
Flexible Dispute Derivations with Forward and
Backward Arguments for Assumption-Based

Argumentation

Martin Diller(B) , Sarah Alice Gaggl , and Piotr Gorczyca

Logic Programming and Argumentation Group, Faculty of Computer Science,
Technische Universität Dresden, Dresden, Germany

martin.diller@tu-dresden.de

Abstract. Assumption-based argumentation (ABA) is one of the main general
frameworks for structured argumentation. Dispute derivations for ABA allow for
evaluating claims in a dialectical manner: i.e. on the basis of an exchange of argu-
ments and counter-arguments for a claim between a proponent and an opponent
of the claim. Current versions of dispute derivations are geared towards deter-
mining (credulous) acceptance of claims w.r.t. the admissibility-based seman-
tics that ABA inherits from abstract argumentation. Relatedly, they make use of
backwards or top down reasoning for constructing arguments. In this work we
define flexible dispute derivations with forward as well as backward reasoning
allowing us, in particular, to also have dispute derivations for finding admissible,
complete, and stable assumption sets rather than only determine acceptability of
claims. We give an argumentation-based definition of such dispute derivations
and a more implementation friendly alternative representation in which disputes
involve exchange of claims and rules rather than arguments. These can be seen
as elaborations on, in particular, existing graph-based dispute derivations on two
fronts: first, in also allowing for forward reasoning; second, in that all arguments
put forward in the dispute are represented by a graph and not only the proponents.

Keywords: Argumentation · Assumption-based argumentation · Dispute
derivations

1 Introduction

Assumption-based argumentation [3,4,12,16,34] (ABA) is one of the main formalisms
for structured argumentation [2], also very much related to ASPIC+ [18,27,28]. ABA
frameworks are built from a deductive system consisting of a language and set of rules.
ABA arguments are then proofs in such a deductive system. Certain elements of the
language are singled out as assumptions and a total mapping is provided associating
each assumption to its so called contrary. Assumptions, and thus arguments using such

This research was partially funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – project number 389792660 – TRR 248, and by the Bundesministerium
für Bildung und Forschung (BMBF) Förderkennzeichen 01IS20056 NAVAS.

c© Springer Nature Switzerland AG 2021
P. Baroni et al. (Eds.): CLAR 2021, LNAI 13040, pp. 147–168, 2021.
https://doi.org/10.1007/978-3-030-89391-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89391-0_9&domain=pdf
http://orcid.org/0000-0001-6342-0756
http://orcid.org/0000-0003-2425-6089
https://doi.org/10.1007/978-3-030-89391-0_9

148 M. Diller et al.

assumptions, can be attacked by arguments for their contraries. For flat ABA, which
we will be focusing on this work (and has, as far as we are aware, also been the
focus of all other work on reasoning methods for ABA), semantics can be equivalently
defined at the level of assumption sets as well as arguments. In either case one ulti-
mately obtains sets of assumptions which can be deemed reasonable to the same degree
that the arguments that can be built from them are reasonable according to the classical
admissibility-based semantics of abstract argumentation [14].

One of the main reasoning methods which has been devised for (flat) ABA is that of
dispute derivations [10,11,15,17,20,33]. These build on one of if not the main native
(vs reduction-based [9]) method for reasoning in abstract argumentation; namely, argu-
mentation games (see e.g. [5,7,8,13,21–23,26,29,31,35]). Dispute derivations are con-
ceived of as a game between a proponent and opponent, where starting from some goal
claim the proponent searches for an argument proving the goal. This search reveals
assumptions on which the proof depends, which can be attacked by the opponent
by arguments for their contraries. Such arguments from the opponent can in turn be
attacked by the proponent by searching for further arguments and so on. Dispute deriva-
tions can be seen as hybrid syntactic-semantic methods for searching for only those
arguments needed to answer a query and are thus related to the issue of selecting such
relevant arguments in structured argumentation more general [1,6,19,30,32,36].

Although reduction-based methods also for reasoning in ABA (as for abstract
argumentation) have to date proved to be much more efficient than dispute deriva-
tions [24,25], dispute derivations remain interesting for a number of reasons. The main
of these is that reducing argumentation to other formalisms often undermines the pur-
pose of using argumentation in the first place; which is presumably to allow for a dialec-
tic evaluation of claims in terms of arguments and counter-arguments. Dispute deriva-
tions deliver such “dialectic explications”. This makes them especially suitable when
information is limited and unreliable; also, for approximate, dynamic, and interactive
reasoning.

As detailed, there have been several versions of dispute derivations to date. But all
have in common that they are conceived primarily as decision procedures for determin-
ing credulous acceptance of a claim w.r.t. the admissible-based semantics (in the first
versions of dispute derivations focus was on grounded, admissible, and ideal semantics;
in later [10,11] versions the ideal semantics is dropped); i.e. whether there is an admis-
sible (and hence complete and preferred) assumption set from which the claim can be
proven. Related to this, they make use of backwards reasoning: both the proponent and
opponent make use of top down or backwards reasoning to search for their arguments.

Top down reasoning is often enough. In particular, for the focused task of determin-
ing credulous acceptance of claims; yet, another fundamental paradigm in reasoning is
forward or bottom up from established claims to further claims. In the context of dispute
derivations such reasoning becomes relevant for more global tasks as e.g. determining
acceptance of several claims or, relatedly, determining complete assumption sets rather
than only credulous acceptance. Moreover, while for determining credulous acceptance
computing e.g. complete assumption sets is not necessary, more revealing explications
can often be obtained. In particular, computing complete assumption sets allows, as
the name of the semantics suggests, a more “complete” picture of sets of assumptions

Flexible Dispute Derivations for ABA 149

which are congruous with a claim of interest. Furthermore, forward reasoning allows a
straightforward generalisation of dispute derivations also for the stable semantics, this
semantics not having been considered in previous work on disputes for ABA.

So in this work we add forward reasoning to dispute derivations. This allows us,
in particular, to define dispute derivations for finding admissible, complete, and stable
assumption sets as well as for determining acceptance of claims w.r.t. these semantics.
We do so in several steps. We start in Sect. 3 by considering dispute derivations from an
implementation independent and purely argumentation-based perspective: i.e. in terms
of the arguments that are exchanged by the proponent and opponent. In particular, espe-
cially for forward reasoning how much of a dispute is “remembered” and made use of
in further dispute steps is crucial. We provide a definition of flexible dispute deriva-
tions (with forward and backward arguments) based on structured dispute derivations
from [33] and then graph-based dispute derivations from [10] in Sect. 3.2. The only
thing that distinguishes these variants of dispute derivations is precisely how much of
previous dispute steps is made use of in further steps. We note that there is room for
improvement in this regard, particularly for the purpose of forward reasoning, and thus
propose a novel variant of flexible dispute derivations in Sect. 3.3.

We then in Sect. 4 change gear to a more implementation focused perspective more
in line with existing work on ABA disputes and give an alternative representation of
our novel variant of dispute derivations from Sect. 3.3. In this version disputes involve
the exchange of claims and rules rather than arguments; in particular, the opponents and
proponents arguments are represented in a shared graph consisting in the dependency
relations between rules and statements put forward during the dispute. Thus we further
generalise [10] in which only the proponents arguments are represented as a graph,
while the opponents are not. In Sect. 5 we then provide details on an interactive interface
we implemented for our dispute derivations that is freely available. Section 2 contains
the background needed for our work and Sect. 6 the conclusions.

2 Formal Background

Definition 1. An ABA framework is a tuple F = (L ,R,A ,) where

– (L ,R) is a deductive system, with a language L and a set of inference rules R,
– A ⊆ L is a (non-empty) set, whose elements are referred to as assumptions,
– is a total mapping from A into L , where a is the contrary of a.

We also define for a set of statements S ⊆ L , S = {u ∈ L | u ∈ (S ∩A)}. As in pre-
vious work on dispute derivations, here we also restrict our attention to flat ABA: i.e.
frameworks where there is no rule h ← B ∈ R s.t. h ∈ A . In all of this work we will
consider the ABA framework to be fixed and thus not define notions relative to an ABA
framework. Elements of L we will refer to as statements, sometimes as claims.

Arguments have been defined in several different ways for ABA. For a comprehen-
sive definition we define arguments in ASPIC+ [27] style:

Definition 2. For an ABA F = (L ,R,A ,), an argument is defined as follows.

150 M. Diller et al.

(i) a= s is an argument if s ∈L . Then Prem(a)= {s}, Asm(a)= {s}∩A , Conc(a)= s,
TopSub(a) = {s}, Sub(a) = {s}.

