## Exercise 5: Tree width and Hypertree width

Database Theory<br>2022-05-10<br>Maximilian Marx, Markus Krötzsch

## Exercise 1

Exercise. Construct the query hypergraph and the primal graph for the following queries:

1. $\exists x, y, z, u, v .(\mathrm{r}(x, y, z, u) \wedge \mathrm{s}(z, u, v))$
2. $\exists x, y, z, u, v .(\mathrm{a}(x, y) \wedge \mathrm{b}(y, z) \wedge \mathrm{c}(z, u) \wedge \mathrm{d}(u, v) \wedge \mathrm{e}(v, z) \wedge \mathrm{f}(z, x) \wedge \mathrm{d}(x, u) \wedge \mathrm{d}(u, y))$

## Exercise 1

Exercise. Construct the query hypergraph and the primal graph for the following queries:

1. $\exists x, y, z, u, v \cdot(\mathrm{r}(x, y, z, u) \wedge \mathrm{s}(z, u, v))$
2. $\exists x, y, z, u, v .(\mathrm{a}(x, y) \wedge \mathrm{b}(y, z) \wedge \mathrm{c}(z, u) \wedge \mathrm{d}(u, v) \wedge \mathrm{e}(v, z) \wedge \mathrm{f}(z, x) \wedge \mathrm{d}(x, u) \wedge \mathrm{d}(u, y))$

## Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph $G$ is the undirected graph with the same vertices as $G$, and an edge connecting two vertices if there is some hyperedge in $G$ that contains these two vertices.

## Exercise 1

Exercise. Construct the query hypergraph and the primal graph for the following queries:

1. $\exists x, y, z, u, v .(\mathrm{r}(x, y, z, u) \wedge \mathrm{s}(z, u, v))$
2. $\exists x, y, z, u, v .(\mathrm{a}(x, y) \wedge \mathrm{b}(y, z) \wedge \mathrm{c}(z, u) \wedge \mathrm{d}(u, v) \wedge \mathrm{e}(v, z) \wedge \mathrm{f}(z, x) \wedge \mathrm{d}(x, u) \wedge \mathrm{d}(u, y))$

## Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph $G$ is the undirected graph with the same vertices as $G$, and an edge connecting two vertices if there is some hyperedge in $G$ that contains these two vertices.

## Solution.

## Exercise 1

Exercise. Construct the query hypergraph and the primal graph for the following queries:

1. $\exists x, y, z, u, v \cdot(\mathrm{r}(x, y, z, u) \wedge \mathrm{s}(z, u, v))$
2. $\exists x, y, z, u, v .(\mathrm{a}(x, y) \wedge \mathrm{b}(y, z) \wedge \mathrm{c}(z, u) \wedge \mathrm{d}(u, v) \wedge \mathrm{e}(v, z) \wedge \mathrm{f}(z, x) \wedge \mathrm{d}(x, u) \wedge \mathrm{d}(u, y))$

## Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph $G$ is the undirected graph with the same vertices as $G$, and an edge connecting two vertices if there is some hyperedge in $G$ that contains these two vertices.

## Solution.

1. 


$\stackrel{\bullet}{v}$ u

## Exercise 1

Exercise. Construct the query hypergraph and the primal graph for the following queries:

1. $\exists x, y, z, u, v \cdot(\mathrm{r}(x, y, z, u) \wedge \mathrm{s}(z, u, v))$
2. $\exists x, y, z, u, v .(\mathrm{a}(x, y) \wedge \mathrm{b}(y, z) \wedge \mathrm{c}(z, u) \wedge \mathrm{d}(u, v) \wedge \mathrm{e}(v, z) \wedge \mathrm{f}(z, x) \wedge \mathrm{d}(x, u) \wedge \mathrm{d}(u, y))$

## Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph $G$ is the undirected graph with the same vertices as $G$, and an edge connecting two vertices if there is some hyperedge in $G$ that contains these two vertices.

## Solution.

1. 



## Exercise 1

Exercise. Construct the query hypergraph and the primal graph for the following queries:

1. $\exists x, y, z, u, v \cdot(\mathrm{r}(x, y, z, u) \wedge \mathrm{s}(z, u, v))$
2. $\exists x, y, z, u, v .(\mathrm{a}(x, y) \wedge \mathrm{b}(y, z) \wedge \mathrm{c}(z, u) \wedge \mathrm{d}(u, v) \wedge \mathrm{e}(v, z) \wedge \mathrm{f}(z, x) \wedge \mathrm{d}(x, u) \wedge \mathrm{d}(u, y))$

## Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph $G$ is the undirected graph with the same vertices as $G$, and an edge connecting two vertices if there is some hyperedge in $G$ that contains these two vertices.

