COMPLEXITY THEORY

Lecture 10: Polynomial Space

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach
Knowledge-Based Systems

TU Dresden, 14th Nov 2023

Review

The Class PSpace

We defined PSpace as:

$$
\text { PSpace }=\bigcup_{d \geq 1} \text { DSpace }\left(n^{d}\right)
$$

and we observed that

$$
\mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSpace}=\mathrm{NPSpace} \subseteq \text { ExpTime }
$$

We can also define a corresponding notion of PSpace-hardness:

Definition 10.1:

- A language \mathbf{H} is PSpace-hard, if $\mathbf{L} \leq_{p} \mathbf{H}$ for every language $\mathbf{L} \in$ PSpace.
- A language \mathbf{C} is PSpace-complete, if \mathbf{C} is PSpace-hard and $\mathbf{C} \in$ PSpace.

Quantified Boolean Formulae (QBF)

A QBF is a formula of the following form:

$$
\bigcirc_{1} X_{1} . \wp_{2} X_{2} \cdots \bigcirc_{\ell} X_{\ell} \cdot \varphi\left[X_{1}, \ldots, X_{\ell}\right]
$$

where $\bigcirc_{i} \in\{\exists, \forall\}$ are quantifiers, X_{i} are propositional logic variables, and φ is a propositional logic formula with variables X_{1}, \ldots, X_{ℓ} and constants T (true) and \perp (false)

Semantics:

- Propositional formulae without variables (only constants T and \perp) are evaluated as usual
- $\exists X . \varphi[X]$ is true if either $\varphi[X / \top]$ or $\varphi[X / \perp]$ are true
- $\forall X . \varphi[X]$ is true if both $\varphi[X / \top]$ and $\varphi[X / \perp]$ are true
(where $\varphi[X / \top]$ is " φ with X replaced by T, and similar for \perp)

Deciding QBF Validity

True QBF

Input: A quantified Boolean formula φ.
Problem: Is φ true (valid)?
Observation: We can assume that the quantified formula is in CNF or 3-CNF (same transformations possible as for propositional logic formulae)

Deciding QBF Validity

True QBF

Input: A quantified Boolean formula φ.
Problem: Is φ true (valid)?
Observation: We can assume that the quantified formula is in CNF or 3-CNF (same transformations possible as for propositional logic formulae)

Consider a propositional logic formula φ with variables X_{1}, \ldots, X_{ℓ} :
Example 10.2: The QBF $\exists X_{1} \cdots \exists X_{\ell . \varphi}$ is true if and only if φ is satisfiable.

Example 10.3: The QBF $\forall X_{1} \cdots \forall X_{\ell . \varphi}$ is true if and only if φ is a tautology.

The Power of QBF

Theorem 10.4: True QBF is PSpace-complete.

Proof:

(1) True QBF \in PSpace:

Give an algorithm that runs in polynomial space.
(2) True QBF is PSpace-hard:

Proof by reduction from the word problem of any polynomially space-bounded TM.

Solving True QBF in PSpace

01 TrueQBF (φ) \{
02 if φ has no quantifiers :
return "evaluation of φ "
else if $\varphi=\exists X . \psi$:
return (TrueQBF $(\psi[X / T])$ OR TrueQBF $(\psi[X / \perp]))$
else if $\varphi=\forall X . \psi$:
return (TrueQBF $(\psi[X / \top])$ AND $\operatorname{TrueQBF}(\psi[X / \perp]))$
08 \}

- Evaluation in line 03 can be done in polynomial space
- Recursions in lines 05 and 07 can be executed one after the other, reusing space
- Maximum depth of recursion = number of variables (linear)
- Store one variable assignment per recursive call
\leadsto polynomial space algorithm

PSpace-Hardness of True QBF

Express TM computation in logic, similar to Cook-Levin

Given:

An arbitrary polynomially space-bounded NTM, that is:

- a polynomial p
- a p-space bounded 1 -tape NTM $\mathcal{M}=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}\right)$

Intended reduction

Given a word w, define a QBF $\varphi_{p, \mathcal{M}, w}$ such that
$\varphi_{p, \mathcal{M}, w}$ is true if and only if \mathcal{M} accepts w in space $p(|w|)$.

Notes

- We show the reduction for NTMs, which is more than needed, but makes little difference in logic and allows us to reuse our previous formulae from Cook-Levin
- The proof actually shows many reductions, one for every polyspace NTM, showing PSpace-hardness from first principles

Review: Encoding Configurations

Use propositional variables for describing configurations:
Q_{q} for each $q \in Q$ means " \mathcal{M} is in state $q \in Q$ "
P_{i} for each $0 \leq i<p(n)$ means "the head is at Position i "
$S_{a, i}$ for each $a \in \Gamma$ and $0 \leq i<p(n)$ means "tape cell i contains Symbol a "

Represent configuration ($q, p, a_{0} \ldots a_{p(n)}$)

by assigning truth values to variables from the set

$$
\bar{C}:=\left\{Q_{q}, P_{i}, S_{a, i} \mid q \in Q, \quad a \in \Gamma, \quad 0 \leq i<p(n)\right\}
$$

using the truth assignment β defined as
$\beta\left(Q_{s}\right):=\left\{\begin{array}{ll}1 & s=q \\ 0 & s \neq q\end{array} \quad \beta\left(P_{i}\right):=\left\{\begin{array}{ll}1 & i=p \\ 0 & i \neq p\end{array} \quad \beta\left(S_{a, i}\right):= \begin{cases}1 & a=a_{i} \\ 0 & a \neq a_{i}\end{cases}\right.\right.$

