Complexity Theory Space Complexity

Daniel Borchmann, Markus Krötzsch

Computational Logic

2015-11-25

©•••

Review

Space Complexity

Review: Space Complexity Classes

Recall our earlier definition of space complexities:

Definition 10.1

- Let $f : \mathbb{N} \to \mathbb{R}^+$ be a function.
 - ► DSPACE(f(n)) is the class of all languages \mathcal{L} for which there is an O(f(n))-space bounded Turing machine deciding \mathcal{L} .
 - ▶ NSPACE(f(n)) is the class of all languages \mathcal{L} for which there is an O(f(n))-space bounded nondeterministic Turing machine deciding \mathcal{L} .

Being O(f(n))-space bounded requires a (nondeterministic) TM

- to halt on every input and
- to use $\leq f(|w|)$ tape cells on every computation path.

Space Complexity Classes

Some important space complexity classes:

$$L = LOGSPACE = DSPACE(\log n)$$
 logarithmic space

$$PSPACE = \bigcup_{d \ge 1} DSPACE(n^d)$$
 polynomial space

$$EXPSPACE = \bigcup_{d \ge 1} DSPACE(2^{n^d})$$
 exponential space

 $NL = NLOGSPACE = NSPACE(\log n)$

$$NPSPACE = \bigcup_{d \ge 1} NSPACE(n^d)$$

$$NEXPSPACE = \bigcup_{d \ge 1} NSPACE(2^{n^d})$$

nondet. logarithmic space

nondet. polynomial space

nondet. exponential space

The Power Of Space

Space seems to be more powerful than time because space can be reused.

The Power Of Space

Space seems to be more powerful than time because space can be reused.

Example 10.2

SAT can be solved in linear space:

Just iterate over all possible truth assignments (each linear in size) and check if one satisfies the formula.

The Power Of Space

Space seems to be more powerful than time because space can be reused.

Example 10.2

SAT can be solved in linear space:

Just iterate over all possible truth assignments (each linear in size) and check if one satisfies the formula.

Example 10.3

TAUTOLOGY can be solved in linear space:

Just iterate over all possible truth assignments (each linear in size) and check if all satisfy the formula.

More generally: $NP \subseteq PSPACE$ and $CONP \subseteq PSPACE$

Linear Compression

Theorem 10.4

- For every function $f : \mathbb{N} \to \mathbb{R}^+$, for all $c \in \mathbb{N}$, and for every f-space bounded (deterministic/nondeterministic) Turing machine \mathcal{M} :
- there is a max{1, $\frac{1}{c}f(n)$ }-space bounded (deterministic/nondeterminsitic) Turing machine \mathcal{M}' that accepts the same language as \mathcal{M} .

Linear Compression

Theorem 10.4

For every function $f : \mathbb{N} \to \mathbb{R}^+$, for all $c \in \mathbb{N}$, and for every f-space bounded (deterministic/nondeterministic) Turing machine \mathcal{M} :

there is a max{1, $\frac{1}{c}f(n)$ }-space bounded (deterministic/nondeterminsitic) Turing machine \mathcal{M}' that accepts the same language as \mathcal{M} .

Proof idea.

Similar to (but much simpler than) linear speed-up.

This justifies using *O*-notation for defining space classes.

п

Tape Reduction

Theorem 10.5

- For every function $f : \mathbb{N} \to \mathbb{R}^+$ all $k \ge 1$ and $\mathcal{L} \subseteq \Sigma^*$:
- If \mathcal{L} can be decided by an f-space bounded k-tape Turing-machine,
- it can also be decided by an f-space bounded 1-tape Turing-machine

Tape Reduction

Theorem 10.5

For every function $f : \mathbb{N} \to \mathbb{R}^+$ all $k \ge 1$ and $\mathcal{L} \subseteq \Sigma^*$:

If \mathcal{L} can be decided by an f-space bounded k-tape Turing-machine,

it can also be decided by an f-space bounded 1-tape Turing-machine

Proof idea.

Combine tapes with a similar reduction as for time. Compress space to avoid linear increase.

Recall that we still use a separate read-only input tape to define some space complexities, such as LOGSPACE.

Theorem 10.6 For all functions $f : \mathbb{N} \to \mathbb{R}^+$:

 $DT_{IME}(f) \subseteq DS_{PACE}(f)$ and $NT_{IME}(f) \subseteq NS_{PACE}(f)$

Proof.

Visiting a cell takes at least one time step.

Theorem 10.6 For all functions $f : \mathbb{N} \to \mathbb{R}^+$:

 $DT_{IME}(f) \subseteq DS_{PACE}(f)$ and $NT_{IME}(f) \subseteq NS_{PACE}(f)$

Proof.

Visiting a cell takes at least one time step.