## Solution.

1. 



## Exercise 1

Exercise. Construct the query hypergraph and the primal graph for the following queries:

1. $\exists x, y, z, u, v \cdot(\mathrm{r}(x, y, z, u) \wedge \mathrm{s}(z, u, v))$
2. $\exists x, y, z, u, v .(\mathrm{a}(x, y) \wedge \mathrm{b}(y, z) \wedge \mathrm{c}(z, u) \wedge \mathrm{d}(u, v) \wedge \mathrm{e}(v, z) \wedge \mathrm{f}(z, x) \wedge \mathrm{d}(x, u) \wedge \mathrm{d}(u, y))$

## Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph $G$ is the undirected graph with the same vertices as $G$, and an edge connecting two vertices if there is some hyperedge in $G$ that contains these two vertices.

## Solution.



## Exercise 1

Exercise. Construct the query hypergraph and the primal graph for the following queries:

1. $\exists x, y, z, u, v \cdot(\mathrm{r}(x, y, z, u) \wedge \mathrm{s}(z, u, v))$
2. $\exists x, y, z, u, v .(\mathrm{a}(x, y) \wedge \mathrm{b}(y, z) \wedge \mathrm{c}(z, u) \wedge \mathrm{d}(u, v) \wedge \mathrm{e}(v, z) \wedge \mathrm{f}(z, x) \wedge \mathrm{d}(x, u) \wedge \mathrm{d}(u, y))$

## Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph $G$ is the undirected graph with the same vertices as $G$, and an edge connecting two vertices if there is some hyperedge in $G$ that contains these two vertices.

## Solution.



## Exercise 1

Exercise. Construct the query hypergraph and the primal graph for the following queries:

1. $\exists x, y, z, u, v \cdot(\mathrm{r}(x, y, z, u) \wedge \mathrm{s}(z, u, v))$
2. $\exists x, y, z, u, v .(\mathrm{a}(x, y) \wedge \mathrm{b}(y, z) \wedge \mathrm{c}(z, u) \wedge \mathrm{d}(u, v) \wedge \mathrm{e}(v, z) \wedge \mathrm{f}(z, x) \wedge \mathrm{d}(x, u) \wedge \mathrm{d}(u, y))$

## Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph $G$ is the undirected graph with the same vertices as $G$, and an edge connecting two vertices if there is some hyperedge in $G$ that contains these two vertices.

## Solution.



## Exercise 1

Exercise. Construct the query hypergraph and the primal graph for the following queries:

1. $\exists x, y, z, u, v \cdot(\mathrm{r}(x, y, z, u) \wedge \mathrm{s}(z, u, v))$
2. $\exists x, y, z, u, v .(\mathrm{a}(x, y) \wedge \mathrm{b}(y, z) \wedge \mathrm{c}(z, u) \wedge \mathrm{d}(u, v) \wedge \mathrm{e}(v, z) \wedge \mathrm{f}(z, x) \wedge \mathrm{d}(x, u) \wedge \mathrm{d}(u, y))$

## Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph $G$ is the undirected graph with the same vertices as $G$, and an edge connecting two vertices if there is some hyperedge in $G$ that contains these two vertices.

## Solution.



## Exercise 1

Exercise. Construct the query hypergraph and the primal graph for the following queries:

1. $\exists x, y, z, u, v \cdot(\mathrm{r}(x, y, z, u) \wedge \mathrm{s}(z, u, v))$
2. $\exists x, y, z, u, v .(\mathrm{a}(x, y) \wedge \mathrm{b}(y, z) \wedge \mathrm{c}(z, u) \wedge \mathrm{d}(u, v) \wedge \mathrm{e}(v, z) \wedge \mathrm{f}(z, x) \wedge \mathrm{d}(x, u) \wedge \mathrm{d}(u, y))$

## Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph $G$ is the undirected graph with the same vertices as $G$, and an edge connecting two vertices if there is some hyperedge in $G$ that contains these two vertices.