Review: Validating Configurations

We define a formula $\operatorname{Conf}(\bar{C})$ for a set of configuration variables

$$
\bar{C}=\left\{Q_{q}, P_{i}, S_{a, i} \mid q \in Q, \quad a \in \Gamma, \quad 0 \leq i<p(n)\right\}
$$

as follows:

$$
\operatorname{Conf}(\bar{C}):=
$$

$$
\bigvee_{q \in Q}\left(Q_{q} \wedge \bigwedge_{q^{\prime} \neq q} \neg Q_{q^{\prime}}\right)
$$

$$
\wedge \bigvee_{p<p(n)}\left(P_{p} \wedge \bigwedge_{p^{\prime} \neq p} \neg P_{p^{\prime}}\right)
$$

$$
\wedge \bigwedge_{0 \leq i<p(n)} \bigvee_{a \in \Gamma}\left(S_{a, i} \wedge \bigwedge_{b \neq a \in \Gamma} \neg S_{b, i}\right)
$$

"the assignment is a valid configuration":
"TM in exactly one state $q \in Q$ "
"head in exactly one position $p<p(n)$ "
"exactly one $a \in \Gamma$ in each cell"

Review: Validating Configurations

For an assignment β defined on variables in \bar{C} define

$$
\operatorname{conf}(\bar{C}, \beta):=\left\{\begin{array}{ll}
& \beta\left(Q_{q}\right)=1, \\
\left(q, p, w_{0} \ldots w_{p(n)}\right) \mid & \beta\left(P_{p}\right)=1, \\
& \beta\left(S_{w_{i}, i}\right)=1 \text { for all } 0 \leq i<p(n)
\end{array}\right\}
$$

Note: β may be defined on other variables besides those in \bar{C}.
Lemma 10.5: If β satisfies $\operatorname{Conf}(\bar{C})$ then $|\operatorname{conf}(\bar{C}, \beta)|=1$.
We can therefore write $\operatorname{conf}(\bar{C}, \beta)=(q, p, w)$ to simplify notation.

Observations:

- $\operatorname{conf}(\bar{C}, \beta)$ is a potential configuration of \mathcal{M}, but it may not be reachable from the start configuration of \mathcal{M} on input w.
- Conversely, every configuration $\left(q, p, w_{1} \ldots w_{p(n)}\right)$ induces a satisfying assignment β for which $\operatorname{conf}(\bar{C}, \beta)=\left(q, p, w_{1} \ldots w_{p(n)}\right)$.

Review: Transitions Between Configurations

Consider the following formula $\operatorname{Next}\left(\bar{C}, \bar{C}^{\prime}\right)$ defined as

$$
\operatorname{Conf}(\bar{C}) \wedge \operatorname{Conf}\left(\bar{C}^{\prime}\right) \wedge \operatorname{NoChange}\left(\bar{C}, \bar{C}^{\prime}\right) \wedge \operatorname{Change}\left(\bar{C}, \bar{C}^{\prime}\right)
$$

$$
\begin{aligned}
\text { NoChange } & :=\bigvee_{0 \leq p<p(n)}\left(P_{p} \wedge \bigwedge_{i \neq p, a \in \Gamma}\left(S_{a, i} \rightarrow S_{a, i}^{\prime}\right)\right) \\
\text { Change } & :=\bigvee_{0 \leq p<p(n)}\left(P_{p} \wedge \bigvee_{\substack{q \in \mathcal{Q} \\
a \in \Gamma}}\left(Q_{q} \wedge S_{a, p} \wedge \bigvee_{\left(q^{\prime}, b, D\right) \in \delta(q, a)}\left(Q_{q^{\prime}}^{\prime} \wedge S_{b, p}^{\prime} \wedge P_{D(p)}^{\prime}\right)\right)\right)
\end{aligned}
$$

where $D(p)$ is the position reached by moving in direction D from p.

Lemma 10.6: For any assignment β defined on $\bar{C} \cup \bar{C}^{\prime}$: β satisfies $\operatorname{Next}\left(\bar{C}, \bar{C}^{\prime}\right) \quad$ if and only if $\quad \operatorname{conf}(\bar{C}, \beta) \vdash_{\mathcal{M}} \operatorname{conf}\left(\bar{C}^{\prime}, \beta\right)$

Review: Start and End

Defined so far:

- $\operatorname{Conf}(\bar{C}): \bar{C}$ describes a potential configuration
- $\operatorname{Next}\left(\bar{C}, \bar{C}^{\prime}\right): \operatorname{conf}(\bar{C}, \beta) \vdash_{\mathcal{M}} \operatorname{conf}\left(\bar{C}^{\prime}, \beta\right)$

Start configuration: Let $w=w_{0} \cdots w_{n-1} \in \Sigma^{*}$ be the input word

$$
\operatorname{Start}_{\mathcal{M}, w}(\bar{C}):=\operatorname{Conf}(\bar{C}) \wedge Q_{q_{0}} \wedge P_{0} \wedge \bigwedge_{i=0}^{n-1} S_{w_{i}, i} \wedge \bigwedge_{i=n}^{p(n)-1} S_{\llcorner, i}
$$

Then an assignment β satisfies $\operatorname{Start}_{\mathcal{M}, w}(\bar{C})$ if and only if \bar{C} represents the start configuration of \mathcal{M} on input w.