(ii) a = s ← a1, . . . ,an is an argument if a1, . . . ,an are arguments such that there
exists s ← Conc(a1), . . . ,Conc(an)∈R. Then Prem(a)=Prem(a1)∪ . . .∪Prem(an),
Asm(a) = Asm(a1)∪ . . .∪ Asm(an)∪ ({s} ∩A), Conc(a) = s, TopSub(a) = {s} ∪
{s ← a′

1, . . . ,a
′
n | a′

1 ∈ TopSub(a1), . . . ,a′
n ∈ TopSub(an)}, Sub(a) = Sub(a1)∪ . . .∪

Sub(an)∪TopSub(a).

For instance let a = p ← b, [q ← r,s] be an argument built from rules p ← b,q
and q ← r,s with only b ∈ A . Then we have that the premisses of the argument are
Prem(a) = {b,r,s}, the assumptions Asm(a) = {b}, the conclusion Conc(a) = p, the
top-sub-arguments TopSub(a)= {p; p ← b,q; p ← b, [q ← r,s]}, and the sub-arguments
Sub(a) = {b; r; s; q ← r,s}∪TopSub(a). We extend the above notions to sets of argu-
ments in the obvious manner; e.g. for a set of arguments A, Prem(A) =

⋃
a∈A Prem(a).

We denote all arguments in F as Args. An argument a is complete if Prem(a)⊆A .
This is what is usually called an argument for ABA; what we have defined are “potential
arguments”. The reason for the latter being that these are what dispute derivations work
on. Related to this, note that our notion of sub-arguments, differently to what is the
case in ASPIC+, includes all sub-arguments; not only those with the same premisses
as the main argument. Given that statements and rules can be thought of as (potential)
simple arguments we notationally and otherwise will usually not distinguish between
such simple arguments and the statements and rules underlying them.

Attacks in (flat) ABA can be defined between assumption sets, between arguments,
as well as in the form of hybrid attacks between assumptions and arguments. This leads
to equivalent assumption, argument, and hybrid views respectively of the semantics.
Dispute derivations are based on a hybrid view and so we here review this perspective.

Definition 3. The notions of attack we need are:

– An argument a attacks a set of assumptions U ′ if Conc(a) = u′ for a u′ ∈ U ′.
– A set of assumptions U attacks a set of assumptions U ′ if there is a (complete) argu-

ment a with Prem(a) ⊆ U that attacks U ′. In particular, if U ′ = {u′} (i.e. U ′ is a
singleton set with only the assumption u′) we say simply that U attacks u′.

– A set of assumptions U attacks an argument a′ if there is a (complete) argument a
with Prem(a) ⊆ U that attacks Asm(a′).

Definition 4. The definitions of the semantics we mainly consider in this work are:

– A set of assumptions is admissible if it does not attack itself and it attacks all com-
plete arguments that attack it.

– A set of assumptions is complete if it is admissible and contains all assumptions
it defends, where U ⊆ A defends u ∈ A if U attacks all complete arguments that
attack u.

– A set of assumptions is stable if it does not attack itself and attacks all assumptions
it does not contain.

A set of statements S is (credulously) acceptable w.r.t. a semantics σ if there is a σ
assumption set U w.r.t. which S ⊆ Conc(A) for A ⊆ Args with Asm(A) ⊆ U .

Flexible Dispute Derivations for ABA 151

3 Argument-Based Flexible Dispute Derivations

In this section we develop rather abstract (not implementation focused) definitions of
flexible dispute derivations, first of all, following structured dispute derivations [33]
and then graph-based dispute derivations [10] (Sect. 3.2). We call these StFlexDDs and
GrFlexDDs for short. We focus on the common aspects of these, at first sight, rather
different looking versions of dispute derivations by considering how the disputes evolve
in terms of the arguments put forward by the proponent and opponent.

We identify certain shortcomings (inherited from their non-flexible counterparts)
in the manner in which StFlexDDs and GrFlexDDs make use of the arguments con-
structed in previous steps in the disputes. These shortcomings are particularly relevant
for incorporating forward reasoning into dispute derivations, since forward reasoning
builds on established claims. We thus then propose a different form of dispute deriva-
tions which we call simply flexible dispute derivations or FlexDDs for short (Sect. 3.3).
Although from an argument-based perspective FlexDDs seem quite complex, we will
see in Sect. 4 that in fact they lead to an equally natural yet implementation friendly
alternative representation where claims and rules are put forward rather than arguments.

3.1 Argument and Dispute State Expansions

Basic moves both from the proponent and opponent in flexible dispute derivations
involve expansions of arguments which we define as follows:

Definition 5. An expansion of A = {a1, . . . ,an} ⊆ Args w.r.t. an argument a′ ∈ Args
with Conc(a1)∪ . . . ∪ Conc(an) ⊆ Prem(a′) is obtained from a′ by replacing at least
one si ∈ Prem(a′) for which si = Conc(ai) with ai for each 1 ≤ i ≤ n. We denote it
a′

� A. When n = 1, we will often denote the expansion as a′
� a1.

Thus a forward expansion of a set of arguments A w.r.t. R (now taken as a set of 1-step
arguments) is of the form r � A with r ∈ R. A backward expansion of an argument a
w.r.t. R amounts to an expansion of the form a � r with r ∈ R.

Disputes consist of sequences of dispute states which we define simply as tuples
(B,P) where B ⊆ Args are the arguments considered by the opponent and P ⊆ Args
those considered by the proponent. The different types of moves which the proponent
and opponent can make in a dispute amount to “expanding” either B or P . The expan-
sion is by an argument a with i) a = u ∈ A , ii) a = h ← B, iii) a = h ← B � A′ or iv)
a = a′

� h ← B for A′ ⊆ B and a′ ∈ B, or A′ ⊆ P , a′ ∈ P respectively, h ← B ∈ R.
There are several viable options for defining such expansions. These correspond to

differences in how much of the arguments put forward during a dispute is “remem-
bered” and considered in future expansions by the proponent and opponent. The dif-
ferent variants of flexible dispute derivations we consider in this work, i.e. StFlexDDs,
GrFlexDDs, and FlexDDs will differ precisely on the underlying notion of expansion.

152 M. Diller et al.

Table 1. Auxiliary notation for argument-based flexible dispute derivations. All defined w.r.t. a
dispute state (B,P).

Notation Description

D = Asm(P) Defenses

C = {u ∈ A | u ∈ Conc(P)} Culprits

R− = {h ← B ∈ R | B∩C 	= /0} Blocked rules (culprits in bodies)

R∼ = {h ← B ∈R | ({h}∪B)∩(B∪C ∪D) 	= /0} Rules blocked for the proponent (either
inconsistent; otherwise culprits or contraries
of defenses in head or body)

P∗ = {a ∈ P | Prem(a) ⊆ A } Proponents complete arguments

B∗/− = {a ∈ B | Prem(a) ⊆ (A \C)} Opponents complete unblocked arguments

P+ = {a ∈ P \P∗ | ¬∃a′ 	= a ∈
P s.t. Conc(a′) = Conc(a) and a′ ∈ P∗ or a ∈
Sub(a′)}

Maximal incomplete proponent arguments

P#
γ∪C = {a ∈ P+ | Conc(a) ∈ γ ∪C } Maximal incomplete proponent arguments

for goals and contraries of culprits

B
!/−
S = {a ∈ B | Asm(a)∩C = /0,Conc(a) ∈ S} Unblocked arguments with conclusions in

S ⊆ L

A ! = {u ∈ A | u ∈ Asm(B!/−
D

)} Candidates for culprits

I = {u ∈ A \C | u 	∈ Conc(B∗/−)} Assumptions defended at the dispute state

3.2 Argument-Based Flexible Dispute Derivations Following Structured and
Graph-Based Dispute Derivations

Flexible Structured Dispute Derivations. Dispute derivations consist of a sequence of
dispute states which are tuples of the form (B,P) where B ⊆ Args are the opponents
and P ⊆ Args the proponents arguments. Dispute derivations are also defined for a set
of goals γ ⊆L which we assume to be consistent; i.e. γ ∩γ = /0. Note that we consider a
set of goals here rather than a single goal as in previous versions of dispute derivations.

In Table 1 we give definitions of several auxiliary notions needed to define the pos-
sible moves in dispute derivations. These are all defined w.r.t. a dispute state (B,P).

