
FOUNDATIONS OF COMPLEXITY THEORY

Lecture 11: Space Hierarchy and Gaps

David Carral

Knowledge-Based Systems

TU Dresden, December 30, 2020

Review

David Carral, December 30, 2020 Foundations of Complexity Theory slide 2 of 19

Review: Time Hierarchy Theorems

Time Hierarchy Theorem 12.12 If f , g : N → N are such that f is time-
constructible, and g · log g ∈ o(f ), then

DTime∗(g) ⊊ DTime∗(f )

Nondeterministic Time Hierarchy Theorem 12.14 If f , g : N → N are such that f

is time-constructible, and g(n + 1) ∈ o(f (n)), then

NTime∗(g) ⊊ NTime∗(f )

In particular, we find that P ! ExpTime and NP ! NExpTime:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace ⊆ ExpTime ⊆ NExpTime ⊆ ExpSpace

!

!

David Carral, December 30, 2020 Foundations of Complexity Theory slide 3 of 19

A Hierarchy for Space

David Carral, December 30, 2020 Foundations of Complexity Theory slide 4 of 19



Space Hierarchy

For space, we can always assume a single working tape:

• Tape reduction leads to a constant-factor increase in space

• Constant factors can be eliminated by space compression

Therefore, DSpacek(f ) = DSpace1(f ).

Space turns out to be easier to separate – we get:

Space Hierarchy Theorem 11.1: If f , g : N → N are such that f is space-
constructible, and g ∈ o(f ), then

DSpace(g) ⊊ DSpace(f )

Challenge: TMs can run forever even within bounded space.

David Carral, December 30, 2020 Foundations of Complexity Theory slide 5 of 19

Proving the Space Hierarchy Theorem (1)

Space Hierarchy Theorem 11.1: If f , g : N → N are such that f is space-
constructible, and g ∈ o(f ), then

DSpace(g) ⊊ DSpace(f )

Proof: Again, we construct a diagonalisation machine D. We define a multi-tape TM D
for inputs of the form 〈M, w〉 (other cases do not matter), assuming that |〈M, w〉| = n

• Compute f (n) in unary to mark the available space on the working tape
• Initialise a separate countdown tape with the largest binary number that can be

written in f (n) space
• SimulateM on 〈M, w〉, making sure that only previously marked tape cells are

used
• Time-bound the simulation using the content of the countdown tape by

decrementing the counter in each simulated step
• IfM rejects (in this space bound) or if the time bound is reached withoutM

halting, then accept; otherwise, ifM accepts or uses unmarked space, reject
David Carral, December 30, 2020 Foundations of Complexity Theory slide 6 of 19

Space Hierarchy

For space, we can always assume a single working tape:

• Tape reduction leads to a constant-factor increase in space

• Constant factors can be eliminated by space compression

Therefore, DSpacek(f ) = DSpace1(f ).

Space turns out to be easier to separate – we get:

Space Hierarchy Theorem 11.1: If f , g : N → N are such that f is space-
constructible, and g ∈ o(f ), then

DSpace(g) ⊊ DSpace(f )

Challenge: TMs can run forever even within bounded space.

David Carral, December 30, 2020 Foundations of Complexity Theory slide 5 of 19

Proving the Space Hierarchy Theorem (1)

Space Hierarchy Theorem 11.1: If f , g : N → N are such that f is space-
constructible, and g ∈ o(f ), then

DSpace(g) ⊊ DSpace(f )

Proof: Again, we construct a diagonalisation machine D. We define a multi-tape TM D
for inputs of the form 〈M, w〉 (other cases do not matter), assuming that |〈M, w〉| = n

• Compute f (n) in unary to mark the available space on the working tape
• Initialise a separate countdown tape with the largest binary number that can be

written in f (n) space
• SimulateM on 〈M, w〉, making sure that only previously marked tape cells are

used
• Time-bound the simulation using the content of the countdown tape by

decrementing the counter in each simulated step
• IfM rejects (in this space bound) or if the time bound is reached withoutM

halting, then accept; otherwise, ifM accepts or uses unmarked space, reject
David Carral, December 30, 2020 Foundations of Complexity Theory slide 6 of 19

Proving the Space Hierarchy Theorem (1)