Accepting stop configuration:

$$
\operatorname{Acc}-\operatorname{Conf}(\bar{C}):=\operatorname{Conf}(\bar{C}) \wedge Q_{q_{\text {accept }}}
$$

Then an assignment β satisfies $\operatorname{Acc}-\operatorname{Conf}(\bar{C})$ if and only if \bar{C} represents an accepting configuration of \mathcal{M}.

Simulating Polynomial Space Computations

For Cook-Levin, we used one set of configuration variables for every computating step: polynomially time \leadsto polynomially many variables

Problem: For polynomial space, we have $2^{O(p(n))}$ possible steps ...

Simulating Polynomial Space Computations

For Cook-Levin, we used one set of configuration variables for every computating step: polynomially time \sim polynomially many variables

Problem: For polynomial space, we have $2^{O(p(n))}$ possible steps ...

What would Savitch do?

Simulating Polynomial Space Computations

For Cook-Levin, we used one set of configuration variables for every computating step: polynomially time \sim polynomially many variables

Problem: For polynomial space, we have $2^{O(p(n))}$ possible steps ...

What would Savitch do?

Define a formula CanYield ${ }_{i}\left(\bar{C}_{1}, \bar{C}_{2}\right)$ to state that \bar{C}_{2} is reachable from \bar{C}_{1} in at most 2^{i} steps:

$$
\begin{aligned}
& \text { CanYield }_{0}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\left(\bar{C}_{1}=\bar{C}_{2}\right) \vee \operatorname{Next}\left(\bar{C}_{1}, \bar{C}_{2}\right) \\
& \text { CanYield }_{i+1}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\exists \bar{C} . \operatorname{Conf}(\bar{C}) \wedge \operatorname{CanYield} \\
& i
\end{aligned}\left(\bar{C}_{1}, \bar{C}\right) \wedge \operatorname{CanYield}_{i}\left(\bar{C}, \bar{C}_{2}\right) .
$$

Simulating Polynomial Space Computations

For Cook-Levin, we used one set of configuration variables for every computating step: polynomially time \sim polynomially many variables

Problem: For polynomial space, we have $2^{O(p(n))}$ possible steps ...

What would Savitch do?

Define a formula CanYield ${ }_{i}\left(\bar{C}_{1}, \bar{C}_{2}\right)$ to state that \bar{C}_{2} is reachable from \bar{C}_{1} in at most 2^{i} steps:

$$
\begin{aligned}
& \text { CanYield }_{0}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\left(\bar{C}_{1}=\bar{C}_{2}\right) \vee \operatorname{Next}\left(\bar{C}_{1}, \bar{C}_{2}\right) \\
& \text { CanYield }_{i+1}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\exists \bar{C} . \operatorname{Conf}(\bar{C}) \wedge \operatorname{CanYield} \\
& i
\end{aligned}\left(\bar{C}_{1}, \bar{C}\right) \wedge \operatorname{CanYield}_{i}\left(\bar{C}, \bar{C}_{2}\right) .
$$

But what is $\bar{C}_{1}=\bar{C}_{2}$ supposed to mean here?

Simulating Polynomial Space Computations

For Cook-Levin, we used one set of configuration variables for every computating step: polynomially time \leadsto polynomially many variables

Problem: For polynomial space, we have $2^{O(p(n))}$ possible steps \ldots

What would Savitch do?

Define a formula CanYield ${ }_{i}\left(\bar{C}_{1}, \bar{C}_{2}\right)$ to state that \bar{C}_{2} is reachable from \bar{C}_{1} in at most 2^{i} steps:

$$
\begin{aligned}
& \text { CanYield }_{0}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\left(\bar{C}_{1}=\bar{C}_{2}\right) \vee \operatorname{Next}\left(\bar{C}_{1}, \bar{C}_{2}\right) \\
& \text { CanYield }_{i+1}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\exists \bar{C} . \operatorname{Conf}(\bar{C}) \wedge \operatorname{CanYield} \\
& i
\end{aligned}\left(\bar{C}_{1}, \bar{C}\right) \wedge \operatorname{CanYield}_{i}\left(\bar{C}, \bar{C}_{2}\right) .
$$

But what is $\bar{C}_{1}=\bar{C}_{2}$ supposed to mean here? It is short for:

$$
\bigwedge_{q \in Q} Q_{q}^{1} \leftrightarrow Q_{q}^{2} \wedge \bigwedge_{0 \leq i<p(n)} P_{i}^{1} \leftrightarrow P_{i}^{2} \wedge \bigwedge_{a \in \Gamma, 0 \leq i<p(n)} S_{a, i}^{1} \leftrightarrow S_{a, i}^{2}
$$

Putting Everything Together

We define the formula $\varphi_{p, \mathcal{M}, w}$ as follows:

$$
\varphi_{p, \mathcal{M}, w}:=\exists \bar{C}_{1} \cdot \exists \bar{C}_{2} \cdot \operatorname{Start}_{\mathcal{M}, w}\left(\bar{C}_{1}\right) \wedge \operatorname{Acc-Conf}\left(\bar{C}_{2}\right) \wedge \operatorname{CanYield}_{d p(n)}\left(\bar{C}_{1}, \bar{C}_{2}\right)
$$

where we select d to be the least number such that \mathcal{M} has less than $2^{d p(n)}$ configurations in space $p(n)$.