Dispute derivations consist of a sequence of dispute advancements either by the
proponent or the opponent and a termination condition indicating when the dispute has
concluded. Each of the advancements consist of a move by the proponent or opponent,
there being several conceivable “backward” and “forward” moves that accord with ABA
semantics. We give thus a very general definition of dispute advancements including all
such conceivable moves in what follows. The moves can be restricted in several ways to
obtain, together with tailored termination conditions, restricted dispute variants which,
for instance, are sound w.r.t. the admissible, complete, or stable semantics.

For StFlexDDs1 a proponent dispute state advancement from a dispute state (B,P)
is a dispute state (B,P ′) with P ′ =P ∪{a} 	=P , X1 ⊆ A , X2 ⊆ A where either

1 Note that in [10,33] the rules blocked for the proponent and opponent are identical (i.e. R−),
while we use the stronger notion of blocked rules for the proponent R∼.

Flexible Dispute Derivations for ABA 153

P-B-〈A ! ∪X1〉 : i) a = a′
� h ← B for h ← B ∈ R \R∼, a′ ∈ P#

γ∪C ; or

ii) a = h ← B for h ← B ∈ R \R∼ with h ∈ (A ! ∪X1)\D ;
P-F–〈(A ! ∩A)∪X2〉 : i) a = h ← B � A for A ⊆ P∗, h ← B ∈ R \R∼; or

ii) a = u for u ∈ ((A ! ∩A)∪X2)\ ({u}∪C ∪D).

An opponent dispute state advancement from a dispute state (B,P) is a dispute
state (B′,P) with B′ =B∪{a} 	=B, Y1 ⊆ A , and Y2 ⊆ A where either

O-B-〈D ∪Y1〉 : i) a = a′
� h ← B for a′ ∈ B

!/−
D∪Y1

, h ← B ∈ R \R−; or

ii) a = h ← B for a h ← B ∈ R \R− with h ∈ D ∪Y1;
O-F-〈(D ∩A)∪Y2〉 : i) a = h ← B � A for A ⊆ B∗/−, h ← B ∈ R \R−; or

ii) a = u for u ∈ (D ∩A)∪Y2 \C .

Each of the types of moves in disputes, e.g. P-B-〈A ! ∪X1〉 which represents a back-
ward move from the proponent, depend on a parameter, here X1 ⊆ A . When X1 =A ,
the move P-B is “least constrained”. P-B is “most constrained” when X1 = {}. The latter
we denote as P-B-〈A !〉. The least constrained moves give us the most general possi-
ble dispute advancements, which we denote “free style” (DF) dispute advancements.
The most constrained moves gives us dispute advancements which are sound and com-
plete (when L is finite and R is acyclic) for credulous acceptance w.r.t. the admissible
semantics. These, which we denote DAB, follow previous versions of dispute deriva-
tions as in [33] and [10]. The dispute advancements we consider in this work, including
also for complete and stable semantics, are summarised in Table 2. Here e.g. for dispute
advancements of type DAB, the proponent can move in P-B-〈A !〉 manner: both making
P-B-〈A !〉-i or P-B-〈A !〉-ii moves. On the other hand, the proponent can move in P-F-
〈A ! ∩A 〉-ii but not in P-F-〈A ! ∩A 〉-i manner. The dispute advancement types listed
in Table 2 are just a few of the most obvious of several possible combinations. Note
that DAB ⊆ DABF (i.e. DAB moves are DABF moves), DABF ⊆ DC, DABF ⊆ DS,
DC ⊆ DF, and DS ⊆ DF (also, usually �).

Table 2. Dispute advancements with DAB for credulous acceptance w.r.t. the admissible seman-
tics, DABF for credulous acceptance w.r.t. the admissible semantics but including “conservative”
forward moves of the proponent, DC for the complete semantics, DS for the stable semantics,
and DF for “free style”. Columns “Proponent” and “Opponent” represent allowed moves by the
proponent and opponent respectively.

Advancement Proponent Opponent

DAB P-B-〈A !〉, P-F-〈A ! ∩A 〉-ii O-B-〈D〉, O-F-〈D ∩A 〉-ii
DABF P-B-〈A !〉, P-F-〈A ! ∩A 〉 O-B-〈D〉, O-F-〈D ∩A 〉-ii
DC P-B-〈A !〉, P-F-〈(A ! ∩A)∪I 〉 O-B-〈D ∪I 〉, O-F-〈(D ∪I)∩A 〉-ii
DS P-B-〈A !〉, P-F-〈A 〉 O-B-〈D〉, O-F-〈D ∩A 〉-ii
DF P-B-〈A 〉, P-F-〈A 〉 O-B-〈A 〉, O-F-〈A 〉

154 M. Diller et al.

Table 3. Termination conditions. TA for admissible, TC for complete, and TS for stable.

Cond. Proponent winning Opponent cannot move Proponent cannot move

TA γ ∪C ⊆ Conc(P∗),
B

!/−
D

∩B∗/− = /0

O-B-〈D〉 +
O-F-〈D ∩A 〉-ii or
O-F-〈A 〉

P-B-〈A !〉 +
P-F-〈A ! ∩A 〉-ii or
P-F-〈A 〉

TC γ ∪C ⊆ Conc(P∗),
B

!/−
D

∩B∗/− = /0,
I \D = /0

O-B-〈D〉 +
O-F-〈D ∩A 〉-ii or
O-F-〈A 〉

P-B-〈A !〉 +
P-F-〈(A ! ∩A)∪I 〉 or
P-F-〈A 〉

TS γ ∪C ⊆ Conc(P∗),
B

!/−
D

∩B∗/− = /0,
D ∪C =A

O-B-〈D〉 +
O-F-〈D ∩A 〉-ii or
O-F-〈A 〉

P-B-〈A !〉 + P-F-〈A 〉

The termination conditions we consider in this work are summarised in Table 3.
There is, first of all, a condition that has to be satisfied at a dispute state (B,P) for
the proponent to be winning. This is in the column “Proponent winning”. Then the
proponent wins if this condition is satisfied and the opponent cannot move in either
of the two possible combinations of moves in the column “Opponent cannot move”.
The opponent wins if the “Proponent winning” condition is not satisfied and the pro-
ponent cannot move in either of the two possible combinations of moves in the column
“Proponent moves”. So, for the termination condition for the admissible semantics TA,

we have that the proponent wins if γ ∪C ⊆ Conc(P∗), B!/−
D

∩B∗/− = /0 and the

opponent cannot advance further either in DAB manner: O-B-〈D〉+O-F-〈D ∩A 〉-ii;
or in forwards DF manner: O-F-〈A 〉. The opponent wins if γ ∪C \ Conc(P∗) 	= /0 or

B
!/−
D

∩B∗/− 	= /0 and the proponent cannot advance further either in DAB manner:

P-B-〈A !〉+P-F-〈A ! ∩A 〉-ii or in forwards DF manner: P-F-〈A 〉.
A dispute derivation variant then depends on allowed moves M and termination cri-

teria C. For simplicity we allow that termination criteria make reference to moves which
may not be allowed at a specific dispute variant; i.e. although moves are restricted these
are all conceived as subsets of dispute variants where advancements are as in DF and
hence checking for DF moves (and any other subset) is possible. As already indicated,
dispute variants are defined for a set of goals γ ⊆ L (s.t. γ ∩ γ = /0). They consist of
a sequence of dispute states starting at ({},γ). At each step the last dispute state is
selected and advanced either according to the proponent or opponent and the allowed
moves M. The dispute derivation ends at a dispute state satisfying the termination cri-
teria C.

Example 1. Consider the ABA framework from Example 6.2 in [33] with A = {a,b,c,
d, e, f }, where a = q, b = f , c = u, d = v, e = v, f = v. Also:

R = {p ← a,u; q ← b,r; q ← c,s; q ← c, t; u ← a; s ←; t ← d; t ← e}.

A DAB+TA StFlexDD following the structured dispute derivation of Fig. 7 in [33]
is shown in Table 4. Note first of all, that in order to follow structured dispute deriva-
tions as in [33] the opponent must, for every statement that it (backward-) expands

Flexible Dispute Derivations for ABA 155

Table 4. A DAB+TA StFlexDD for Example 1. Labels −, ∗, #, ! are used to distinguish blocked,
complete, maximal incomplete, and opposing arguments respectively. Only complete and maxi-
mal incomplete arguments for goals and contraries of culprits of the proponent are shown. The
dispute derivation ends with the opponent not being able to advance further in O-B-〈D〉+O-F-
〈D ∩A 〉-ii manner.