## Solution.



## Exercise 1

Exercise. Construct the query hypergraph and the primal graph for the following queries:

1. $\exists x, y, z, u, v \cdot(\mathrm{r}(x, y, z, u) \wedge \mathrm{s}(z, u, v))$
2. $\exists x, y, z, u, v .(\mathrm{a}(x, y) \wedge \mathrm{b}(y, z) \wedge \mathrm{c}(z, u) \wedge \mathrm{d}(u, v) \wedge \mathrm{e}(v, z) \wedge \mathrm{f}(z, x) \wedge \mathrm{d}(x, u) \wedge \mathrm{d}(u, y))$

## Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph $G$ is the undirected graph with the same vertices as $G$, and an edge connecting two vertices if there is some hyperedge in $G$ that contains these two vertices.

## Solution.



## Exercise 1

Exercise. Construct the query hypergraph and the primal graph for the following queries:

1. $\exists x, y, z, u, v .(\mathrm{r}(x, y, z, u) \wedge \mathrm{s}(z, u, v))$
2. $\exists x, y, z, u, v .(\mathrm{a}(x, y) \wedge \mathrm{b}(y, z) \wedge \mathrm{c}(z, u) \wedge \mathrm{d}(u, v) \wedge \mathrm{e}(v, z) \wedge \mathrm{f}(z, x) \wedge \mathrm{d}(x, u) \wedge \mathrm{d}(u, y))$

## Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph $G$ is the undirected graph with the same vertices as $G$, and an edge connecting two vertices if there is some hyperedge in $G$ that contains these two vertices.

## Solution.



## Exercise 1

Exercise. Construct the query hypergraph and the primal graph for the following queries:

1. $\exists x, y, z, u, v \cdot(\mathrm{r}(x, y, z, u) \wedge \mathrm{s}(z, u, v))$
2. $\exists x, y, z, u, v .(\mathrm{a}(x, y) \wedge \mathrm{b}(y, z) \wedge \mathrm{c}(z, u) \wedge \mathrm{d}(u, v) \wedge \mathrm{e}(v, z) \wedge \mathrm{f}(z, x) \wedge \mathrm{d}(x, u) \wedge \mathrm{d}(u, y))$

## Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph $G$ is the undirected graph with the same vertices as $G$, and an edge connecting two vertices if there is some hyperedge in $G$ that contains these two vertices.

## Solution.

1. 



## Exercise 1

Exercise. Construct the query hypergraph and the primal graph for the following queries:

1. $\exists x, y, z, u, v \cdot(\mathrm{r}(x, y, z, u) \wedge \mathrm{s}(z, u, v))$
2. $\exists x, y, z, u, v .(\mathrm{a}(x, y) \wedge \mathrm{b}(y, z) \wedge \mathrm{c}(z, u) \wedge \mathrm{d}(u, v) \wedge \mathrm{e}(v, z) \wedge \mathrm{f}(z, x) \wedge \mathrm{d}(x, u) \wedge \mathrm{d}(u, y))$

## Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph $G$ is the undirected graph with the same vertices as $G$, and an edge connecting two vertices if there is some hyperedge in $G$ that contains these two vertices.

## Solution.

1. 



## Exercise 1

Exercise. Construct the query hypergraph and the primal graph for the following queries:

1. $\exists x, y, z, u, v \cdot(\mathrm{r}(x, y, z, u) \wedge \mathrm{s}(z, u, v))$
2. $\exists x, y, z, u, v .(\mathrm{a}(x, y) \wedge \mathrm{b}(y, z) \wedge \mathrm{c}(z, u) \wedge \mathrm{d}(u, v) \wedge \mathrm{e}(v, z) \wedge \mathrm{f}(z, x) \wedge \mathrm{d}(x, u) \wedge \mathrm{d}(u, y))$

## Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph $G$ is the undirected graph with the same vertices as $G$, and an edge connecting two vertices if there is some hyperedge in $G$ that contains these two vertices.

## Solution.

1. 


2.
x $\quad$ - $\quad$ -

## Exercise 1

Exercise. Construct the query hypergraph and the primal graph for the following queries:

1. $\exists x, y, z, u, v \cdot(\mathrm{r}(x, y, z, u) \wedge \mathrm{s}(z, u, v))$
2. $\exists x, y, z, u, v .(\mathrm{a}(x, y) \wedge \mathrm{b}(y, z) \wedge \mathrm{c}(z, u) \wedge \mathrm{d}(u, v) \wedge \mathrm{e}(v, z) \wedge \mathrm{f}(z, x) \wedge \mathrm{d}(x, u) \wedge \mathrm{d}(u, y))$

## Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph $G$ is the undirected graph with the same vertices as $G$, and an edge connecting two vertices if there is some hyperedge in $G$ that contains these two vertices.