Lemma 10.7: $\varphi_{p, \mathcal{M}, w}$ is satisfiable if and only if \mathcal{M} accepts w in space $p(|w|)$.

Did we do it?

Note: we used only existential quantifiers when defining $\varphi_{p, \mathcal{M}, w}$:

$$
\begin{aligned}
& \text { CanYield }_{0}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\left(\bar{C}_{1}=\bar{C}_{2}\right) \vee \operatorname{Next}\left(\bar{C}_{1}, \bar{C}_{2}\right) \\
& \text { CanYield }_{i+1}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\exists \bar{C} \cdot \operatorname{Conf}(\bar{C}) \wedge \operatorname{CanYield}\left(\bar{C}_{1}, \bar{C}\right) \wedge \operatorname{CanYield}_{(}\left(\bar{C}, \bar{C}_{2}\right) \\
& \varphi_{p, \mathcal{M}, w}:=\exists \bar{C}_{1} \cdot \exists \bar{C}_{2} \cdot \operatorname{Start}_{\mathcal{M}, w}\left(\bar{C}_{1}\right) \wedge \operatorname{Acc}-\operatorname{Conf}\left(\bar{C}_{2}\right) \wedge \operatorname{CanYield}_{d p(n)}\left(\bar{C}_{1}, \bar{C}_{2}\right)
\end{aligned}
$$

Did we do it?

Note: we used only existential quantifiers when defining $\varphi_{p, \mathcal{M}, w}$:

$$
\begin{aligned}
& \text { CanYield }_{0}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\left(\bar{C}_{1}=\bar{C}_{2}\right) \vee \operatorname{Next}\left(\bar{C}_{1}, \bar{C}_{2}\right) \\
& \text { CanYield }_{i+1}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\exists \bar{C} \cdot \operatorname{Conf}(\bar{C}) \wedge \operatorname{CanYield}\left(\bar{C}_{1}, \bar{C}\right) \wedge \operatorname{CanYield}_{(}\left(\bar{C}, \bar{C}_{2}\right) \\
& \varphi_{p, \mathcal{M}, w}:=\exists \bar{C}_{1} \cdot \exists \bar{C}_{2} \cdot \operatorname{Start}_{\mathcal{M}, w}\left(\bar{C}_{1}\right) \wedge \operatorname{Acc}-\operatorname{Conf}\left(\bar{C}_{2}\right) \wedge \operatorname{CanYield}_{d p(n)}\left(\bar{C}_{1}, \bar{C}_{2}\right)
\end{aligned}
$$

Now that's quite interesting ...

Did we do it?

Note: we used only existential quantifiers when defining $\varphi_{p, \mathcal{M}, w}$:

$$
\left.\begin{array}{l}
\text { CanYield }_{0}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\left(\bar{C}_{1}=\bar{C}_{2}\right) \vee \operatorname{Next}\left(\bar{C}_{1}, \bar{C}_{2}\right) \\
\text { CanYield }_{i+1}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\exists \bar{C} \cdot \operatorname{Conf}(\bar{C}) \wedge \operatorname{CanYield}\left(\bar{C}_{1}, \bar{C}\right) \wedge \operatorname{CanYield}_{i}\left(\bar{C}, \bar{C}_{2}\right) \\
\varphi_{p, \mathcal{M}, w}:=\exists \bar{C}_{1} \cdot \exists \bar{C}_{2} \cdot \operatorname{Start}_{\mathcal{M}, w}\left(\bar{C}_{1}\right) \wedge \operatorname{Acc}-\operatorname{Conf}\left(\bar{C}_{2}\right) \wedge \operatorname{CanYield} \\
d p(n)
\end{array} \bar{C}_{1}, \bar{C}_{2}\right) .
$$

Now that's quite interesting ...

- With only (non-negated) \exists quantifiers, True QBF coincides with Sat

Did we do it?

Note: we used only existential quantifiers when defining $\varphi_{p, \mathcal{M}, w}$:

$$
\begin{aligned}
& \text { CanYield }_{0}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\left(\bar{C}_{1}=\bar{C}_{2}\right) \vee \operatorname{Next}\left(\bar{C}_{1}, \bar{C}_{2}\right) \\
& \text { CanYield }_{i+1}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\exists \bar{C} \cdot \operatorname{Conf}(\bar{C}) \wedge \operatorname{CanYield}\left(\bar{C}_{1}, \bar{C}\right) \wedge \operatorname{CanYield}_{(}\left(\bar{C}, \bar{C}_{2}\right) \\
& \varphi_{p, \mathcal{M}, w}:=\exists \bar{C}_{1} \cdot \exists \bar{C}_{2} \cdot \operatorname{Start}_{\mathcal{M}, w}\left(\bar{C}_{1}\right) \wedge \operatorname{Acc-Conf}\left(\bar{C}_{2}\right) \wedge \operatorname{CanYield}{ }_{d p(n)}\left(\bar{C}_{1}, \bar{C}_{2}\right)
\end{aligned}
$$

Now that's quite interesting ...

- With only (non-negated) \exists quantifiers, True QBF coincides with Sat
- Sat is in NP

Did we do it?