Step and move type P B (γ ∪C)\Conc(P ∗) D C

0 {# p} {} {p} {} {}
1 (P-B-i, p ← a,u) {# p ← a,u} {} {p} {a} {}
2 (O-B-ii, q ← b,r) {# p ← a,u} {!q ← b,r} {p} {a} {}
3 (O-B-ii, q ← c,s) {# p ← a,u} {!q ← b,r; !q ← c,s} {p} {a} {}
4 (O-B-ii, q ← c, t) {# p ← a,u} {!q ← b,r; !q ← c,s; !q ← c, t} {p} {a} {}
5 (P-B-ii, u ← a) {# p ← a,u; ∗u ← a} {!q ← b,r; −!q ← c,s;

−!q ← c, t}
{p} {a} {c}

6 (P-B-i, u ← a) {∗u ← a; ∗ p ← a, [u ← a]} {!q ← b,r; −!q ← c,s;
−!q ← c, t}

{} {a} {c}

7 (P-F-ii, f) {∗u ← a; ∗ p ← a, [u ← a]; ∗ f } {−!q ← b,r; −!q ← c,s;
−!q ← c, t}

{} {a, f } {b,c}

Table 5. A DF+TA StFlexDD for Example 2. Only complete and maximal incomplete arguments
of the proponent are shown. The dispute derivation ends with the opponent not being able to
advance further in O-F-〈A 〉 manner.

Step and move type P B (γ ∪C)\Conc(P∗) D C

0 { # p } {} {p} {} {b,c}
1 (P-B-i, p ← a) { ∗ p ← a } {} {} {a} {b,c}
2 (O-F-ii, a) { ∗ p ← a } {∗a} {} {a} {b,c}
3 (O-F-i, p ← a) { ∗ p ← a } { ∗a; ∗ p ← a } {} {a} {b,c}

on (e.g. q in the example in steps 2–4), expand the statement with every non-blocked
rule. This is not necessary in StFlexDDs. Secondly, note that structured dispute deriva-
tions from [33] include a tracking mechanism whereby arguments that are not neces-
sary for further evolution of the dispute derivation are discarded. As we strive for a
general definition which allows us to consider several manners of expanding the oppo-
nents and proponents argument we do not do this here. For a direct implementation
of StFlexDDs one could e.g. only store complete and maximal incomplete arguments
of the proponent; also, one could remove arguments from the opponent which have
been fully backward expanded. In fact, to simplify the example, we do not show all the
proponents arguments in Table 4.

Nevertheless, we note in the dispute derivation from Table 4 redundancy in the
moves. In particular, u ← a is used twice by the proponent and it is only the second use
that makes c a culprit. The reason is that following [33] the proponent is only “aware”
of its arguments, but not of their internal structure.

Example 2. Consider the ABA framework with A = {a,b,c}, where a= t, b= p,c= p;
and

R = {p ← a; t ← b; t ← c; t ← u; u ← v; v ← u}.

156 M. Diller et al.

A DF+TA StFlexDD (which also satisfies TC and TS) is shown in Table 5. Note that
any DAB+TA dispute derivation for the same example will not terminate because of
the circularity in the rules u ← v and v ← u. Even when replacing these circular rules
with a very long chain of rules starting at t ← u and ending e.g. with a rule with one
of b or c in the body, one gets a much shorter dispute derivation using forward moves.
Note nevertheless again here the redundancy in particular in the need for the opponent
to essentially repeat the moves by the proponent.

For flexible dispute derivations following structured dispute derivations and the
variants we consider in this section we have the following results generalising the results
for structured dispute derivations (for credulous reasoning w.r.t. the admissible seman-
tics; i.e. DAB+TA in our context) from [33] in our more flexible setting:

Theorem 1. DF+{TA,TC,TS} StFlexDDs are sound for the admissible, complete, and
stable semantics respectively. This means e.g. for DF+TA that if there is a DF+TA
StFlexDD ending with a dispute state (B,P) and the proponent as winner, then D is
an admissible assumption set w.r.t. which γ is acceptable.

Corollary 1. {DAB,DABF,DC,DS}+{TA,TC,TS} StFlexDDs are sound for the
admissible, complete, and stable semantics respectively.

Theorem 2. If L is finite and R is acyclic, DAB+ TA StFlexDDs are complete for
credulous acceptance w.r.t. the admissible semantics. I.e. if γ is acceptable for some
admissible assumption set, then there is a DAB+TA StFlexDD ending with a dispute
state (B,P) and the proponent as winner, s.t. D is an admissible assumption set w.r.t.
which γ is acceptable. Moreover, DC+TC StFlexDDs are complete for the complete
semantics and DS+TS StFlexDDs are complete for the stable semantics. E.g. for the
complete semantics: if γ is acceptable for some complete assumption set U, then there is
a DC+TC StFlexDD ending with a dispute state (B,P) and the proponent as winner,
s.t. D = U. Finally, {DC,DS,DF}+ TA StFlexDDs are complete for the admissible
semantics.

Corollary 2. If L is finite and R is acyclic, {DABF,DC,DS,DF}+TA StFlexDDs are
complete for credulous acceptance w.r.t. the admissible semantics. Also, DF + TC
StFlexDDs are complete for the complete semantics and DF+TS StFlexDDs are com-
plete for the stable semantics.

Flexible Graph-Based Dispute Derivations. We only need to change the notion of
expansion of the opponents, respectively proponents arguments in the definition of dis-
pute advancements to get GrFlexDDs. Specifically, we need the following notions:

Definition 6. Let A ⊆ Args and a ∈ Args. Then A�{a} is the rule minimal (also called
non bloated in [10]) closure of A∪{a} under sub-arguments and argument expansions.
Here, first of all, A′ ⊆ Args is closed under sub-arguments if A′ = Sub(A′). Moreover, A′
is closed under expansions if a′ = a′′

�A′′ for some a′′ ∈ A′, A′′ ⊆ A′, then also a′ ∈ A′.
Also, A′ is rule minimal if there are no h ← B,h′ ← B′ ∈ Sub(A′) s.t. h = h′ but B 	= B′.
Then, assuming A is closed under sub-arguments, closed under argument expansions,

Flexible Dispute Derivations for ABA 157

Table 6. A DAB+TA GrFlexDD for Example 3 (ABA framework from Example 1). Only max-
imal arguments of the proponent (for goals and contraries of culprits) and the opponent (for
contraries of defenses) are shown. The dispute derivation ends with the opponent not being able
to advance further in O-B-〈D〉+O-F-〈D ∩A 〉-ii manner.

Step and move type P B γ ∪C \Conc(P ∗) D C

0 { # p } {} {p} {} {}
1 (P-B-i, p ← a,u) {# p ← a,u } {} {p,u} {a} {c}
2 (O-B-ii, q ← b,r) { # p ← a,u } { !q ← b,r } {p,u} {a} {c}
3 (P-B-i, u ← a) {∗u ← a; ∗ p ← a, [u ← a]

}
{ !q ← b,r } {} {a} {c}

4 (P-F-ii, f) {∗u ← a; ∗ p ← a, [u ← a];
∗ f }

{−!q ← b,r } {} {a, f} {b,c}

and rule minimal, A � {a} is the closure under sub-arguments and argument expan-
sions of A ∪{a} if this closure is also rule minimal, while otherwise A � {a} = A (i.e.
expansions which bloat the argument set are disallowed).

On the other hand, A : {a} is the argument rule minimal union of A and a. Here
A′ ⊆ Args is argument rule minimal if for each a′ ∈ A′, {a′} is rule minimal (such
an a′ is also called non-flabby in [10]). Then, assuming A is argument rule minimal,
A : {a} = A ∪{a} if A ∪{a} is argument rule minimal, while otherwise A : {a} = A
(i.e. a must be rule minimal, aka non-flabby).

In GrFlexDDs a proponent dispute state advancement from a dispute state (B,P)
is a dispute state (B,P ′) with P ′ = P � {a} 	= P , X1 ⊆ A , X2 ⊆ A with P-B-
〈A ! ∪ X1〉 and P-F–〈(A ! ∩A)∪ X2〉 moves defined as before. An opponent dispute
state advancement from a dispute state (B,P) is a dispute state (B′,P) with B′ =
B : {a} 	=B, Y1 ⊆A , and Y2 ⊆A with O-B-〈D ∪Y1〉 and O-F-〈(D ∩A)∪Y2〉 moves
defined as previously.

