Model Checking** is PSpace-hard: Proof by reduction **True QBF**  $\leq_p$  **FOL Model Checking**.

# FOL Model Checking: Practical Significance

Why is **FOL Model Checking** a relevant problem?

### FOL Model Checking: Practical Significance

Why is **FOL Model Checking** a relevant problem?

### Correspondence with database query answering:

- Finite first-order interpretation = database
- First-order logic formula = database query
- Satisfying assignments (for non-sentences) = query results

#### Known correspondence:

As a query language, FOL has the same expressive power as (basic) SQL (relational algebra).

**Corollary 10.10:** Answering SQL queries over a given database is PSpacecomplete.

# Games

# Games as Computational Problems

Many single-player games relate to NP-complete problems:

- Sudoku
- Minesweeper
- Tetris
- ...

Decision problem: Is there a solution? (For Tetris: is it possible to clear all blocks?)

What about two-player games?

### Games as Computational Problems

Many single-player games relate to NP-complete problems:

- Sudoku
- Minesweeper
- Tetris
- ...

Decision problem: Is there a solution? (For Tetris: is it possible to clear all blocks?)

### What about two-player games?

- Two players take moves in turns
- The players have different goals
- The game ends if a player wins

Decision problem: Does Player 1 have a winning strategy? In other words: can Player 1 enforce winning, whatever Player 2 does?

### Example: The Formula Game

#### A contrived game, to illustrate the idea:

- Given: a propositional logic formula  $\varphi$  with consecutively numbered variables  $X_1, \dots X_\ell$ .
- Two players take turns in selecting values for the next variable:
  - Player 1 sets  $X_1$  to true or false
  - Player 2 sets  $X_2$  to true or false
  - Player 1 sets  $X_3$  to true or false
  - ...

until all variables are set.

• Player 1 wins if the assignment makes  $\varphi$  true. Otherwise, Player 2 wins.

### Deciding the Formula Game

#### FORMULA GAME

Input: A formula  $\varphi$ .

Problem: Does Player 1 have a winning strategy on  $\varphi$ ?

Theorem 10.11: Formula Game is PSpace-complete.

### Deciding the Formula Game

#### FORMULA GAME

Input: A formula  $\varphi$ .

Problem: Does Player 1 have a winning strategy on  $\varphi$ ?

Theorem 10.11: Formula Game is PSpace-complete.

**Proof sketch:** Formula Game is essentially the same as True QBF.

Having a winning strategy means: there is a truth value for  $X_1$ , such that, for all truth values of  $X_2$ , there is a truth value of  $X_3$ , . . . such that  $\varphi$  becomes true.

If we have a QBF where quantifiers do not alternate, we can add dummy quantifiers and variables that do not change the semantics to get the same alternating form as for the Formula Game.

### Example: The Geography Game

#### A children's game:

- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- · Repetitions are not allowed.
- The first player who cannot name a new city looses.

# Example: The Geography Game

#### A children's game:

- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- Repetitions are not allowed.
- The first player who cannot name a new city looses.

### A mathematicians' game:

- Two players are marking nodes on a directed graph.
- Each node must be a successor of the previous one.
- · Repetitions are not allowed.
- The first player who cannot mark a new node looses.

### Example: The Geography Game

#### A children's game:

- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- Repetitions are not allowed.
- The first player who cannot name a new city looses.

### A mathematicians' game:

- Two players are marking nodes on a directed graph.
- Each node must be a successor of the previous one.
- · Repetitions are not allowed.
- The first player who cannot mark a new node looses.

### Decision problem (Generalised) Geography:

given a graph and start node, does Player 1 have a winning strategy?

### **Geography** is PSpace-complete

#### Theorem 10.12: Generalised Geography is PSpace-complete.

#### **Proof:**

(1) **Geography** ∈ PSpace:

Give algorithm that runs in polynomial space.

It is not difficult to provide a recursive algorithm similar to the one for **True QBF** or **FOL MODEL CHECKING**.

(2) **Geography** is PSpace-hard:

Proof by reduction Formula Game  $\leq_p$  Geography.

Ш

### GEOGRAPHY is PSpace-hard

Let  $\varphi$  with variables  $X_1,\ldots,X_\ell$  be an instance of Formula Game.