Note: we used only existential quantifiers when defining $\varphi_{p, \mathcal{M}, w}$:

$$
\left.\begin{array}{l}
\text { CanYield }_{0}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\left(\bar{C}_{1}=\bar{C}_{2}\right) \vee \operatorname{Next}\left(\bar{C}_{1}, \bar{C}_{2}\right) \\
\text { CanYield }_{i+1}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\exists \bar{C} \cdot \operatorname{Conf}(\bar{C}) \wedge \operatorname{CanYield}\left(\bar{C}_{1}, \bar{C}\right) \wedge \operatorname{CanYield}_{i}\left(\bar{C}, \bar{C}_{2}\right) \\
\varphi_{p, \mathcal{M}, w}:=\exists \bar{C}_{1} \cdot \exists \bar{C}_{2} \cdot \operatorname{Start}_{\mathcal{M}, w}\left(\bar{C}_{1}\right) \wedge \operatorname{Acc}-\operatorname{Conf}\left(\bar{C}_{2}\right) \wedge \operatorname{CanYield} \\
d p(n)
\end{array} \bar{C}_{1}, \bar{C}_{2}\right) .
$$

Now that's quite interesting ...

- With only (non-negated) \exists quantifiers, True QBF coincides with Sat
- Sat is in NP
- So we showed that the word problem for PSpace NTMs to be in NP

Did we do it?

Note: we used only existential quantifiers when defining $\varphi_{p, \mathcal{M}, w}$:

$$
\begin{aligned}
& \text { CanYield }_{0}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\left(\bar{C}_{1}=\bar{C}_{2}\right) \vee \operatorname{Next}\left(\bar{C}_{1}, \bar{C}_{2}\right) \\
& \text { CanYield }_{i+1}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\exists \bar{C} \cdot \operatorname{Conf}(\bar{C}) \wedge \operatorname{CanYield}\left(\bar{C}_{1}, \bar{C}\right) \wedge \operatorname{CanYield}_{i}\left(\bar{C}, \bar{C}_{2}\right) \\
& \varphi_{p, \mathcal{M}, w}:=\exists \bar{C}_{1} \cdot \exists \bar{C}_{2} \cdot \operatorname{Start}_{\mathcal{M}, w}\left(\bar{C}_{1}\right) \wedge \operatorname{Acc}-\operatorname{Conf}\left(\bar{C}_{2}\right) \wedge \operatorname{CanYield}_{d p(n)}\left(\bar{C}_{1}, \bar{C}_{2}\right)
\end{aligned}
$$

Now that's quite interesting ...

- With only (non-negated) \exists quantifiers, True QBF coincides with Sat
- Sat is in NP
- So we showed that the word problem for PSpace NTMs to be in NP So we found that NP = PSpace!

Did we do it?

Note: we used only existential quantifiers when defining $\varphi_{p, \mathcal{M}, w}$:

$$
\begin{aligned}
& \text { CanYield }_{0}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\left(\bar{C}_{1}=\bar{C}_{2}\right) \vee \operatorname{Next}\left(\bar{C}_{1}, \bar{C}_{2}\right) \\
& \text { CanYield }_{i+1}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\exists \bar{C} \cdot \operatorname{Conf}(\bar{C}) \wedge \operatorname{CanYield}{ }_{i}\left(\bar{C}_{1}, \bar{C}\right) \wedge \operatorname{CanYield}_{i}\left(\bar{C}, \bar{C}_{2}\right) \\
& \varphi_{p, \mathcal{M}, w}:=\exists \bar{C}_{1} \cdot \exists \bar{C}_{2} \cdot \operatorname{Start}_{\mathcal{M}, w}\left(\bar{C}_{1}\right) \wedge \operatorname{Acc}-\operatorname{Conf}\left(\bar{C}_{2}\right) \wedge \operatorname{CanYield} \\
& d p(n)\left(\bar{C}_{1}, \bar{C}_{2}\right)
\end{aligned}
$$

Now that's quite interesting ...

- With only (non-negated) \exists quantifiers, True QBF coincides with Sat
- Sat is in NP
- So we showed that the word problem for PSpace NTMs to be in NP

So we found that NP = PSpace!
Strangely, most textbooks claim that this is not known to be true ... Are we up for the next Turing Award, or did we make a mistake?

Size

How big is $\varphi_{p, \mathcal{M}, w}$?

$$
\begin{aligned}
& \text { CanYield }_{0}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\left(\bar{C}_{1}=\bar{C}_{2}\right) \vee \operatorname{Next}\left(\bar{C}_{1}, \bar{C}_{2}\right) \\
& \text { CanYield }_{i+1}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\exists \bar{C} \cdot \operatorname{Conf}(\bar{C}) \wedge \operatorname{CanYield}\left(\bar{C}_{1}, \bar{C}\right) \wedge \operatorname{CanYield}_{i}\left(\bar{C}, \bar{C}_{2}\right) \\
& \varphi_{p, \mathcal{M}, w}:=\exists \bar{C}_{1} \cdot \exists \bar{C}_{2} \cdot \text { Start }_{\mathcal{M}, w}\left(\bar{C}_{1}\right) \wedge \operatorname{Acc}-\operatorname{Conf}\left(\bar{C}_{2}\right) \wedge \operatorname{CanYield}_{d p(n)}\left(\bar{C}_{1}, \bar{C}_{2}\right)
\end{aligned}
$$

Size

How big is $\varphi_{p, \mathcal{M}, w}$?