Proof (continued): It remains to show that D implements diagonalisation:

L(D) ∈ DSpace(f ):
• f is space-constructible, so both the marking of tape symbols and the initialisation

of the counter are possible in DSpace(f )
• The simulation is performed so that the marked O(f )-space is not left

There is some w such that 〈M, w〉 ∈ L(D) iff 〈M, w〉 " L(M):
• As for time, we argue that some w is long enough to ensure that f is sufficiently

larger than g, so D’s simulation can finish.
• The countdown measures 2f (n) steps. The number of possible distinct

configurations ofM on w is |Q| · n · g(n) · |Γ|g(n) ∈ 2O(g(n)+log n), and due to f (n) ≥ log n

and g ∈ o(f ), this number is smaller than 2f (n) for large enough n.
• IfM has d tape symbols, then D can encode each in log d space, and due toM’s

space bound D’s simulation needs at most log d · g(n) ∈ o(f (n)) cells.

Therefore, there is w for which D simulatesM long enough to obtain (and flip) its
output, or to detect that it is not terminating (and to accept, flipping again). □
David Carral, December 30, 2020 Foundations of Complexity Theory slide 7 of 19

Space Hierarchies

Like for time, we get some useful corollaries:

Corollary 11.2: PSpace ⊊ ExpSpace

Proof: As for time, but easier. □

Corollary 11.3: NL ⊊ PSpace

Proof: Savitch tells us that NL ⊆ DSpace(log2
n). We can apply the Space Hierarchy

Theorem since log2
n ∈ o(n). □

Corollary 11.4: For all real numbers 0 < a < b, we have DSpace(na) ⊊
DSpace(nb).

In other words: The hierarchy of distinct space classes is very fine-grained.

David Carral, December 30, 2020 Foundations of Complexity Theory slide 8 of 19

The Gap Theorem

David Carral, December 30, 2020 Foundations of Complexity Theory slide 9 of 19



Space Hierarchies

Like for time, we get some useful corollaries:

Corollary 11.2: PSpace ⊊ ExpSpace

Proof: As for time, but easier. □

Corollary 11.3: NL ⊊ PSpace

Proof: Savitch tells us that NL ⊆ DSpace(log2
n). We can apply the Space Hierarchy

Theorem since log2
n ∈ o(n). □

Corollary 11.4: For all real numbers 0 < a < b, we have DSpace(na) ⊊
DSpace(nb).

In other words: The hierarchy of distinct space classes is very fine-grained.

David Carral, December 30, 2020 Foundations of Complexity Theory slide 8 of 19

The Gap Theorem

David Carral, December 30, 2020 Foundations of Complexity Theory slide 9 of 19

Why Constructibility?

The hierarchy theorems require that resource limits are given by constructible functions

Do we really need this?

Yes. The following theorem shows why (for time):

Special Gap Theorem 11.5: There is a computable function f : N → N such that
DTime(f (n)) = DTime(2f (n)).

This has been shown independently by Boris Trakhtenbrot (1964) and Allan Borodin
(1972).

Reminder: For this we continue to use the strict definition of DTime(f ) where no
constant factors are included (no hidden O(f )). This simplifes proofs; the factors
are easy to add back.

David Carral, December 30, 2020 Foundations of Complexity Theory slide 10 of 19

Proving the Gap Theorem

Special Gap Theorem 11.5: There is a computable function f : N → N such that
DTime(f (n)) = DTime(2f (n)).

Proof idea: We divide time into exponentially long intervals of the form:

[0, n], [n + 1, 2n], [2n + 1, 22n
], [22n

+ 1, 222n

], · · ·

(for some appropriate starting value n)

We are looking for gaps of time where no TM halts, since:

• for every finite set of TMs,

• and every finite set of inputs to these TMs,

• there is some interval of the above form [m + 1, 2m]

such none of the TMs halts in between m + 1 and 2m steps on any of the inputs.

The task of f is to find the start m of such a gap for a suitable set of TMs and words

David Carral, December 30, 2020 Foundations of Complexity Theory slide 11 of 19

Gaps in Time

We consider an (effectively computable) enumeration of all Turing machines:

M0,M1,M2, . . .

