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Exercise 6.1. Use Trakhtenbrot’s Theorem to show that the following problems are undecid-
able by reducing �nite satis�ability to each of them:

1. FO query containment

2. FO query emptiness

3. Domain independence of FO queries

Exercise 6.2. In the lecture, we have seen a logical formula that is �nitely satis�able if and
only if the given deterministic Turing machine (DTM) halts after �nitely many steps on the
given input. Reconsider this formula.

For each of the following statements, decide if it is true or false. Justify your answer in each
case by explaining why the statement does (or does not) follow from the formula.

1. If the formula has a model at all, then this model is �nite.

2. Every model contains a “start con�guration”: a right-sequence of elements (“cells”) that
are not reachable from any other cell via future, and where there is a �rst element in the
chain (a cell with no element to its left).

3. Every model contains exactly one such start con�guration.

4. If a cell is reachable from the �rst cell of the start con�guration via future, then it does
not have a cell on its left.

5. The future of a cell’s neighbour is equal to the neighbour of the cell’s future.

6. If the Turing machine halts on the input, then every model of the formula is �nite.

7. No cell can ever reach itself via future, i.e., there is no loop in the future relation.

Exercise 6.3. In the lecture, we have seen a logical formula that is �nitely satis�able if and
only if the given deterministic Turing machine (DTM) halts after �nitely many steps on the
given input. Extend this de�nition so that the resulting formula is satis�able if and only if:

1. a given non-deterministic TM halts after �nitely many steps on a given input.

2. a given DTM halts after at most n steps (for a given number n).

3. a given DTM halts after at most 2n steps (for a given number n).

Make sure that your encoding is polynomial in n.

Exercise 6.4. Apply the conjunctive query minimisation algorithm to �nd a core of the fol-
lowing CQs:

1. ∃x, y, z. R(x, y) ∧R(x, z)
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2. ∃x, y, z. R(x, y) ∧R(x, z) ∧R(y, z)

3. ∃x, y, z. R(x, y) ∧R(x, z) ∧R(y, z) ∧R(x, x)

4. ∃v, w. S(x, a, y) ∧ S(x, v, y) ∧ S(x,w, y) ∧ S(x, x, x)

Exercise 6.5. Consider a �xed set of relation names (each with a given arity). Show that there
is a Boolean CQ Qmin without constant symbols that is most speci�c in the following sense:

For every BCQ Q that does not use constants, we �nd that Qmin v Q.

Is there also a most general BCQ Qmax that contains all BCQs without constant names? What
is the answer to these questions if the considered BCQs may use constant names? What if we
consider FO queries instead?

Exercise 6.6. Explain why the CQ minimisation algorithm is correct:

1. Why is the result guaranteed to be a minimal CQ?

2. Why is the result guaranteed to be unique up to bijective renaming of variables?