## Solution.



## Exercise 1

Exercise. Construct the query hypergraph and the primal graph for the following queries:

1. $\exists x, y, z, u, v \cdot(\mathrm{r}(x, y, z, u) \wedge \mathrm{s}(z, u, v))$
2. $\exists x, y, z, u, v .(\mathrm{a}(x, y) \wedge \mathrm{b}(y, z) \wedge \mathrm{c}(z, u) \wedge \mathrm{d}(u, v) \wedge \mathrm{e}(v, z) \wedge \mathrm{f}(z, x) \wedge \mathrm{d}(x, u) \wedge \mathrm{d}(u, y))$

## Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph $G$ is the undirected graph with the same vertices as $G$, and an edge connecting two vertices if there is some hyperedge in $G$ that contains these two vertices.

## Solution.



## Exercise 1

Exercise. Construct the query hypergraph and the primal graph for the following queries:

1. $\exists x, y, z, u, v \cdot(\mathrm{r}(x, y, z, u) \wedge \mathrm{s}(z, u, v))$
2. $\exists x, y, z, u, v .(\mathrm{a}(x, y) \wedge \mathrm{b}(y, z) \wedge \mathrm{c}(z, u) \wedge \mathrm{d}(u, v) \wedge \mathrm{e}(v, z) \wedge \mathrm{f}(z, x) \wedge \mathrm{d}(x, u) \wedge \mathrm{d}(u, y))$

## Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph $G$ is the undirected graph with the same vertices as $G$, and an edge connecting two vertices if there is some hyperedge in $G$ that contains these two vertices.

## Solution.



## Exercise 2

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue why there cannot be a tree decomposition of smaller width.
1.

2.

3.

4.


## Exercise 2

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue why there cannot be a tree decomposition of smaller width.
1.


## Solution.

2. 


3.

4.


## Exercise 2

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue why there cannot be a tree decomposition of smaller width.
1.


## Solution.

1. 



## Exercise 2

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue why there cannot be a tree decomposition of smaller width.
1.


## Solution.

1. 


$\leadsto \rightarrow$ tree width 2.

## Exercise 2

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue why there cannot be a tree decomposition of smaller width.
1.
2.


## Solution.

1. 




$\qquad$


$\leadsto$ tree width 2.
2.


## Exercise 2

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue why there cannot be a tree decomposition of smaller width.
1.
2.


## Solution.

1. 


3.

4.



## Exercise 2

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue why there cannot be a tree decomposition of smaller width.
1.


## Solution.

2. 


3.

4.


## Exercise 2

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue why there cannot be a tree decomposition of smaller width.
1.

2.

3.

4.


## Solution.

3. 


$n \rightarrow$ tree width 2.

## Exercise 2

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue why there cannot be a tree decomposition of smaller width.
1.

2.

## Solution.

3. 



4.

3.
 $\rightsquigarrow>$ tree width 2.
4.


## Exercise 2

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue why there cannot be a tree decomposition of smaller width.
1.

2.

## Solution.

3. 



4.

3.

$\rightsquigarrow>$ tree width 2.
4.

## Exercise 3

Exercise. Show that the $n \times n$ grid has a tree width $\leq n$ by finding a suitable tree decomposition of width $n$. For example, the following $4 \times 4$ grid has tree width 4 :


## Exercise 3

Exercise. Show that the $n \times n$ grid has a tree width $\leq n$ by finding a suitable tree decomposition of width $n$. For example, the following $4 \times 4$ grid has tree width 4 :


## Solution.

## Exercise 3

Exercise. Show that the $n \times n$ grid has a tree width $\leq n$ by finding a suitable tree decomposition of width $n$. For example, the following $4 \times 4$ grid has tree width 4 :


## Solution.



## Exercise 4

Exercise. Show that a clique (fully connected graph) of size $n$ has tree width $n-1$.

## Exercise 4

Exercise. Show that a clique (fully connected graph) of size $n$ has tree width $n-1$.
Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph $G$ is of tree width $\leq k-1$ iff $k$ cops have a winning strategy in the cops \& robber game on $G$.

## Exercise 4

Exercise. Show that a clique (fully connected graph) of size $n$ has tree width $n-1$.
Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph $G$ is of tree width $\leq k-1$ iff $k$ cops have a winning strategy in the cops \& robber game on $G$.
Solution.

## Exercise 4

Exercise. Show that a clique (fully connected graph) of size $n$ has tree width $n-1$.
Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph $G$ is of tree width $\leq k-1$ iff $k$ cops have a winning strategy in the cops \& robber game on $G$.
Solution.