Definition 11.6: For arbitrary numbers i, a, b ∈ N with a ≤ b, we say that
Gapi(a, b) is true if:

• Given any TM Mj with 0 ≤ j ≤ i,

• and any input string w for Mj of length |w| = i,

Mj on input w will halt in less than a steps, in more than b steps, or not at all.

Lemma 11.7: Given i, a, b ≥ 0 with a ≤ b, it is decidable if Gapi(a, b) holds.

Proof: We just need to ensure that none of the finitely many TMsM0, . . . ,Mi will halt
after a to b steps on any of the finitely many inputs of length i. This can be checked by
simulating TM runs for at most b steps. □

David Carral, December 30, 2020 Foundations of Complexity Theory slide 12 of 19

Find the Gap

We can now define the value f (n) of f for some n ≥ 0:

Let in(n) denote the number of runs of TMsM0, . . . ,Mn on words of length n, i.e.,

in(n) = |Σ0|n + · · · + |Σn|n where Σi is the input alphabet ofMi

We recursively define a series of numbers k0, k1, k2, . . . by setting k0 = 2n and ki+1 = 2ki

for i ≥ 0, and we consider the following list of intervals:

[k0 + 1, k1], [k1 + 1, k2], · · · , [kin(n) + 1, kin(n)+1]

= = =

[2n + 1, 22n], [22n + 1, 222n
], · · · , [2·

··2n

+ 1, 22·
··2n

]

Let f (n) be the least number ki with 0 ≤ i ≤ in(n) such that Gapn(ki +1, ki+1) is true.

David Carral, December 30, 2020 Foundations of Complexity Theory slide 13 of 19



Find the Gap

We can now define the value f (n) of f for some n ≥ 0:

Let in(n) denote the number of runs of TMsM0, . . . ,Mn on words of length n, i.e.,

in(n) = |Σ0|n + · · · + |Σn|n where Σi is the input alphabet ofMi

We recursively define a series of numbers k0, k1, k2, . . . by setting k0 = 2n and ki+1 = 2ki

for i ≥ 0, and we consider the following list of intervals:

[k0 + 1, k1], [k1 + 1, k2], · · · , [kin(n) + 1, kin(n)+1]

= = =

[2n + 1, 22n], [22n + 1, 222n
], · · · , [2·

··2n

+ 1, 22·
··2n

]

Let f (n) be the least number ki with 0 ≤ i ≤ in(n) such that Gapn(ki +1, ki+1) is true.

David Carral, December 30, 2020 Foundations of Complexity Theory slide 13 of 19

Properties of f

We first establish some basic properties of our definition of f :

Claim: The function f is well-defined.

Proof: For finding f (n), we consider in(n) + 1 intervals. Since there are only in(n) runs of
TMsM0, . . .Mn, at least one interval remains a “gap” where no TM run halts. □

Claim: The function f is computable.

Proof: We can compute in(n) and ki for any i, and we can decide Gapn(ki + 1, ki+1). □

Papadimitriou: “notice the fantastically fast growth, as well as the decidedly unnatural
definition of this function.”

David Carral, December 30, 2020 Foundations of Complexity Theory slide 14 of 19

Find the Gap

We can now define the value f (n) of f for some n ≥ 0:

Let in(n) denote the number of runs of TMsM0, . . . ,Mn on words of length n, i.e.,

in(n) = |Σ0|n + · · · + |Σn|n where Σi is the input alphabet ofMi

We recursively define a series of numbers k0, k1, k2, . . . by setting k0 = 2n and ki+1 = 2ki

for i ≥ 0, and we consider the following list of intervals:

[k0 + 1, k1], [k1 + 1, k2], · · · , [kin(n) + 1, kin(n)+1]

= = =

[2n + 1, 22n], [22n + 1, 222n
], · · · , [2·

··2n

+ 1, 22·
··2n

]

Let f (n) be the least number ki with 0 ≤ i ≤ in(n) such that Gapn(ki +1, ki+1) is true.

David Carral, December 30, 2020 Foundations of Complexity Theory slide 13 of 19

Properties of f

We first establish some basic properties of our definition of f :

Claim: The function f is well-defined.