$$
\begin{aligned}
& \text { CanYield }\left(\bar{C}_{1}, \bar{C}_{2}\right):=\left(\bar{C}_{1}=\bar{C}_{2}\right) \vee \operatorname{Next}\left(\bar{C}_{1}, \bar{C}_{2}\right) \\
& \text { CanYield }_{i+1}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\exists \bar{C} \cdot \operatorname{Conf}(\bar{C}) \wedge \operatorname{CanYiedd}\left(\bar{C}_{1}, \bar{C}\right) \wedge \operatorname{CanYield}_{i}\left(\bar{C}, \bar{C}_{2}\right) \\
& \varphi_{p, \mathcal{M}, w}:=\exists \bar{C}_{1} \cdot \exists \bar{C}_{2} \cdot \text { Start }_{\mathcal{M}, w}\left(\bar{C}_{1}\right) \wedge \operatorname{Acc}-\operatorname{Conf}\left(\bar{C}_{2}\right) \wedge \operatorname{CanYield}_{d p(n)}\left(\bar{C}_{1}, \bar{C}_{2}\right)
\end{aligned}
$$

Size of CanYield ${ }_{i+1}$ is more than twice the size of CanYield ${ }_{i}$ \leadsto Size of $\varphi_{p, \mathcal{M}, w}$ is in $2^{O(p(n))}$. Oops.

Size

How big is $\varphi_{p, \mathcal{M}, w}$?

$$
\begin{aligned}
& \text { CanYield }_{0}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\left(\bar{C}_{1}=\bar{C}_{2}\right) \vee \operatorname{Next}\left(\bar{C}_{1}, \bar{C}_{2}\right) \\
& \text { CanYield }_{i+1}\left(\bar{C}_{1}, \bar{C}_{2}\right):=\exists \bar{C} \cdot \operatorname{Conf}(\bar{C}) \wedge \operatorname{CanYiedd}\left(\bar{C}_{1}, \bar{C}\right) \wedge \operatorname{CanYield}_{(}\left(\bar{C}, \bar{C}_{2}\right) \\
& \varphi_{p, \mathcal{M}, w}:=\exists \bar{C}_{1} \cdot \exists \bar{C}_{2} \cdot \text { Start }_{\mathcal{M}, w}\left(\bar{C}_{1}\right) \wedge \operatorname{Acc}-\operatorname{Conf}\left(\bar{C}_{2}\right) \wedge \operatorname{CanYield}_{d p(n)}\left(\bar{C}_{1}, \bar{C}_{2}\right)
\end{aligned}
$$

Size of CanYield ${ }_{i+1}$ is more than twice the size of CanYield ${ }_{i}$
\leadsto Size of $\varphi_{p, \mathcal{M}, w}$ is in $2^{O(p(n))}$. Oops.
A correct reduction: We redefine CanYield by setting

$$
\begin{aligned}
& \text { CanYield }_{i+1}\left(\bar{C}_{1}, \bar{C}_{2}\right):= \\
& \exists \bar{C} \cdot \operatorname{Conf}(\bar{C}) \wedge \\
& \forall \bar{Z}_{1} \cdot \forall \bar{Z}_{2} \cdot\left(\left(\left(\bar{Z}_{1}=\bar{C}_{1} \wedge \bar{Z}_{2}=\bar{C}\right) \vee\left(\bar{Z}_{1}=\bar{C} \wedge \bar{Z}_{2}=\bar{C}_{2}\right)\right) \rightarrow \text { CanYield }_{i}\left(\bar{Z}_{1}, \bar{Z}_{2}\right)\right)
\end{aligned}
$$

Size

Let's analyse the size more carefully this time:

$$
\begin{aligned}
& \text { CanYield }_{i+1}\left(\bar{C}_{1}, \bar{C}_{2}\right):= \\
& \exists \bar{C} \cdot \operatorname{Conf}(\bar{C}) \wedge \\
& \forall \bar{Z}_{1} \cdot \forall \bar{Z}_{2} \cdot\left(\left(\left(\bar{Z}_{1}=\bar{C}_{1} \wedge \bar{Z}_{2}=\bar{C}\right) \vee\left(\bar{Z}_{1}=\bar{C} \wedge \bar{Z}_{2}=\bar{C}_{2}\right)\right) \rightarrow \operatorname{CanYield}_{i}\left(\bar{Z}_{1}, \bar{Z}_{2}\right)\right)
\end{aligned}
$$

- CanYield ${ }_{i+1}\left(\bar{C}_{1}, \bar{C}_{2}\right)$ extends CanYield ${ }_{i}\left(\bar{C}_{1}, \bar{C}_{2}\right)$ by parts that are linear in the size of configurations \sim growth in $O(p(n))$
- Maximum index i used in $\varphi_{p, \mathcal{M}, w}$ is $d p(n)$, that is in $O(p(n))$
- Therefore: $\varphi_{p, \mathcal{M}, w}$ has size $O\left(p^{2}(n)\right)$ - and thus can be computed in polynomial time

Exercise:

Why can we just use $d p(n)$ in the reduction? Don't we have to compute it somehow? Maybe even in polynomial time?

The Power of QBF

Theorem 10.4: True QBF is PSpace-complete.

Proof:

(1) True QBF \in PSpace:

Give an algorithm that runs in polynomial space.
(2) True QBF is PSpace-hard:

Proof by reduction from the word problem of any polynomially space-bounded TM.