Example 3. Consider again the ABA framework from Example 1. To compare, a
DAB+TA GrFlexDD following more or less that in Table 4 is shown in Table 6. Note
that here c becomes a culprit already at step 1, while in the DAB+TA StFlexDD of
Table 4 this happens at step 5 (since only then is there an argument in P with conclu-
sion c = u). Also, u ← a only needs to be used once by the proponent, while in the
dispute derivation of Table 4 this occurs twice. In the end the dispute becomes shorter
by 3 steps.

Example 4. Consider a slightly more complex version of the ABA framework from
Example 16 in [10] with A = {a,b,c,d}, where a = t, b = r, c = t, d = c. Also:

R = {p ← q; q ← a; r ← p; t ← b; t ← p,s; t ← q,u,d}.

A DAB+TA GrFlexDD based on the graph-based dispute derivation of Table 8 in [10]
(the first 4 steps correspond to the whole dispute derivation in [10], except that here
t ← b is invoked by the opponent rather than simply b) is shown in Table 7. Note
the redundancy in steps 6–7 of the opponent where the argument p ← [q ← a] is con-
structed again. Also q ← a is used in step 7 and then again in step 9.

158 M. Diller et al.

Table 7. A DAB+TA GrFlexDD for Example 4. Only maximal arguments of the proponent (for
goals and contraries of culprits) and the opponent (for contraries of defenses) are shown. The
dispute derivation ends with the opponent not being able to advance further in O-B-〈D〉+O-F-
〈D ∩A 〉-ii manner.

Step and move type P B γ ∪C \Conc(P ∗) D C

0 { # p } {} {p} {} {}
1 (P-B-i, p ← q) { # p ← q } {} {p} {} {}
2 (P-B-i, q ← a) { ∗ p ← [q ← a] } {} {} {a} {}
3 (O-B-ii, t ← b) { ∗ p ← [q ← a] } { ∗!t ← b } {} {a} {}
4 (P-B-ii, r ← p) {∗ p ← [q ← a];

∗r ← [p ← [q ← a]] }
{ −∗!t ← b } {} {a} {b}

5 (O-B-ii, t ← p,s) {∗ p ← [q ← a];
∗r ← [p ← [q ← a]] }

{−∗!t ← b; !t ← p,s } {} {a} {b}

6 (O-B-i, p ← q) {∗ p ← [q ← a];
∗r ← [p ← [q ← a]] }

{−∗!t ← b; !t ← [p ← q],s
}

{} {a} {b}

7 (O-B-i, q ← a) {∗ p ← [q ← a];
∗r ← [p ← [q ← a]] }

{−∗!t ← b;
!t ← [p ← [q ← a]],s}

{} {a} {b}

8 (O-B-ii, t ← q,u,d) {∗ p ← [q ← a];
∗r ← [p ← [q ← a]] }

{−∗!t ← b;
!t ← [p ← [q ← a]],s;
!t ← q,u,d }

{} {a} {b}

9 (O-B-ii, q ← a) {∗ p ← [q ← a];
∗r ← [p ← [q ← a]] }

{−∗!t ← b;
!t ← [p ← [q ← a]],s;
!t ← [q ← a],u,d }

{} {a} {b}

We again obtain soundness and completeness results generalising the results for
graph-based dispute derivations (for credulous reasoning) from [10]:

Theorem 3. DF+ {TA,TC,TS} GrFlexDDs are sound for the admissible, complete,
and stable semantics respectively.

Corollary 3. {DAB,DABF,DC,DS}+{TA,TC,TS} GrFlexDDs are sound for the
admissible, complete, and stable semantics respectively.

Theorem 4. If L is finite DAB+ TA GrFlexDDs are complete for credulous accep-
tance w.r.t. the admissible semantics. Moreover, DC+TC GrFlexDDs are complete for
the complete semantics and DS+TS GrFlexDDs are complete for the stable semantics.
Finally, {DC,DS,DF}+TA GrFlexDDs are complete for the admissible semantics.

Corollary 4. If L is finite, {DABF,DC,DS,DF}+ TA GrFlexDDs are complete for
credulous acceptance w.r.t. the admissible semantics. Also, DF+ TC GrFlexDDs are
complete for the complete semantics and DF+ TS GrFlexDDs are complete for the
stable semantics.

3.3 Flexible Dispute Derivations

In the previous section we presented definitions of argument-based flexible variants
of structured and graph-based dispute derivations. The objective was, first of all, to
give a general definition showing the common aspects between the, at the first sight,

Flexible Dispute Derivations for ABA 159

different looking forms of dispute derivations while also incorporating flexibility in the
order and types of moves allowed. At the same time, our definition allows to make
clear the differences between structured and graph-based dispute derivations (and their
flexible variants) in terms of how much of the arguments put forward during a dispute
is stored and made use of in later steps of the dispute. We have seen that in this regard
GrFlexDDs, while improving on StFlexDDs, still have some redundancy in that, firstly,
the opponent does not make use of the proponents arguments when putting forward its
own arguments. Also, there is redundancy in the moves of the opponent w.r.t. previous
moves of itself (see in particular Example 4). These issues become especially pressing
in the context of dispute derivations with forward moves as forward reasoning, more
than backward reasoning, relies on previous moves.

We now propose FlexDDs to remedy the above mentioned issues. Again, we only
need to change the definition of expansions of the opponents and proponents arguments
in dispute advancements. Once more, we first need a definition:

Definition 7. Let A ⊆ Args, a ∈ Args. Then A �� {a} is the closure of A ∪ {a} under
sub-arguments and argument expansions.

Thus A �� {a} is a more relaxed version of A�{a} used in the definition of GrFlexDDs
for the proponents dispute advancements.

In FlexDDs a proponent dispute state advancement from a dispute state (B,P) is
a dispute state (B′,P ′) with P ′ =P �{a} 	=P , B′ =B �� {a}, X1 ⊆ A , X2 ⊆ A

with P-B-〈A ! ∪ X1〉 and P-F–〈(A ! ∩A)∪ X2〉 moves defined as before. An opponent
dispute state advancement from a dispute state (B,P) is a dispute state (B′,P) with
B′ = B �� {a} 	= B, Y1 ⊆ A , Y2 ⊆ A with O-B-〈D ∪Y1〉 and O-F-〈(D ∩A)∪Y2〉
moves defined as previously. So, main changes w.r.t. GrFlexDDs are that the proponents
moves also have an effect on the opponents arguments. Also, B′ = B �� {a} rather
than B′ =B : {a} is used for updating the opponents arguments. We thus, first of all,
follow [10] in restricting the set of arguments of the proponent to be rule minimal. This
has been argued for convincingly in [10] for both conceptual reasons (why have more
than one justification line for a claim?) as well as computational reasons (guarantees
completeness of disputes when L is finite even if R contains cycles).

In [10] then the authors have also argued for the opponents arguments to be rule
minimal partly again for conceptual reasons but even more so for computational rea-
sons. Regarding the conceptual arguments of the authors, we note that, in any case, all
possible rule minimal arguments attacking the defenses of the proponent need to be
considered in dispute derivations. Thus the opponents arguments are not globally rule
minimal (as the proponents are). Regarding the computational reasons, while it is true
that restricting attention to the arguments of the opponent that are rule minimal guar-
antees completeness also if R contains cycles (assuming L is finite), we will show
that this is not necessary. In fact, treatment of the proponents and opponents expan-
sions in an (almost) symmetric way leads to a definition of dispute derivations which
avoids some of the remaining redundancy in moves of GrFlexDDs while staying com-
plete when L is finite and R contains cycles. Moreover, as we will show in Sect. 4,
our definition of FlexDDs leads naturally to an implementation where all arguments in
dispute derivations are represented as a graph rather than only the proponents as in the
implementation of [10].

160 M. Diller et al.

Table 8. A DAB+TA FlexDD for Example 5 (ABA framework from Example 4). Here $ labels
arguments which are held by the proponent as well as the opponent. Only complete and maximal
arguments for goals and contraries of culprits as well as maximal arguments for contraries of
defenses are shown. The dispute derivation ends with the opponent not being able to advance
further in O-B-〈D〉+O-F-〈D ∩A 〉-ii manner.