- Consider an $n$-clique.


## Exercise 4

Exercise. Show that a clique (fully connected graph) of size $n$ has tree width $n-1$.
Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph $G$ is of tree width $\leq k-1$ iff $k$ cops have a winning strategy in the cops \& robber game on $G$.

## Solution.

- Consider an $n$-clique.
- Clearly, $n$ cops have a winning strategy: they can occupy every vertex.


## Exercise 4

Exercise. Show that a clique (fully connected graph) of size $n$ has tree width $n-1$.
Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph $G$ is of tree width $\leq k-1$ iff $k$ cops have a winning strategy in the cops \& robber game on $G$.

## Solution.

- Consider an $n$-clique.
- Clearly, $n$ cops have a winning strategy: they can occupy every vertex.
- Thus, an $n$-clique has tree width at most $n-1$.


## Exercise 4

Exercise. Show that a clique (fully connected graph) of size $n$ has tree width $n-1$.
Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph $G$ is of tree width $\leq k-1$ iff $k$ cops have a winning strategy in the cops \& robber game on $G$.

## Solution.

- Consider an $n$-clique.
- Clearly, $n$ cops have a winning strategy: they can occupy every vertex.
- Thus, an $n$-clique has tree width at most $n-1$.
- Consider the cops \& robber game with $n-1$ cops.


## Exercise 4

Exercise. Show that a clique (fully connected graph) of size $n$ has tree width $n-1$.
Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph $G$ is of tree width $\leq k-1$ iff $k$ cops have a winning strategy in the cops \& robber game on $G$.

## Solution.

- Consider an $n$-clique.
- Clearly, $n$ cops have a winning strategy: they can occupy every vertex.
- Thus, an $n$-clique has tree width at most $n-1$.
- Consider the cops \& robber game with $n-1$ cops.
- Every vertex has $n-1$ neighbours.


## Exercise 4

Exercise. Show that a clique (fully connected graph) of size $n$ has tree width $n-1$.
Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph $G$ is of tree width $\leq k-1$ iff $k$ cops have a winning strategy in the cops \& robber game on $G$.

## Solution.

- Consider an $n$-clique.
- Clearly, $n$ cops have a winning strategy: they can occupy every vertex.
- Thus, an $n$-clique has tree width at most $n-1$.
- Consider the cops \& robber game with $n-1$ cops.
- Every vertex has $n-1$ neighbours.
- While the cops can occupy all neighbouring vertices, they cannot catch the robber: if they move to the robbers position, one of the neighbouring vertices becomes free.


## Exercise 4

Exercise. Show that a clique (fully connected graph) of size $n$ has tree width $n-1$.
Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph $G$ is of tree width $\leq k-1$ iff $k$ cops have a winning strategy in the cops \& robber game on $G$.

## Solution.

- Consider an $n$-clique.
- Clearly, $n$ cops have a winning strategy: they can occupy every vertex.
- Thus, an $n$-clique has tree width at most $n-1$.
- Consider the cops \& robber game with $n-1$ cops.
- Every vertex has $n-1$ neighbours.
- While the cops can occupy all neighbouring vertices, they cannot catch the robber: if they move to the robbers position, one of the neighbouring vertices becomes free.
- Thus, the robber wins if there are at most $n-1$ cops.


## Exercise 4

Exercise. Show that a clique (fully connected graph) of size $n$ has tree width $n-1$.
Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph $G$ is of tree width $\leq k-1$ iff $k$ cops have a winning strategy in the cops \& robber game on $G$.

## Solution.

- Consider an $n$-clique.
- Clearly, $n$ cops have a winning strategy: they can occupy every vertex.
- Thus, an $n$-clique has tree width at most $n-1$.
- Consider the cops \& robber game with $n-1$ cops.
- Every vertex has $n-1$ neighbours.
- While the cops can occupy all neighbouring vertices, they cannot catch the robber: if they move to the robbers position, one of the neighbouring vertices becomes free.
- Thus, the robber wins if there are at most $n-1$ cops.
- Hence the $n$-clique cannot have tree width $\leq n-2$.


## Exercise 5

Exercise. Recall that a graph is 3 -colourable if one can assign three colours to its vertices in such a way that neighbouring vertices never share the same colour. Let $\mathrm{C}_{3}$ be the set of all 3 -colourable graphs. Are the graphs in $\mathrm{C}_{3}$ of bounded or unbounded tree width? Explain your answer.