Theorem 10.7

For all functions $f : \mathbb{N} \to \mathbb{R}^+$ with $f(n) \ge \log n$:

 $\mathsf{DSpace}(f) \subseteq \mathsf{DTime}(2^{O(f)})$ and $\mathsf{NSpace}(f) \subseteq \mathsf{DTime}(2^{O(f)})$

Theorem 10.6 For all functions $f : \mathbb{N} \to \mathbb{R}^+$:

 $DT_{IME}(f) \subseteq DS_{PACE}(f)$ and $NT_{IME}(f) \subseteq NS_{PACE}(f)$

Proof.

Visiting a cell takes at least one time step.

Theorem 10.7

For all functions $f : \mathbb{N} \to \mathbb{R}^+$ with $f(n) \ge \log n$:

 $\mathsf{DSpace}(f) \subseteq \mathsf{DTime}(2^{O(f)})$ and $\mathsf{NSpace}(f) \subseteq \mathsf{DTime}(2^{O(f)})$

Proof.

Based on configuration graphs and a bound on the number of possible configurations.

© (€) ② 2015 Daniel Borchmann, Markus Krötzsch

Number of Possible Configurations

Let $\mathcal{M} := (Q, \Sigma, \Gamma, q_0, \delta, q_{start})$ be a 2-tape Turing machine (1 read-only input tape + 1 work tape)

Recall: A configuration of \mathcal{M} is a quadruple (q, p_1, p_2, x) where

- $q \in Q$ is the current state,
- ▶ $p_i \in \mathbb{N}$ is the head position on tape *i*, and
- $x \in \Gamma^*$ is the tape content.

Let $w \in \Sigma^*$ be an input to \mathcal{M} and n := |w|. Then also $p_1 \le n$.

If \mathcal{M} is f(n)-space bounded we can assume $p_2 \leq f(n)$ and $|x| \leq f(n)$

Hence, there are at most

 $|Q| \cdot n \cdot f(n) \cdot |\Gamma|^{f(n)} = n \cdot 2^{O(f(n))} = 2^{O(f(n))}$

different configurations on inputs of length *n* (the last equality requires $f(n) \ge \log n$).

Configuration Graphs

The possible computations of a TM \mathcal{M} (on input *w*) form a directed graph:

- Vertices: configurations that \mathcal{M} can reach (on input w)
- Edges: there is an edge from C_1 to C_2 if $C_1 \vdash_M C_2$ (C_2 reachable from C_1 in a single step)
- This yields the configuration graph
 - Could be infinite in general.
 - For f(n)-space bounded 2-tape TMs, there can be at most 2^{O(f(n))} vertices and 2 ⋅ (2^{O(f(n))})² = 2^{O(f(n))} edges

Configuration Graphs

The possible computations of a TM \mathcal{M} (on input *w*) form a directed graph:

- ▶ Vertices: configurations that M can reach (on input w)
- Edges: there is an edge from C_1 to C_2 if $C_1 \vdash_M C_2$ (C_2 reachable from C_1 in a single step)
- This yields the configuration graph
 - Could be infinite in general.
 - For f(n)-space bounded 2-tape TMs, there can be at most 2^{O(f(n))} vertices and 2 ⋅ (2^{O(f(n))})² = 2^{O(f(n))} edges

A computation of \mathcal{M} on input *w* corresponds to a path in the configuration graph from the start configuration to a stop configuration.

Hence, to test if \mathcal{M} accepts input w,

- construct the configuration graph and
- find a path from the start to an accepting stop configuration.

Complexity Theory

Theorem 10.6 For all functions $f : \mathbb{N} \to \mathbb{R}^+$:

 $DT_{IME}(f) \subseteq DS_{PACE}(f)$ and $NT_{IME}(f) \subseteq NS_{PACE}(f)$

Proof.

Visiting a cell takes at least one time step.

Theorem 10.7

For all functions $f : \mathbb{N} \to \mathbb{R}^+$ with $f(n) \ge \log n$:

 $\mathsf{DSpace}(f) \subseteq \mathsf{DTime}(2^{O(f)})$ and $\mathsf{NSpace}(f) \subseteq \mathsf{DTime}(2^{O(f)})$

Proof.

Build the configuration graph (time $2^{O(f(n))}$) and find a path from the start to an accepting stop configuration (time $2^{O(f(n))}$).

@ (i) (ii) 2015 Daniel Borchmann, Markus Krötzsch

2015-11-25 #12

Basic Space/Time Relationships

Applying the results of the previous slides, we get the following relations:

 $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq NPSPACE \subseteq ExpTime \subseteq NExpTime$

We also noted $P \subseteq \text{coNP} \subseteq PS_{PACE}$.

Open questions:

- What is the relationship between space classes and their co-classes?
- What is the relationship between deterministic and non-deterministic space classes?