A More Common Logical Problem in PSpace

Recall standard first-order logic:

- Instead of propositional variables, we have atoms (predicates with constants and variables)
- Instead of propositional evaluations we have first-order structures (or interpretations)
- First-order quantifiers can be used on variables
- Sentences are formulae where all variables are quantified
- A sentence can be satisfied or not by a given first-order structure

A More Common Logical Problem in PSpace

Recall standard first-order logic:

- Instead of propositional variables, we have atoms (predicates with constants and variables)
- Instead of propositional evaluations we have first-order structures (or interpretations)
- First-order quantifiers can be used on variables
- Sentences are formulae where all variables are quantified
- A sentence can be satisfied or not by a given first-order structure

FOL Model Checking

Input: A first-order sentence φ and a finite first-order structure I.

Problem: Is φ satisfied by I ?

First-Order Logic is PSpace-complete

Theorem 10.8: FOL Model Checking is PSpace-complete.

Proof:

(1) FOL Model Checking \in PSpace:

Give algorithm that runs in polynomial space.
(2) FOL Model Checking is PSpace-hard:

Proof by reduction True QBF \leq_{p} FOL Model Checking.

Checking FOL Models in Polynomial Space (Sketch)

```
01 Eval(\varphi,I) {
02 switch (\varphi) :
03 case p(c, ,\ldots,\mp@subsup{c}{n}{}) : return }\langle\mp@subsup{c}{1}{},\ldots,\mp@subsup{c}{n}{}\rangle\in\mp@subsup{p}{}{I
04 case }\neg\psi : return NOT Eval ( \psi,I)
05 case }\mp@subsup{\psi}{1}{}\wedge\mp@subsup{\psi}{2}{}: return Eval( ( % , I I) AND Eval ( * * 2, I)
06 case \existsx.\psi :
07 for c\in吅 :
                if Eval( }\psi[x\mapsto,x],\mathcal{I}): return TRU
        // eventually, if no success:
        return FALSE
11}
```

- We can assume φ only uses \neg, \wedge and \exists (easy to get)
- We use Δ^{I} to denote the (finite!) domain of I
- We allow domain elements to be used like constants in the formula

Hardness of FOL Model Сhecking

Given: a QBF $\varphi=\bigcap_{1} X_{1} \cdots \bigcirc_{\ell} X_{\ell} \cdot \psi$
FOL Model Checking Problem:

- Interpretation domain $\Delta^{I}:=\{0,1\}$
- Single predicate symbol true with interpretation true ${ }^{I}=\{\langle 1\rangle\}$
- FOL formula φ^{\prime} is obtained by replacing variables in input QBF with corresponding first-order expressions:

$$
\bigcirc_{1} x_{1}, \cdots \bigcirc_{\ell} x_{\ell} \cdot \psi\left[X_{1} \mapsto \operatorname{true}\left(x_{1}\right), \ldots, X_{\ell} \mapsto \operatorname{true}\left(x_{\ell}\right)\right]
$$

Lemma 10.9: $\left\langle I, \varphi^{\prime}\right\rangle \in$ FOL Model Checking if and only if $\varphi \in$ True QBF.

First-Order Logic is PSpace-complete

Theorem 10.8: FOL Model Checking is PSpace-complete.

Proof:

(1) FOL Model Checking \in PSpace:

Give algorithm that runs in polynomial space.
(2) FOL Model Checking is PSpace-hard:

Proof by reduction True QBF \leq_{p} FOL Model Checking.

FOL Model Checking: Practical Significance

Why is FOL Model Checking a relevant problem?

FOL Model Checking: Practical Significance

Why is FOL Model Checking a relevant problem?

Correspondence with database query answering:

- Finite first-order interpretation = database
- First-order logic formula = database query
- Satisfying assignments (for non-sentences) = query results

Known correspondence:
As a query language, FOL has the same expressive power as (basic) SQL (relational algebra).

Corollary 10.10: Answering SQL queries over a given database is PSpacecomplete.

Games

Games as Computational Problems

Many single-player games relate to NP-complete problems:

- Sudoku
- Minesweeper
- Tetris
- ...

Decision problem: Is there a solution?
(For Tetris: is it possible to clear all blocks?)
What about two-player games?

Games as Computational Problems

Many single-player games relate to NP-complete problems:

- Sudoku
- Minesweeper
- Tetris
- ...

Decision problem: Is there a solution?
(For Tetris: is it possible to clear all blocks?)
What about two-player games?

- Two players take moves in turns
- The players have different goals
- The game ends if a player wins

Decision problem: Does Player 1 have a winning strategy?
In other words: can Player 1 enforce winning, whatever Player 2 does?

Example: The Formula Game

A contrived game, to illustrate the idea:

- Given: a propositional logic formula φ with consecutively numbered variables $X_{1}, \ldots X_{\ell}$.
- Two players take turns in selecting values for the next variable:
- Player 1 sets X_{1} to true or false
- Player 2 sets X_{2} to true or false
- Player 1 sets X_{3} to true or false
- ...
until all variables are set.
- Player 1 wins if the assignment makes φ true.

Otherwise, Player 2 wins.

Deciding the Formula Game

> Formula Game
> Input: A formula φ.
> Problem: Does Player 1 have a winning strategy on φ ?

Theorem 10.11: Formula Game is PSpace-complete.

Deciding the Formula Game

> Formula Game
> Input: A formula φ.
> Problem: Does Player 1 have a winning strategy on φ ?