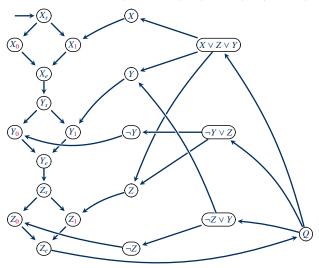
Without loss of generality, we assume:

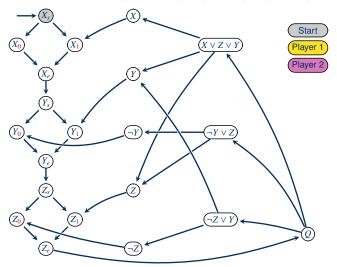
- ℓ is odd (Player 1 gets the first and last turn)
- $\varphi$  is in CNF

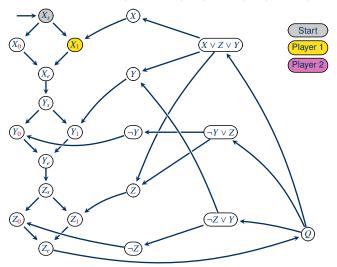
We now build a graph that encodes Formula Game in terms of Geography

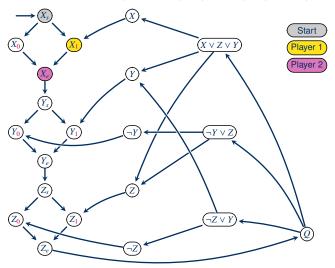
- The left-hand side of the graph is a chain of diamond structures that represent the choices that players have when assigning truth values
- The right-hand side of the graph encodes the structure of  $\varphi$ : Player 2 may choose a clause (trying to find one that is not true under the assignment); Player 1 may choose a literal (trying to find one that is true under the assignment).

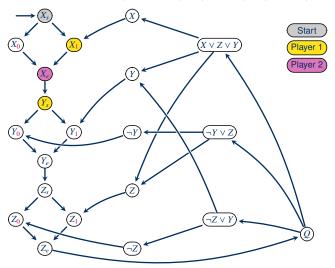
(see board or [Sipser, Theorem 8.14])

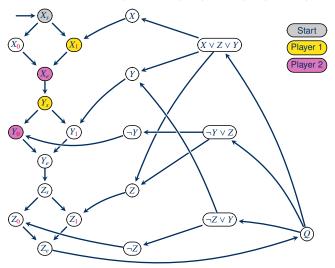


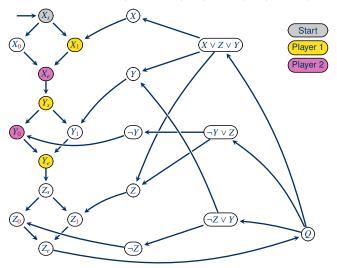


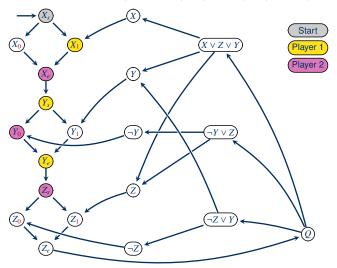


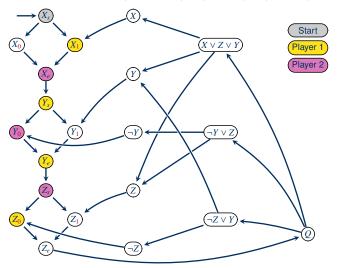


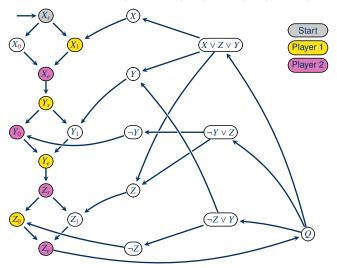


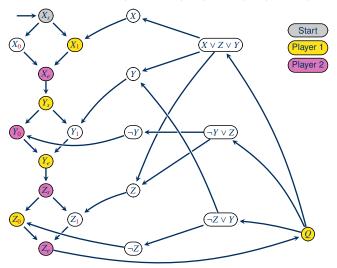


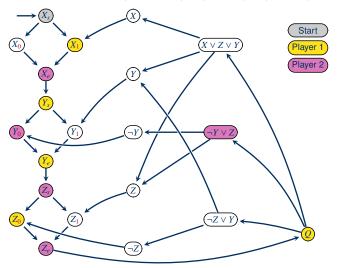


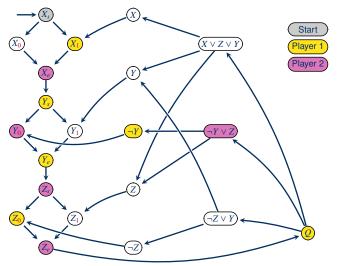












### Summary and Outlook

TRUE QBF is PSpace-complete

**FOL Model Checking** and the related problem of SQL query answering are PSpace-complete

Some games are PSpace-complete

#### What's next?

- Some more remarks on games
- · Logarithmic space
- Complements of space classes