Proof: For finding f (n), we consider in(n) + 1 intervals. Since there are only in(n) runs of
TMsM0, . . .Mn, at least one interval remains a “gap” where no TM run halts. □

Claim: The function f is computable.

Proof: We can compute in(n) and ki for any i, and we can decide Gapn(ki + 1, ki+1). □

Papadimitriou: “notice the fantastically fast growth, as well as the decidedly unnatural
definition of this function.”

David Carral, December 30, 2020 Foundations of Complexity Theory slide 14 of 19

Finishing the Proof
We can now complete the proof of the theorem:

Claim: DTime(f (n)) = DTime(2f (n)).

Consider any L ∈ DTime(2f (n)).
Then there is an 2f (n)-time bounded TMMj with L = L(Mj).

For any input w with |w| ≥ j:
• The definition of f (|w|) took the run ofMj on w into account
• Mj on w halts after less than f (|w|) steps, or not until after 2f (|w|) steps (maybe never)
• SinceMj runs in time DTime(2f (n)), it must halt in DTime(f (n)) on w

For the finitely many inputs w with |w| < j:
• We can augment the state space ofMj to run a finite automaton to decide these

cases
• This will work in DTime(f (n))

Therefore we have L ∈ DTime(f (n)). □
David Carral, December 30, 2020 Foundations of Complexity Theory slide 15 of 19

Discussion: The case |w| < j
Borodin says: It is meaningful to state complexity results if they hold for “almost every”
input (i.e., for all but a finite number)

Papadimitriou says: These words can be handled since we can check the length and
then recognise the word in less than 2j steps

Really?
• If we do these < 2j steps before runningMj, the modified TM runs in DTime(f (n) + 2j)
• This does not show L ∈ DTime(f (n))

A more detailed argument:
• Make the intervals larger: [ki + 1, 2ki+2n + 2n], that is ki+1 = 2ki+2n + 2n.
• Select f (n) to be ki + 2n + 1 if the least gap starts at ki + 1.

The same pigeon hole argument as before ensures that an empty interval is found.

But now the f (n) time bounded machineMj from the proof will be sure to stop after
f (n) − 2n − 1 steps, so a shift of 2j ≤ 2n to account for the finitely many cases will not
make it use more than f (n) steps either
David Carral, December 30, 2020 Foundations of Complexity Theory slide 16 of 19



Discussion: Generalising the Gap Theorem

• Our proof uses the function n )→ 2n to define intervals

• Any other computable function could be used without affecting the argument

This leads to a generalised Gap Theorem:

Gap Theorem 11.8: For every computable function g : N→ N with g(n) ≥ n, there
is a computable function f : N→ N such that DTime(f (n)) = DTime(g(f (n))).

Example 11.9: There is a function f such that

DTime(f (n)) = DTime

!
""""""""# 22·

··2

$%&'
f (n) times

(
))))))))*

Moreover, the Gap Theorem can also be shown for space (and for other resources) in a
similar fashion (space is a bit easier since the case of short words |w| < j is easy to handle in very little space)

David Carral, December 30, 2020 Foundations of Complexity Theory slide 17 of 19

Discussion: Significance of the Gap Theorem

What have we learned?

• More time (or space) does not always increase computational power

• However, this only works for extremely fast-growing, very unnatural functions

“Fortunately, the gap phenomenon cannot happen for time bounds t

that anyone would ever be interested in”1

Main insight: better stick to constructible functions

1
Allender, Loui, Reagan: Complexity Theory. In Computing Handbook, 3rd ed., CRC Press, 2014

David Carral, December 30, 2020 Foundations of Complexity Theory slide 18 of 19

Summary and Outlook
Hierarchy theorems tell us that more time/space leads to more power:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace ⊆ ExpTime ⊆ NExpTime ⊆ ExpSpace

!

!

!

!
However, they don’t help us in comparing different resources and machine types
(P vs. NP, or PSpace vs. ExpTime)

With non-constructible functions as time/space bounds, arbitrary (constructible or not)
boosts in resources do not lead to more power

What’s next?

• The inner structure of NP revisited

• Computing with oracles (reprise)

• The limits of diagonalisation, proved by diagonalisation
David Carral, December 30, 2020 Foundations of Complexity Theory slide 19 of 19