Theorem 10.11: Formula Game is PSpace-complete.

Proof sketch: Formula Game is essentially the same as True QBF.
Having a winning strategy means: there is a truth value for X_{1}, such that, for all truth values of X_{2}, there is a truth value of X_{3}, \ldots such that φ becomes true.
If we have a QBF where quantifiers do not alternate, we can add dummy quantifiers and variables that do not change the semantics to get the same alternating form as for the Formula Game.

Example: The Geography Game

A children's game:

- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- Repetitions are not allowed.
- The first player who cannot name a new city looses.

Example: The Geography Game

A children's game:

- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- Repetitions are not allowed.
- The first player who cannot name a new city looses.

A mathematicians' game:

- Two players are marking nodes on a directed graph.
- Each node must be a successor of the previous one.
- Repetitions are not allowed.
- The first player who cannot mark a new node looses.

Example: The Geography Game

A children's game:

- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- Repetitions are not allowed.
- The first player who cannot name a new city looses.

A mathematicians' game:

- Two players are marking nodes on a directed graph.
- Each node must be a successor of the previous one.
- Repetitions are not allowed.
- The first player who cannot mark a new node looses.

Decision problem (Generalised) Geography:
given a graph and start node, does Player 1 have a winning strategy?

Geography is PSpace-complete

Theorem 10.12: Generalised Geography is PSpace-complete.

Proof:

(1) Geography \in PSpace:

Give algorithm that runs in polynomial space.
It is not difficult to provide a recursive algorithm similar to the one for True QBF or FOL Model Checking.
(2) Geography is PSpace-hard:

Proof by reduction Formula Game \leq_{p} Geography.

Geography is PSpace-hard

Let φ with variables X_{1}, \ldots, X_{ℓ} be an instance of Formula Game.
Without loss of generality, we assume:

- ℓ is odd (Player 1 gets the first and last turn)
- φ is in CNF

We now build a graph that encodes Formula Game in terms of Geography

- The left-hand side of the graph is a chain of diamond structures that represent the choices that players have when assigning truth values
- The right-hand side of the graph encodes the structure of φ : Player 2 may choose a clause (trying to find one that is not true under the assignment); Player 1 may choose a literal (trying to find one that is true under the assignment).
(see board or [Sipser, Theorem 8.14])

Geography is PSpace-hard: Example

We consider the formula $\exists X . \forall Y . \exists Z .(X \vee Z \vee Y) \wedge(\neg Y \vee Z) \wedge(\neg Z \vee Y)$

Geography is PSpace-hard: Example

We consider the formula $\exists X . \forall Y . \exists Z .(X \vee Z \vee Y) \wedge(\neg Y \vee Z) \wedge(\neg Z \vee Y)$

Geography is PSpace-hard: Example

We consider the formula $\exists X . \forall Y . \exists Z .(X \vee Z \vee Y) \wedge(\neg Y \vee Z) \wedge(\neg Z \vee Y)$

Geography is PSpace-hard: Example

We consider the formula $\exists X . \forall Y . \exists Z .(X \vee Z \vee Y) \wedge(\neg Y \vee Z) \wedge(\neg Z \vee Y)$

Geography is PSpace-hard: Example

We consider the formula $\exists X . \forall Y . \exists Z .(X \vee Z \vee Y) \wedge(\neg Y \vee Z) \wedge(\neg Z \vee Y)$

Geography is PSpace-hard: Example

We consider the formula $\exists X . \forall Y . \exists Z .(X \vee Z \vee Y) \wedge(\neg Y \vee Z) \wedge(\neg Z \vee Y)$

Geography is PSpace-hard: Example

We consider the formula $\exists X . \forall Y . \exists Z .(X \vee Z \vee Y) \wedge(\neg Y \vee Z) \wedge(\neg Z \vee Y)$

Geography is PSpace-hard: Example

We consider the formula $\exists X . \forall Y . \exists Z .(X \vee Z \vee Y) \wedge(\neg Y \vee Z) \wedge(\neg Z \vee Y)$

Geography is PSpace-hard: Example

We consider the formula $\exists X . \forall Y . \exists Z .(X \vee Z \vee Y) \wedge(\neg Y \vee Z) \wedge(\neg Z \vee Y)$

Geography is PSpace-hard: Example

We consider the formula $\exists X . \forall Y . \exists Z .(X \vee Z \vee Y) \wedge(\neg Y \vee Z) \wedge(\neg Z \vee Y)$

Geography is PSpace-hard: Example

We consider the formula $\exists X . \forall Y . \exists Z .(X \vee Z \vee Y) \wedge(\neg Y \vee Z) \wedge(\neg Z \vee Y)$

Geography is PSpace-hard: Example

We consider the formula $\exists X . \forall Y . \exists Z .(X \vee Z \vee Y) \wedge(\neg Y \vee Z) \wedge(\neg Z \vee Y)$

Geography is PSpace-hard: Example

We consider the formula $\exists X . \forall Y . \exists Z .(X \vee Z \vee Y) \wedge(\neg Y \vee Z) \wedge(\neg Z \vee Y)$

Summary and Outlook

True QBF is PSpace-complete
FOL Model Checking and the related problem of SQL query answering are PSpace-complete

Some games are PSpace-complete

What's next?

- Some more remarks on games
- Logarithmic space
- Complements of space classes