Nondeterminism in Space

Most experts think that nondeterministic TMs can solve strictly more problems when given the same amount of time than a deterministic TM: Most believe that $P \subsetneq NP$

How about nondeterminism in space-bounded TMs?

Nondeterminism in Space

Most experts think that nondeterministic TMs can solve strictly more problems when given the same amount of time than a deterministic TM: Most believe that $P \subsetneq NP$

How about nondeterminism in space-bounded TMs?

Theorem 10.8 (Savitch's Theorem, 1970) For any function $f : \mathbb{N} \to \mathbb{R}^+$ with $f(n) \ge \log n$:

 $\mathrm{NSPACE}(f(n)) \subseteq \mathrm{DSPACE}(f^2(n)).$

That is: nondeterminism adds almost no power to space-bounded TMs!

Consequences of Savitch's Theorem

Savitch's Theorem: For any function $f : \mathbb{N} \to \mathbb{R}^+$ with $f(n) \ge \log n$:

 $\mathrm{NSPACe}(f(n)) \subseteq \mathrm{DSPACe}(f^2(n)).$

Corollary 10.9

PSPACE = NPSPACE.

Proof.

 $PSPACE \subseteq NPSPACE$ is clear. The converse follows since the square of a polynomial is still a polynomial.

Similarly for "bigger" classes, e.g., ExpSpace = NExpSpace.

Consequences of Savitch's Theorem

Savitch's Theorem: For any function $f : \mathbb{N} \to \mathbb{R}^+$ with $f(n) \ge \log n$:

 $\mathrm{NSPACe}(f(n)) \subseteq \mathrm{DSPACe}(f^2(n)).$

Corollary 10.9

PSPACE = NPSPACE.

Proof.

 $\label{eq:PSPACE} PSPACE \subseteq NPSPACE \text{ is clear. The converse follows since the square of a polynomial is still a polynomial.} \hfill \square$

Similarly for "bigger" classes, e.g., ExpSpace = NExpSpace.

Corollary 10.10

 $\mathrm{NL} \subseteq \mathrm{DSPACe}(O(\log^2 n)).$

Note that $\log^2(n) \notin O(\log n)$, so we do not obtain NL = L from this.

Proving Savitch's Theorem

Simulating nondeterminism with more space:

- Use configuration graph of nondeterministic space-bounded TM
- Check if an accepting configuration can be reached
- Store only one computation path at a time (depth-first search)

Proving Savitch's Theorem

Simulating nondeterminism with more space:

- Use configuration graph of nondeterministic space-bounded TM
- Check if an accepting configuration can be reached
- Store only one computation path at a time (depth-first search)

This still requires exponential space. We want quadratic space! What to do?

Proving Savitch's Theorem

Simulating nondeterminism with more space:

- Use configuration graph of nondeterministic space-bounded TM
- Check if an accepting configuration can be reached
- Store only one computation path at a time (depth-first search)

This still requires exponential space. We want quadratic space! What to do?

Things we can do:

- Store one configuration:
 - one configuration requires $\log n + O(f(n))$ space
 - if $f(n) \ge \log n$, then this is O(f(n)) space
- Store log n configurations (remember we have log² n space)
- Iterate over all configurations (one by one)

Proving Savitch's Theorem: Key Idea

To find out if we can reach an accepting configuration, we solve a slighly more general question:

YIELDABILITY

Input: TM configurations C_1 and C_2 , integer *k Problem:* Can TM get from C_1 to C_2 in at most *k* steps?

Approach: check if there is an intermediate configuration C' such that

- (1) C_1 can reach C' in k/2 steps and
- (2) C' can reach C_2 in k/2 steps
- \rightsquigarrow Deterministic: we can try all C' (iteration)
- \rightsquigarrow Space-efficient: we can reuse the same space for both steps

An Algorithm for Yieldability

```
Q1 CANYIELD(C_1, C_2, k) {
     if k = 1:
02
        return (C_1 = C_2) or (C_1 \vdash_M C_2)
03
     else if k > 1:
04
        for each configuration C of \mathcal{M} for input size n:
05
06
          if CANYIELD(C_1, C, k/2) and
07
             CANYIELD(C, C_2, k/2):
08
            return true
09
     // eventually, if no success:
     return false
10
11 }
```