## Exercise 5

Exercise. Recall that a graph is 3 -colourable if one can assign three colours to its vertices in such a way that neighbouring vertices never share the same colour. Let $\mathrm{C}_{3}$ be the set of all 3 -colourable graphs. Are the graphs in $\mathrm{C}_{3}$ of bounded or unbounded tree width? Explain your answer.

## Solution.

## Exercise 5

Exercise. Recall that a graph is 3 -colourable if one can assign three colours to its vertices in such a way that neighbouring vertices never share the same colour. Let $\mathrm{C}_{3}$ be the set of all 3 -colourable graphs. Are the graphs in $\mathrm{C}_{3}$ of bounded or unbounded tree width? Explain your answer.

## Solution.

- Any $n \times n$ grid is 2 -colourable.


## Exercise 5

Exercise. Recall that a graph is 3 -colourable if one can assign three colours to its vertices in such a way that neighbouring vertices never share the same colour. Let $\mathrm{C}_{3}$ be the set of all 3 -colourable graphs. Are the graphs in $\mathrm{C}_{3}$ of bounded or unbounded tree width? Explain your answer.

## Solution.

- Any $n \times n$ grid is 2 -colourable.
- Hence, $C_{3}$ contains all grids.


## Exercise 5

Exercise. Recall that a graph is 3 -colourable if one can assign three colours to its vertices in such a way that neighbouring vertices never share the same colour. Let $\mathrm{C}_{3}$ be the set of all 3 -colourable graphs. Are the graphs in $\mathrm{C}_{3}$ of bounded or unbounded tree width? Explain your answer.

## Solution.

- Any $n \times n$ grid is 2 -colourable.
- Hence, $C_{3}$ contains all grids.
- Grids have unbounded tree width.


## Exercise 5

Exercise. Recall that a graph is 3 -colourable if one can assign three colours to its vertices in such a way that neighbouring vertices never share the same colour. Let $\mathrm{C}_{3}$ be the set of all 3 -colourable graphs. Are the graphs in $\mathrm{C}_{3}$ of bounded or unbounded tree width? Explain your answer.

## Solution.

- Any $n \times n$ grid is 2 -colourable.
- Hence, $C_{3}$ contains all grids.
- Grids have unbounded tree width.
- Thus, $C_{3}$ contains graphs of unbounded tree width.


## Exercise 6

Exercise. Decide whether the following claims are true or false. Explain your answer.

1. Deleting an edge from a graph may make the tree width smaller but never larger.
2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.
3. Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.
4. Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but never larger.

## Exercise 6

Exercise. Decide whether the following claims are true or false. Explain your answer.

1. Deleting an edge from a graph may make the tree width smaller but never larger.
2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.
3. Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.
4. Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but never larger.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)
A graph $G$ is of tree width $\leq k-1$ iff $k$ cops have a winning strategy in the cops \& robber game on $G$.

## Exercise 6

Exercise. Decide whether the following claims are true or false. Explain your answer.

1. Deleting an edge from a graph may make the tree width smaller but never larger.
2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.
3. Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.
4. Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but never larger.

## Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph $G$ is of tree width $\leq k-1$ iff $k$ cops have a winning strategy in the cops \& robber game on $G$.
Theorem (Lecture 8, Slide 17)
A hypergraph $H$ is of hypertree width $\leq k$ iff $k$ marshals have a winning strategy in the marshals \& robber game on $H$.

## Exercise 6

Exercise. Decide whether the following claims are true or false. Explain your answer.

1. Deleting an edge from a graph may make the tree width smaller but never larger.
2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.
3. Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.
4. Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but never larger.

## Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph $G$ is of tree width $\leq k-1$ iff $k$ cops have a winning strategy in the cops \& robber game on $G$.
Theorem (Lecture 8, Slide 17)
A hypergraph $H$ is of hypertree width $\leq k$ iff $k$ marshals have a winning strategy in the marshals \& robber game on $H$.
Solution.

## Exercise 6

Exercise. Decide whether the following claims are true or false. Explain your answer.

1. Deleting an edge from a graph may make the tree width smaller but never larger.
2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.
3. Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.
4. Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but never larger.

## Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph $G$ is of tree width $\leq k-1$ iff $k$ cops have a winning strategy in the cops \& robber game on $G$.

## Theorem (Lecture 8, Slide 17)

A hypergraph $H$ is of hypertree width $\leq k$ iff $k$ marshals have a winning strategy in the marshals \& robber game on $H$.