Step and move type B γ ∪C \Conc(P∗) D C

0 { #$ p } {p} {} {}
1 (P-B-i, p ← q) { #$ p ← q } {p} {} {}
2 (P-B-i, q ← a) { ∗$ p ← [q ← a] } {} {a} {}
3 (O-B-ii, t ← b) { ∗$ p ← [q ← a]; ∗!t ← b } {} {a} {}
4 (P-B-ii, r ← p) { ∗$ p ← [q ← a]; ∗$r ← [p ← [q ← a]];

−∗!t ← b }
{} {a} {b}

5 (O-B-ii, t ← p,s) { ∗$ p ← [q ← a]; ∗$r ← [p ← [q ← a]];
−∗!t ← b; !t ← [p ← [q ← a]],s }

{} {a} {b}

6 (O-B-ii, t ← q,u,d) { ∗$ p ← [q ← a]; ∗$r ← [p ← [q ← a]];
−∗!t ← b; !t ← [p ← [q ← a]],s;
!t ← [q ← a],u,d }

{} {a} {b}

Example 5. Consider again the ABA framework from Example 4. A DAB + TA
FlexDD following more or less the DAB+TA GrFlexDD from Table 7 is shown in
Table 8. Note that here the steps 5–7 from Table 7 are performed in one step: step 5.
Also, steps 8–9 from Table 7 are completed in step 6. A DC+TC (and DS+TS) FlexDD
for the same example is shown in Table 9.

For FlexDDs we have the following results:

Theorem 5. DF+{TA,TC,TS} FlexDDs are sound for the admissible, complete, and
stable semantics respectively.

Corollary 5. {DAB,DABF,DC,DS}+{TA,TC,TS} FlexDDs are sound for the admis-
sible, complete, and stable semantics respectively.

Lemma 1. If L is finite, the number of possible DF and
hence also {DAB,DABF,DC,DS} moves of the proponent and opponent in FlexDDs
is also finite.

Proof. We give the proof for the opponent. For the proponent it is analogous. Note first
that the opponents moves involve adding an assumption (O-F-〈A 〉-ii) or a rule to B (O-
B-〈A 〉-ii), or expanding arguments backwards or forwards (O-B-〈A 〉-i or O-F-〈A 〉-i)
w.r.t. some rule. Now, once an assumption is put in B it cannot be added again by the
requirement B′ = B �� {a} 	= B. Also, if some rule r is used in one step (either by
adding it to B or expanding some argument w.r.t. it, which means by closure under
sub-arguments that then also r is in B′), then r cannot be used in any other step. For O-
B-〈A 〉-ii this is clear by the requirement B′ =B �� {a} 	=B. For O-B-〈A 〉-i note that
if a′ ∈ B and h ← B ∈ B then a′

� h ← B is also already in B because B is required
to be closed by argument expansions. Analogously for O-F-〈A 〉-i moves.

Flexible Dispute Derivations for ABA 161

Table 9. A DC+TC (and DS+TS) FlexDD for Example 5 (ABA framework from Example 4).
Only complete and maximal arguments for goals and contraries of culprits as well as maximal
arguments for contraries of defenses are shown. The dispute derivation ends with the opponent
not being able to advance further in O-F-〈A 〉 manner.

Step and move type B γ ∪C \Conc(P∗) D C I \D
0 { #$ p } {p} {} {} {a,b,c,d}
1 (P-B-i, p ← q) { #$ p ← q } {p} {} {} {a,b,c,d}
2 (P-B-i, q ← a) { ∗$ p ← [q ← a] } {} {a} {} {b,c,d}
3 (O-B-ii, t ← b) { ∗$ p ← [q ← a]; ∗!t ← b } {} {a} {} {b,d}
4 (P-B-ii \ P-F-i, r ← p) {∗$ p ← [q ← a];

∗$r ← [p ← [q ← a]];
−∗!t ← b}

{} {a} {b} {c,d}

5 (P-F-ii, c) {∗$ p ← [q ← a];
∗$r ← [p ← [q ← a]];
−∗!t ← b; ∗$c}

{} {a,c} {b,d} {}

Theorem 6. If L is finite DAB+TA FlexDDs are complete for credulous acceptance
w.r.t. the admissible semantics. Moreover, DC+TC FlexDDs are complete for the com-
plete semantics and DS+TS FlexDDs are complete for the stable semantics. Finally,
{DC,DS,DF}+TA FlexDDs are complete for the admissible semantics.

Corollary 6. If L is finite, {DABF,DC,DS,DF}+TA FlexDDs are complete for cred-
ulous acceptance w.r.t. the admissible semantics. Also, DF+TC FlexDDs are complete
for the complete semantics and DF+TS FlexDDs are complete for the stable semantics.

4 Rule-Based Flexible Dispute Derivations

Rule-based flexible dispute derivations, or RlFlexDDs for short, provide an alternative
representation and implementation of FlexDDs. Relying on the observation contained
in the proof of Lemma 1 (on which Theorem 6 depends), in RlFlexDDs the proponent
and opponent put forward claims and rules rather than arguments. Moreover, they make
use of the underlying (labelled) graph of the dependencies between statements and rules
put forward by the proponent and opponent during a dispute. RlFlexDDs thus generalise
the work of [10] which implements DAB+TA GrFlexDD disputes. As we have already
indicated, in the dispute derivations of [10] the proponents arguments are represented
as graph, while the opponents are not. Also, the opponent does not make use of the
proponents arguments.

So, in RlFlexDDs a dispute state for a set of goals γ ⊆ L (s.t. γ ∩ γ = /0) is a tuple
(B,P) where B ⊆ (L ∪R), and P ⊆ B. To define rule-based dispute advancements we
define the auxiliary notation in Table 10; in large part encoding the analogous notions
from Sect. 3.3 in the rule setting. Concretely, we have that e.g. s ∈ P

∗ ∩L iff there is
a complete argument for s using rules in P. Also, s ∈ B

∗/− ∩L iff there is a complete
argument for s using rules in B that does not use any culprit. On the other hand, s ∈ B

− ∩
L implies first of all that all arguments for s using non-blocked (i.e. without culprits in

162 M. Diller et al.

bodies) rules use rules only in B. Also, that all such arguments (using rules only in B)
which are complete are blocked (i.e. make use of some culprit). As a consequence then,

s ∈ B
!/−
S ∩L if s is used in an argument for some s′ ∈ S (with S ⊆ L) and the latter

two conditions (for s ∈ B
−) do not hold.

Table 10. Auxiliary notation for rule-based flexible dispute derivations. All notions w.r.t. a dispute
state (B,P).

Notation Description

D = P∩A Defenses

C = {u ∈ A | u ∈ P} Culprits

JB =R \B Remaining rules for the opponent

JP =R \P Remaining rules for the proponent

J −
B

= {h ← B ∈ JB | B∩C 	= /0} Blocked remaining rules

J ∼
P

= {h ← B ∈ JP |
({h}∪B)∩ (B∪C ∪D) 	= /0}

Remaining rules blocked for the
proponent

(P∩L)↓ = {s ∈ P∩L | ¬∃h ← B ∈ P with h= s} Played unexpanded statements of the
proponent

(B∩L)↑↑ = {s ∈ (B∩L) | ¬∃h ← B ∈
(JB \J −

B
) with h = s}

Played fully expanded statements

B
− = (B∩C)∪{s ∈ (B∩L)↑↑ \A | ¬∃h ←

B ∈ (B∩R)\B
− with h = s}∪{h ← B ∈ B∩R |

B∩B
− 	= /0}

Played blocked pieces

P
∗ = (P∩A)∪{h ← B ∈ (P∩R) | B ⊆ P

∗}∪{s ∈
(P∩ (L \A)) | ∃h ← B ∈ P

∗ with h = s}
Complete played pieces of the
proponent

B
∗/− = (B∩ (A \C))∪{h ← B ∈ (B\B

−)∩R |
B ⊆ B

∗/−}∪{s ∈ (B\B
−)∩ (L \A) | ∃h ←

B ∈ B
∗/− with h = s}

Unblocked complete played pieces of
the opponent

B
!/−
S = ((B\B

−)∩S)∪{s ∈ (B\B
−)∩L |

∃h ← B ∈ B
!/−
S ∩R with s ∈ B}∪{h ← B ∈

(B\B
−)∩R | h ∈ B

!/−
S }

Unblocked pieces supporting
statements in S ⊆ L

A ! =A ∩B
!/−
D

Candidates for culprits

I = {u ∈ A \C | u 	∈ B
∗/−} Currently defended assumptions

Note that B
− and P

∗ are monotonic; i.e. once some element is in the set they remain
in the set. This means these sets can be computed incrementally as the dispute evolves.

On the other hand, B
∗/−, and B

!/−
S are not monotonic; but once some element becomes

blocked (is in B
−) it cannot be in either B

∗/− or B
!/−
S anymore. This means as elements

become blocked, they do not need to be considered for computation of B
∗/− and B

!/−
S .