• We only call CANYIELD only with k a power of 2, so $k/2 \in \mathbb{N}$

```
01 CANYIELD(C_1, C_2, k) {
02
    if k = 1.
       return (C_1 = C_2) or (C_1 \vdash_M C_2)
03
    else if k > 1 :
04
05
       for each configuration C of \mathcal{M} for input size n:
          if CANYIELD(C_1, C, k/2) and
06
             CANYIELD(C, C_2, k/2) :
07
08
            return true
09
    // eventually, if no success:
     return false
10
11 }
```

```
01 CANYIELD(C_1, C_2, k) {
    if k = 1.
02
03
       return (C_1 = C_2) or (C_1 \vdash_M C_2)
    else if k > 1.
04
05
       for each configuration C of \mathcal{M} for input size n:
          if CANYIELD(C_1, C, k/2) and
06
07
             CANYIELD(C, C_2, k/2) :
08
            return true
09
    // eventually, if no success:
     return false
10
11 }
```

• During iteration (line 05), we store one C in O(f(n))

```
01 CANYIELD(C_1, C_2, k) {
     if k = 1.
02
03
        return (C_1 = C_2) or (C_1 \vdash_M C_2)
    else if k > 1 ·
04
05
        for each configuration C of \mathcal{M} for input size n:
          if CANYIELD(C_1, C, k/2) and
06
07
             CANYIELD(C, C_2, k/2) :
08
            return true
09
    // eventually, if no success:
     return false
10
11 }
```

- During iteration (line 05), we store one C in O(f(n))
- Calls in lines 06 and 07 can reuse the same space

```
01 CANYIELD(C_1, C_2, k) {
     if k = 1.
02
03
        return (C_1 = C_2) or (C_1 \vdash_M C_2)
     else if k > 1:
04
05
        for each configuration C of \mathcal{M} for input size n:
          if CANYIELD(C_1, C, k/2) and
06
07
             CANYIELD(C, C_2, k/2) :
08
            return true
09
     // eventually, if no success:
     return false
10
11 }
```

- During iteration (line 05), we store one C in O(f(n))
- Calls in lines 06 and 07 can reuse the same space
- Maximum depth of recursive call stack: log₂ k

```
01 CANYIELD(C_1, C_2, k) {
     if k = 1.
02
03
        return (C_1 = C_2) or (C_1 \vdash_M C_2)
     else if k > 1:
04
05
        for each configuration C of \mathcal{M} for input size n:
          if CANYIELD(C_1, C, k/2) and
06
07
             CANYIELD(C, C_2, k/2) :
08
            return true
09
    // eventually, if no success:
     return false
10
11 }
```

- During iteration (line 05), we store one C in O(f(n))
- Calls in lines 06 and 07 can reuse the same space
- Maximum depth of recursive call stack: log₂ k

Overall space usage: $O(f(n) \cdot \log k)$

Simulating Nondeterministic Space-Bounded TMs

Input: TM \mathcal{M} that runs in NSPACE(f(n)); input word w of length n Algorithm:

- ► Modify *M* to have a unique accepting configuration *C*_{accept} when accepting, erase tape and move head to the very left
- Select *d* such that $2^{df(n)} \ge |Q| \cdot n \cdot f(n) \cdot |\Gamma|^{f(n)}$
- Return CanYIELD($C_{\text{start}}, C_{\text{accept}}, k$) with $k = 2^{df(n)}$

Space requirements: CANYIELD runs in

$$O(f(n) \cdot \log k) = O(f(n) \cdot \log 2^{df(n)}) = O(f(n) \cdot df(n)) = O(f^2(n))$$

"Select *d* such that $2^{df(n)} \ge |Q| \cdot n \cdot f(n) \cdot |\Gamma|^{f(n)}$ "

How does the algorithm actually do this?

"Select *d* such that $2^{df(n)} \ge |Q| \cdot n \cdot f(n) \cdot |\Gamma|^{f(n)}$ "

How does the algorithm actually do this?

- f(n) was not part of the input!
- Even if we knew *f*, it might not be easy to compute!

"Select *d* such that $2^{df(n)} \ge |Q| \cdot n \cdot f(n) \cdot |\Gamma|^{f(n)}$ "

How does the algorithm actually do this?

- f(n) was not part of the input!
- Even if we knew f, it might not be easy to compute!

Solution: replace f(n) by a parameter ℓ and probe its value

- (1) Start with $\ell = 1$
- (2) Check if \mathcal{M} can reach any configuration with more than ℓ tape cells (iterate over all configurations of size $\ell + 1$; use CANYIELD on each)
- (3) If yes, increase ℓ by 1; goto (2)
- (4) Run algorithm as before, with f(n) replaced by ℓ

Therefore: we don't need to know *f* at all. This finishes the proof.

Relationships of Space and Time

Summing up, we get the following relations:

 $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq ExpTime \subseteq NExpTime$

We also noted $P \subseteq \text{coNP} \subseteq PSPACE$.

Open questions:

- Is Savitch's Theorem tight?
- Are there any interesting problems in these space classes?
- ► We have PSPACE = NPSPACE = CONPSPACE. But what about L, NL, and CONL?

 \sim the first: nobody knows; the others: see upcoming lectures