Exercise 3: Denotational and Operational Semantics Concurrency Theory

Summer 2024

Dr. Stephan Mennicke

May 8th, 2024

TU Dresden, Knowledge-Based Systems Group

Consider again the requirements on fixed points (from slide 20 on, lecture 4). We left option B (local looping) as an exercise. Study this option and carry out an example in the style of the ones given in options A and C. Do we learn anything about the fixed point requirements?

If

while $b \; \mathrm{do} \; S$

does not terminate *locally*, then starting from s_0 , there are states $s_1, ..., s_n$ such that

 $\mathcal{B}[\![b]\!] = \texttt{tt} \text{ for } i \leq n$

and

$$\mathcal{S}_{\mathrm{ds}} \llbracket S \rrbracket \, s_i = \begin{cases} s_{i+1} & \text{for } i < n \\ \texttt{undef} & \text{for } i = n \end{cases}$$

while $(x\geqq 0) \; {\rm do} \; {\rm if}\; (x\equiv {\rm 0})$ then while true do skip else $x\!:=\!x\ominus {\rm 1}$

Dr. Stephan Mennicke

Let g be any fixed point of the associated function F. In case i < n, we get $g_0 s_i = s_{i+1}$. In case i = n,

$$\begin{split} g_0 \, s_n &= (F \, g_0) s_n \\ &= \operatorname{cond}(\, \mathcal{B}[\![b]\!] \,, g_0 \circ \mathcal{S}_{\mathrm{ds}}[\![S]\!] \,, \mathrm{id} \,) s_n \\ &= (g_0 \circ \mathcal{S}_{\mathrm{ds}}[\![S]\!]) s_n \\ &= \mathrm{undef} \end{split}$$

Thus, any fixed point g of F will have the property $g_0 s_0 = \text{undef}$.

Let S be a nonempty set and define $\mathcal{P}_{\mathrm{fin}}(S) = \{K \, | \, K \text{ if finite and } K \subseteq S\}.$

1. Show that $(\mathcal{P}_{\mathrm{fin}}(S),\subseteq)$ as well as $(\mathcal{P}_{\mathrm{fin}}(S),\supseteq)$ are po-sets.

- \subseteq is reflexive, transitive, and antisymmetric (borrowing from set theory);
- for all po-sets $\mathfrak{A} = (D, \preccurlyeq)$, $\mathfrak{B} = (D, \preccurlyeq^{-1})$ is also a po-set: **reflexivity** for $d \in D$, we have $d \preccurlyeq d$ (since \mathfrak{A} is a po-set and, thereby, \preccurlyeq is reflexive); hence, $d \preccurlyeq^{-1} d$

transitivity let $d_1, d_2, d_3 \in D$, such that $d_1 \preccurlyeq^{-1} d_2$ and $d_2 \preccurlyeq^{-1} d_3$. Thus, $d_3 \preccurlyeq d_2$ and $d_2 \preccurlyeq d_1$. Therefore, $d_3 \preccurlyeq d_1$ showing that $d_1 \preccurlyeq^{-1} d_3$ holds.

antisymmetry let $d_1, d_2 \in D$ such that $d_1 \preccurlyeq^{-1} d_2$ and $d_2 \preccurlyeq^{-1} d_1$. Hence, $d_1 \preccurlyeq d_2$ and $d_2 \preccurlyeq d_1$ which implies $d_1 = d_2$ since \mathfrak{A} is a po-set.

Hence, \mathfrak{B} is a po-set as well.

- concluding, $(\mathcal{P}_{\mathrm{fin}}(S),\supseteq)$ is a po-set.

2. Do both po-sets have a least element for all choices of S?

Dr. Stephan Mennicke

- $\subseteq: \emptyset$ for all choices of S:
 - Let K be a finite subset of S; then $\emptyset \subseteq K$ since \emptyset is a subset of every set.
- ⊇:
 - if S is finite, then S is the least element.
 - ${\scriptstyle \blacktriangleright}\,$ if S is infinite, there is no least element:
 - suppose there was a least element ${\cal S}_0$
 - that is, $\forall K \supseteq_{\text{fin}} S : S_0 \supseteq K$
 - as S_0 itself is finite, S_0 has finite cardinality, i.e. $|S_0| = k$ for $k \in \mathbb{N}$
 - since S is infinite, there is an element $s_{\natural} \in S \setminus S_0$ such that $S_{\natural} = S_0 \cup \{s_{\natural}\}$ is a finite subset of S
 - but $S_{\natural} \supsetneq S_0$ (i.e., is strictly smaller), meaning S_0 cannot be the least element
- 3. Prove or disprove that every subset of $\mathcal{P}_{\mathrm{fin}}(S)$ has a least upper bound w.r.t. \subseteq .
 - consider $S = \mathbb{N}$:

- + $Y = \{\{n\} \, | \, n \in \mathbb{N}\} \subseteq \mathcal{P}_{\mathrm{fin}}(\mathbb{N})$ is a counterexample
- the only upper bound of Y is $\mathbb N$
- but $\mathbb{N} \notin \mathcal{P}_{\mathrm{fin}}(\mathbb{N})$
- for any infinite set $S, \mathcal{P}_{\mathrm{fin}}(S)$ is a counterexample.
- considering finite $Y\subseteq \mathcal{P}_{\mathrm{fin}}(S),$ we get $\bigcup Y$ as the least upper bound
 - 1. $\bigcup Y$ is an upper bound of *Y*: follows by definition of \bigcup
 - 2. $\bigcup Y$ is the least upper bound of *Y*:
 - suppose $\Upsilon \subsetneq \bigcup Y$ is an upper bound of Y;
 - there is some set $M \in Y$ such that there is an $x \in M$ and $x \notin \Upsilon$
 - then $M \not\subseteq \Upsilon$, meaning Υ is not an upper bound of Y, contradicting our assumption that Υ is an upper bound of Y. $\not\downarrow$
- 4. Provide a set S such that $(\mathcal{P}_{\rm fin}(S),\subseteq)$ has a chain with no upper bound and, therefore, no least upper bound.

- we pick
$$S = \mathbb{N}$$
 and let $\mathbb{N}^n = \{i \mid 0 \le i \le n\}$ (note, $|\mathbb{N}^n| = n + 1$)

Dr. Stephan Mennicke

- then $\Upsilon = \left\{ \mathbb{N}^j \, \big| \, j \in \mathbb{N} \right\}$ forms a chain:
 - let \mathbb{N}^m and \mathbb{N}^n be two elements of the chain such that (w.l.o.g.) $m \leq n$
 - then $\mathbb{N}^m \subseteq \mathbb{N}^n$ since:
 - for $x \in \mathbb{N}^m$, we get $x \le m$
 - since $m \le n$, we get $x \le n$ (as \le is transitive)
 - hence, $x \in \mathbb{N}^n$
- Υ has no upper bound: by contradiction
 - suppose, there was an upper bound N of Υ
 - then N is a finite subset of $\mathbb N$
 - hence, |N| = k for $k \in \mathbb{N}$
 - since $\mathbb{N}^k \in \Upsilon$ and $|\mathbb{N}^k| = k + 1$, $\mathbb{N}^k \nsubseteq N$
 - so N is not an upper bound. ${\natural}$
- 5. Is any of the aforementioned po-sets a complete lattice? ccpo?
 - if S is finite, then $(\mathcal{P}_{\mathrm{fin}}(S),\subseteq/\supseteq)$ forms a complete lattices, also ccpo

Dr. Stephan Mennicke

- if S is infinite:
 - (𝒫_{fin}(S), ⊆) is not a ccpo (thus, not a complete lattice) by the counterexample we gave above
 - ► $(\mathcal{P}_{fin}(S), \supseteq)$ is not a complete lattice because not all subsets $Y \subseteq \mathcal{P}_{fin}(S)$ have a least upper bound:
 - − if $Y \neq \emptyset$, then $\bigcap Y^1$ is the least upper bound (proof similar to the least upper bound finitely many subsets and \bigcup)
 - if $Y = \emptyset$, then $\bigcap Y = \bigcap \emptyset = S$ is infinite and, therefore, not an upper bound.
- 6. Analyze $(\mathcal{P}(S), \subseteq)$ where $\mathcal{P}(S) = \{K \mid K \subseteq S\}$, whether it forms a complete lattice? How about ccpo?
 - it is a complete lattice, and, therefore, also a ccpo-set
 - it has \emptyset as its least element
 - for any arbitrary subset $Y\subseteq \mathcal{P}(S), \bigcup Y\in \mathcal{P}(S)$ and forms the least upper bound of Y

- 7. Construct a subset *Y* of **State** \hookrightarrow **State** such that *Y* has no upper bound.
 - let $s_1,s_2\in \textbf{State}$ such that $s_1\neq s_2$
 - then $Y = \{g_1, \mathrm{id}\}$ with

$$g_1 s = \begin{cases} s_2 & \text{if } s = s_1 \\ \texttt{undef} & \text{otherwise} \end{cases}$$

is a non-empty subset of State \hookrightarrow State with no upper bound.

$${}^{\scriptscriptstyle 1}\bigcap Y\coloneqq \{x\,|\,\forall X\in Y:x\in X\}$$

Dr. Stephan Mennicke

Assume (D, \preccurlyeq) and (D', \preccurlyeq') are ccpo's, and assume function $f: D \to D'$ satisfies $\bigsqcup' \{f \ d \ | \ d \in Y\} = f(\bigsqcup Y)$

for all non-empty chain Y. Show that f is monotone.

Proof: Let $d_1, d_2 \in D$ with $d_1 \preccurlyeq d_2$. Then d_2 is an upper bound of the necessarily nonempty chain $Y = \{d_1, d_2\}$. It is even the least upper bound, i.e. $d_2 = \bigsqcup Y$.

 $\bigsqcup'(f(Y)) = f(\bigsqcup Y) = f \, d_2. \text{ Since } f \, d_1 \in f(Y), \, f \, d_1 \preccurlyeq' f \, d_2.$

Dr. Stephan Mennicke