Flexible Dispute Derivations for ABA 163

Now to the definition of dispute advancements for RlFlexDDs. First of all, a pro-
ponent dispute state advancement from a dispute state (B,P) is a dispute state (B′,P′)
with P

′ = P∪T , B
′ = B∪T , X1 ⊆ A , and X2 ⊆ A where either

P-B-〈A ! ∪X1〉 : i) T = {h ← B}∪B for h ← B ∈ JP \J ∼
P

with h ∈ (P∩L)↓;
or
ii) T = {h}∪{h ← B}∪B for h ← B ∈ JP \J ∼

P
with h ∈

(A ! ∪X1)\ (P∪D);
P-F–〈(A ! ∩A)∪X2〉 : i) T = {h}∪{h ← B} with h ← B ∈ JP \J ∼

P
with h 	∈ P or

h ∈ (P∩L)↓, b ∈ P
∗ for each b ∈ B; or

ii) T = {u} for u ∈ ((A ! ∩A)∪X2)\ (P∪{u}∪C ∪D}).

An opponent dispute state advancement from a dispute state (B,P) is a dispute state
(B′,P) with B

′ = B∪T , Y1 ⊆ A , and Y2 ⊆ A where either

O-B-〈D ∪Y1〉 : i) T = {h ← B}∪B for h ← B ∈ JB \J −
B

with h ∈ B
!/−
D∪Y1

∩L ;

or
ii) T = ({h}∪{h ← B}∪B) for a h ← B ∈ JB \J −

B
with h ∈

D ∪Y1;
O-F-〈(D ∩A)∪Y2〉 : i) T = {h}∪{h ← B} for h ← B ∈ JB \J −

B
with b ∈ B

∗/− for
each b ∈ B; or
ii) T = {u} for u ∈ ((D ∩A)∪Y2)\ (A ∩B).

Different types of dispute advancements for RlFlexDDs are defined as for
StFlexDDs, GrFlexDDs, and FlexDDs (i.e., with some abuse of notation, as in Table 2).
Only for the termination conditions the definition needs to change slightly (concretely,
the notion of “proponent winning”) to reflect the change in notation. See Table 11.

Table 11. Termination conditions for RlFlexDDs. TA for admissible, TC for complete, and TS
for stable.

Cond. Proponent winning Opponent cannot move Proponent cannot move

TA γ ∪C ⊆ P∗,
(D ∩B

∗/−) = /0
O-B-〈D〉 +
O-F-〈D ∩A 〉-ii or
O-F-〈A 〉

P-B-〈A !〉 +
P-F-〈A ! ∩A 〉-ii or
P-F-〈A 〉

TC γ ∪C ⊆ P∗,
(D ∩B

∗/−) = /0, I \D = /0
O-B-〈D〉 +
O-F-〈D ∩A 〉-ii or
O-F-〈A 〉

P-B-〈A !〉 +
P-F-〈(A ! ∩A)∪I 〉 or
P-F-〈A 〉

TS γ ∪C ⊆ P∗,
(D ∩B

∗/−) = /0,
D ∪C =A

O-B-〈D〉 +
O-F-〈D ∩A 〉-ii or
O-F-〈A 〉

P-B-〈A !〉 + P-F-〈A 〉

164 M. Diller et al.

Table 12. A DC+TC (and DS+TS) RlFlexDD for Example 6 (ABA framework from Exam-
ple 4). Label − represents played blocked pieces, label ∗ complete played pieces, label “ unex-
panded statements of the proponent, label ∧ fully expanded statements (non assumptions), and
label ! represents opposing pieces. The dispute derivation ends with the opponent not being able
to advance further in O-F-〈A 〉 manner.

Step and move type B γ ∪C \P
∗ D C I \D

0 { “$ p } {p} {} {} {a,b,c,d}
1 (P-B-i, p ← q) { ∧$ p; “$q; $ p ← q } {p} {} {} {a,b,c,d}
2 (P-B-i, q ← a) { ∗∗$a; ∗∗∧$ p; ∗∗∧$q; ∗∗$ p ← q;

∗∗$q ← a }
{} {a} {} {b,c,d}

3 (O-B-ii, t ← b) { ∗∗$a; ∗!b; ∗∗∧$ p; ∗∗∧$q; ∗!t;
∗∗$ p ← q; ∗∗$q ← a; ∗t ← b }

{} {a} {} {b,d}

4 (P-B-ii \ P-F-i, r ← p) { ∗∗$a; −∗!b; ∗∗∧$ p; ∗∗∧$q; ∗∗∧$r;
∗!t; ∗∗$ p ← q; ∗∗$q ← a;
−∗t ← b; ∗∗$r ← p }

{} {a} {b} {c,d}

5 (P-F-ii, c) { ∗∗$a; −∗!b; ∗∗$c; ∗∗∧$ p; ∗∗∧$q;
∗∗∧$r; ∗!t; ∗∗$ p ← q; ∗∗$q ← a;
−∗t ← b; ∗∗$r ← p }

{} {a,c} {b,d} {}

Example 6. Consider again the ABA framework from Examples 4 and 5. A DC+TC
(and DS+TS) RlFlexDD following the DC+TC FlexDD from Table 9 is in Table 12.

Based on the results for FlexDDs from Sect. 3.3 and the fact that RlFlexDDs essen-
tially implement FlexDDs we obtain the following results for RlFlexDDs:

Corollary 7. {DAB,DABF,DC,DS,DF}+{TA,TC,TS} RlFlexDDs are sound for the
admissible, complete, and stable semantics respectively.

Corollary 8. If L is finite {DAB,DABF,DC,DS,DF}+TA RlFlexDDs are complete
for credulous acceptance w.r.t. the admissible semantics. Moreover, {DC,DF}+ TC
RlFlexDDs are complete for the complete semantics and {DS,DF}+TS RlFlexDDs are
complete for the stable semantics. Finally, {DC,DS,DF}+TA RlFlexDDs are complete
for the admissible semantics.

5 Implementation

We have implemented an interactive reasoner, aba-dd-rule-based, for all variants
of RlFlexDDs considered in this work. At the moment the system is conceived mainly
for didactic and research purposes. The code is freely available2. The system allows for
choosing a combination of dispute advancement type and termination criteria and then
guiding the user through an RlFlexDD of that nature (advancement types and termina-
tion criteria can also be changed on the fly). At each step the user can choose which
move to make from the list of allowed moves provided by the system. See Fig. 1 for a
screenshot of the interface for step 4 of the RlFlexDD from Table 12. Limited automa-
tisation is also possible in that the user can choose that the system move forward a

2 https://github.com/gorczyca/aba-dd-rule-based.

https://github.com/gorczyca/aba-dd-rule-based

Flexible Dispute Derivations for ABA 165

Fig. 1. Interface of aba-dd-rule-based at step 4 of the RlFlexDD from Table 12

Fig. 2. Graphical output of aba-dd-rule-based at step 5 (end state) of the RlFlexDD from
Table 12. Here green nodes represents the proponents pieces. The goal is in blue. Yellow is for
the opponents pieces, while those in orange are blocked. Red is for culprits. Grey nodes represent
remaining rules which are blocked but whose heads have been made use of in the dispute. Black
arrows represent support, while red ones denote attacks. (Color figure online)

random number of steps (of some type) and the system can also backtrack a number
of steps. The system can also produce a graphical representation of the statements and
rules put forward during the dispute until that point. See Fig. 2 for the graphical output
of aba-dd-rule-based at step 5 (end state) of the RlFlexDD from Table 12. We refer
to the webpage for many other features of aba-dd-rule-based as well as larger and
more realistic examples on which to experiment with RlFlexDDs.

6 Conclusions and Future Work

We have defined a variant of dispute derivations which allows for forward in addition to
backward reasoning and thus for computing admissible, complete, and stable assump-
tion sets in addition to reasoning about credulous acceptance of statements. We have
given an abstract argument-based definition of such dispute derivations which we have
derived from similarly abstract representations of flexible variants of dispute deriva-
tions from [10,33]. We have then provided a more implementation focused rule-based
definition. For this version we also implemented an interactive system. Ultimately, we
have generalised graph-based dispute derivations from [10] on two fronts: incorporat-
ing forward reasoning, as well as in that both the proponents and opponents arguments

166 M. Diller et al.

are represented in a shared graph rather than only the proponents arguments being rep-
resented in a graph.