## Solution.

1. True: cops don't walk along edges, so deleting edges does not invalidate winning strategies.

## Exercise 6

Exercise. Decide whether the following claims are true or false. Explain your answer.

1. Deleting an edge from a graph may make the tree width smaller but never larger.
2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.
3. Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.
4. Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but never larger.

## Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph $G$ is of tree width $\leq k-1$ iff $k$ cops have a winning strategy in the cops \& robber game on $G$.

## Theorem (Lecture 8, Slide 17)

A hypergraph $H$ is of hypertree width $\leq k$ iff $k$ marshals have a winning strategy in the marshals \& robber game on $H$.

## Solution.

1. True: cops don't walk along edges, so deleting edges does not invalidate winning strategies.
2. True: analogous.

## Exercise 6

Exercise. Decide whether the following claims are true or false. Explain your answer.

1. Deleting an edge from a graph may make the tree width smaller but never larger.
2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.
3. Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.
4. Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but never larger.

## Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph $G$ is of tree width $\leq k-1$ iff $k$ cops have a winning strategy in the cops \& robber game on $G$.

## Theorem (Lecture 8, Slide 17)

A hypergraph $H$ is of hypertree width $\leq k$ iff $k$ marshals have a winning strategy in the marshals \& robber game on $H$.

## Solution.

1. True: cops don't walk along edges, so deleting edges does not invalidate winning strategies.
2. True: analogous.
3. False: Consider a hypergraph that has a hyperedge containing all vertices. Then the hypergraph is acyclic (i.e., has hypertree width 1), but removing the hyperedge may result in a cyclic hypergraph (i.e., hypertree width $>1$ ).

## Exercise 6

Exercise. Decide whether the following claims are true or false. Explain your answer.

1. Deleting an edge from a graph may make the tree width smaller but never larger.
2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.
3. Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.
4. Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but never larger.

## Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph $G$ is of tree width $\leq k-1$ iff $k$ cops have a winning strategy in the cops \& robber game on $G$.

## Theorem (Lecture 8, Slide 17)

A hypergraph $H$ is of hypertree width $\leq k$ iff $k$ marshals have a winning strategy in the marshals \& robber game on $H$.

## Solution.

1. True: cops don't walk along edges, so deleting edges does not invalidate winning strategies.
2. True: analogous.
3. False: Consider a hypergraph that has a hyperedge containing all vertices. Then the hypergraph is acyclic (i.e., has hypertree width 1), but removing the hyperedge may result in a cyclic hypergraph (i.e., hypertree width $>1$ ).
4. True: marshals don't occupy vertices, but hyperedges, so deleting vertices does not invalidate winning strategies.

## Exercise 7

Exercise. The following BCQ corresponds to graph (a) in Exercise 2:

$$
\begin{aligned}
\exists x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8} \cdot \mathrm{r}\left(x_{1}, x_{2}\right) & \wedge \mathrm{r}\left(x_{1}, x_{3}\right) \wedge \mathrm{r}\left(x_{2}, x_{4}\right) \wedge \mathrm{r}\left(x_{3}, x_{4}\right) \wedge \mathrm{r}\left(x_{3}, x_{5}\right) \wedge \\
\mathrm{r}\left(x_{4}, x_{6}\right) & \wedge \mathrm{r}\left(x_{5}, x_{6}\right) \wedge \mathrm{r}\left(x_{5}, x_{7}\right) \wedge \mathrm{r}\left(x_{6}, x_{8}\right) \wedge \mathrm{r}\left(x_{7}, x_{8}\right)
\end{aligned}
$$

According to the logical characterisation from the lecture, this query can be expressed in the $\exists-\wedge$-fragment of $\operatorname{FO}$ using only tree width +1 variables. Find such a formula.

## Exercise 7

Exercise. The following BCQ corresponds to graph (a) in Exercise 2:

$$
\begin{aligned}
\exists x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8} \cdot \mathrm{r}\left(x_{1}, x_{2}\right) & \wedge r\left(x_{1}, x_{3}\right) \wedge r\left(x_{2}, x_{4}\right) \wedge r\left(x_{3}, x_{4}\right) \wedge r\left(x_{3}, x_{5}\right) \wedge \\
r\left(x_{4}, x_{6}\right) & \wedge r\left(x_{5}, x_{6}\right) \wedge r\left(x_{5}, x_{7}\right) \wedge r\left(x_{6}, x_{8}\right) \wedge r\left(x_{7}, x_{8}\right)
\end{aligned}
$$

According to the logical characterisation from the lecture, this query can be expressed in the $\exists-\wedge$-fragment of FO using only tree width +1 variables. Find such a formula.