While the most immediate benefits of dispute derivations lie in the domain of inter-
active reasoning, investigating to what extent some of the variants of dispute derivations
we have defined in this work can be turned into fully automated reasoning procedures
(even if only to support interactive reasoning) is of interest. In particular, DABF+TA is
an obvious candidate for obtaining more efficient procedures for credulous reasoning.
Also, with forward reasoning giving at least argument-based flexible dispute deriva-
tions for non-flat ABA as well as for sceptical acceptance of statements should be in
reach. We also would like to improve our interactive system, in particular for making
the whole interface graphical and also for allowing switching between argument-based
and rule-based views.

References

1. Amgoud, L., Besnard, P., Vesic, S.: Equivalence in logic-based argumentation. J. Appl. Non
Class. Logics 24(3), 181–208 (2014)

2. Besnard, P., et al.: Introduction to structured argumentation. Argum. Comput. 5(1), 1–4
(2014)

3. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic
approach to default reasoning. Artif. Intell. 93, 63–101 (1997)

4. Bondarenko, A., Toni, F., Kowalski, R.A.: An assumption-based framework for non-
monotonic reasoning. In: LPNMR, pp. 171–189. MIT Press (1993)

5. Booth, R., Caminada, M., Marshall, B.: DISCO: a web-based implementation of discussion
games for grounded and preferred semantics. In: COMMA. Frontiers in Artificial Intelli-
gence and Applications, vol. 305, pp. 453–454. IOS Press (2018)

6. Borg, A., Straßer, C.: Relevance in structured argumentation. In: IJCAI, pp. 1753–1759.
ijcai.org (2018)

7. Caminada, M.: A discussion game for grounded semantics. In: Black, E., Modgil, S., Oren,
N. (eds.) TAFA 2015. LNCS (LNAI), vol. 9524, pp. 59–73. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-28460-6 4

8. Caminada, M.: Argumentation semantics as formal discussion. In: Baroni, P., Gabbay, D.,
Giacomin, M. (eds.) Handbook of Formal Argumentation, pp. 487–518. College Publications
(2018)

9. Cerutti, F., Gaggl, S.A., Thimm, M., Wallner, J.P.: Foundations of implementations for for-
mal argumentation. In: Baroni, P., Gabbay, D., Giacomin, M. (eds.) Handbook of Formal
Argumentation, pp. 689–768. College Publications (2018)

10. Craven, R., Toni, F.: Argument graphs and assumption-based argumentation. Artif. Intell.
233, 1–59 (2016)

11. Craven, R., Toni, F., Williams, M.: Graph-based dispute derivations in assumption-based
argumentation. In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2013. LNCS (LNAI), vol.
8306, pp. 46–62. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54373-9 4

12. Cyras, K., Fan, X., Schulz, C., Toni, F.: Assumption-based argumentation: disputes, expla-
nations, preferences. In: Baroni, P., Gabbay, D., Giacomin, M. (eds.) Handbook of Formal
Argumentation, pp. 365–408. College Publications (2018)

13. Doutre, S., Mengin, J.: On sceptical versus credulous acceptance for abstract argument sys-
tems. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 462–473.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30227-8 39

https://doi.org/10.1007/978-3-319-28460-6_4
https://doi.org/10.1007/978-3-319-28460-6_4
https://doi.org/10.1007/978-3-642-54373-9_4
https://doi.org/10.1007/978-3-540-30227-8_39

Flexible Dispute Derivations for ABA 167

14. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

15. Dung, P.M., Kowalski, R.A., Toni, F.: Dialectic proof procedures for assumption-based,
admissible argumentation. Artif. Intell. 170(2), 114–159 (2006)

16. Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In: Simari, G.R.,
Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp. 199–218. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-0-387-98197-0 10

17. Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artif. Intell.
171(10–15), 642–674 (2007)

18. Dung, P.M., Thang, P.M.: Closure and consistency in logic-associated argumentation. J.
Artif. Intell. Res. 49, 79–109 (2014)

19. Efstathiou, V., Hunter, A.: Algorithms for generating arguments and counterarguments in
propositional logic. Int. J. Approx. Reason. 52(6), 672–704 (2011)

20. Gaertner, D., Toni, F.: Hybrid argumentation and its properties. In: COMMA. Frontiers in
Artificial Intelligence and Applications, vol. 172, pp. 183–195. IOS Press (2008)

21. Jakobovits, H., Vermeir, D.: Dialectic semantics for argumentation frameworks. In: ICAIL,
pp. 53–62. ACM (1999)

22. Keshavarzi Zafarghandi, A., Verbrugge, R., Verheij, B.: Discussion games for preferred
semantics of abstract dialectical frameworks. In: Kern-Isberner, G., Ognjanović, Z. (eds.)
ECSQARU 2019. LNCS (LNAI), vol. 11726, pp. 62–73. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-29765-7 6

23. Keshavarzi Zafarghandi, A., Verbrugge, R., Verheij, B.: A discussion game for the grounded
semantics of abstract dialectical frameworks. In: COMMA. Frontiers in Artificial Intelli-
gence and Applications, vol. 326, pp. 431–442. IOS Press (2020)

24. Lehtonen, T., Wallner, J.P., Järvisalo, M.: From structured to abstract argumentation:
assumption-based acceptance via AF reasoning. In: Antonucci, A., Cholvy, L., Papini, O.
(eds.) ECSQARU 2017. LNCS (LNAI), vol. 10369, pp. 57–68. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61581-3 6

25. Lehtonen, T., Wallner, J.P., Järvisalo, M.: Reasoning over assumption-based argumentation
frameworks via direct answer set programming encodings. In: AAAI, pp. 2938–2945. AAAI
Press (2019)

26. Modgil, S., Caminada, M.: Proof theories and algorithms for abstract argumentation frame-
works. In: Simari, G.R., Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp. 105–
129. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-98197-0 6

27. Modgil, S., Prakken, H.: Abstract rule-based argumentation. In: Baroni, P., Gabbay, D., Gia-
comin, M. (eds.) Handbook of Formal Argumentation, pp. 287–364. College Publications
(2018)

28. Prakken, H.: An abstract framework for argumentation with structured arguments. Argum.
Comput. 1(2), 93–124 (2010)

29. Prakken, H., Sartor, G.: Argument-based extended logic programming with defeasible prior-
ities. J. Appl. Non Class. Logics 7(1), 25–75 (1997)

30. Strass, H., Wyner, A., Diller, M.: EMIL: extracting meaning from inconsistent language:
towards argumentation using a controlled natural language interface. Int. J. Approx. Reason.
112, 55–84 (2019)

31. Thang, P.M., Dung, P.M., Hung, N.D.: Towards a common framework for dialectical proof
procedures in abstract argumentation. J. Log. Comput. 19(6), 1071–1109 (2009)

32. Thimm, M., Rienstra, T.: Approximate reasoning with ASPIC+ by argument sampling. In:
SAFA@COMMA. CEUR Workshop Proceedings, vol. 2672, pp. 22–33. CEUR-WS.org
(2020)

33. Toni, F.: A generalised framework for dispute derivations in assumption-based argumenta-
tion. Artif. Intell. 195, 1–43 (2013)

https://doi.org/10.1007/978-0-387-98197-0_10
https://doi.org/10.1007/978-3-030-29765-7_6
https://doi.org/10.1007/978-3-030-29765-7_6
https://doi.org/10.1007/978-3-319-61581-3_6
https://doi.org/10.1007/978-0-387-98197-0_6

168 M. Diller et al.

34. Toni, F.: A tutorial on assumption-based argumentation. Argum. Comput. 5(1), 89–117
(2014)

35. Vreeswik, G.A.W., Prakken, H.: Credulous and sceptical argument games for preferred
semantics. In: Ojeda-Aciego, M., de Guzmán, I.P., Brewka, G., Moniz Pereira, L. (eds.)
JELIA 2000. LNCS (LNAI), vol. 1919, pp. 239–253. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-40006-0 17

36. Yun, B., Oren, N., Croitoru, M.: Efficient construction of structured argumentation systems.
In: COMMA. Frontiers in Artificial Intelligence and Applications, vol. 326, pp. 411–418.
IOS Press (2020)

https://doi.org/10.1007/3-540-40006-0_17
https://doi.org/10.1007/3-540-40006-0_17

	Flexible Dispute Derivations with Forward and Backward Arguments for Assumption-Based Argumentation
	1 Introduction
	2 Formal Background
	3 Argument-Based Flexible Dispute Derivations
	3.1 Argument and Dispute State Expansions
	3.2 Argument-Based Flexible Dispute Derivations Following Structured and Graph-Based Dispute Derivations
	3.3 Flexible Dispute Derivations

	4 Rule-Based Flexible Dispute Derivations
	5 Implementation
	6 Conclusions and Future Work
	References