## Solution.

$$
\begin{aligned}
\exists x, y, z \cdot \mathrm{r}(x, y) & \wedge \mathrm{r}(x, z) \wedge \\
(\exists x \cdot \mathrm{r}(y, x) & \wedge \mathrm{r}(z, x) \wedge \\
(\exists y \cdot \mathrm{r}(z, y) & \wedge \\
(\exists z \cdot \mathrm{r}(x, z) & \wedge \mathrm{r}(y, z) \wedge \\
(\exists x \cdot \mathrm{r}(y, x) & \wedge \\
(\exists y \cdot \mathrm{r}(x, y) & \wedge \mathrm{r}(z, y))))))
\end{aligned}
$$

## Exercise 8

## Exercise. Consider Adler's Hypergraph:

Play the marshals \& robber game on this graph.

1. Can one marshal catch the robber?
2. Can two marshals catch the robber?
3. Can three marshals catch the robber?
4. Adler et al. [Eur. J. Comb., 2007] proposed this graph as an example where fewer marshals can win if they are allowed to play non-monotonically, that is, if they are not required to shrink the remaining space in each turn. Can you confirm her findings?
(*) Can you explain why non-monotone play is unavoidable in one of the above cases if the marshals want to win?

## Exercise 8

## Exercise. Consider Adler's Hypergraph:



## Solution.

Play the marshals \& robber game on this graph.

1. Can one marshal catch the robber?
2. Can two marshals catch the robber?
3. Can three marshals catch the robber?
4. Adler et al. [Eur. J. Comb., 2007] proposed this graph as an example where fewer marshals can win if they are allowed to play non-monotonically, that is, if they are not required to shrink the remaining space in each turn. Can you confirm her findings?
(*) Can you explain why non-monotone play is unavoidable in one of the above cases if the marshals want to win?

## Exercise 8

## Exercise. Consider Adler's Hypergraph:



## Solution.

1. No.

Play the marshals \& robber game on this graph.

1. Can one marshal catch the robber?
2. Can two marshals catch the robber?
3. Can three marshals catch the robber?
4. Adler et al. [Eur. J. Comb., 2007] proposed this graph as an example where fewer marshals can win if they are allowed to play non-monotonically, that is, if they are not required to shrink the remaining space in each turn. Can you confirm her findings?
(*) Can you explain why non-monotone play is unavoidable in one of the above cases if the marshals want to win?

## Exercise 8

## Exercise. Consider Adler's Hypergraph:



## Solution.

1. No.
2. Yes, but only non-monotonically.

Play the marshals \& robber game on this graph.

1. Can one marshal catch the robber?
2. Can two marshals catch the robber?
3. Can three marshals catch the robber?
4. Adler et al. [Eur. J. Comb., 2007] proposed this graph as an example where fewer marshals can win if they are allowed to play non-monotonically, that is, if they are not required to shrink the remaining space in each turn. Can you confirm her findings?
(*) Can you explain why non-monotone play is unavoidable in one of the above cases if the marshals want to win?

## Exercise 8

## Exercise. Consider Adler's Hypergraph:

Play the marshals \& robber game on this graph.

1. Can one marshal catch the robber?


## Solution.

1. No.
2. Yes, but only non-monotonically.
3. Yes, even when playing monotonically.
4. Can two marshals catch the robber?
5. Can three marshals catch the robber?
6. Adler et al. [Eur. J. Comb., 2007] proposed this graph as an example where fewer marshals can win if they are allowed to play non-monotonically, that is, if they are not required to shrink the remaining space in each turn. Can you confirm her findings?
(*) Can you explain why non-monotone play is unavoidable in one of the above cases if the marshals want to win?

## Exercise 8

## Exercise. Consider Adler's Hypergraph:

Play the marshals \& robber game on this graph.

1. Can one marshal catch the robber?

2. Can two marshals catch the robber?
3. Can three marshals catch the robber?
4. Adler et al. [Eur. J. Comb., 2007] proposed this graph as an example where fewer marshals can win if they are allowed to play non-monotonically, that is, if they are not required to shrink the remaining space in each turn. Can you confirm her findings?
(*) Can you explain why non-monotone play is unavoidable in one of the above cases if the marshals want to win?

## Solution.

1. No.
2. Yes, but only non-monotonically.
3. Yes, even when playing monotonically.
(*) The graph has hypertree width 3, but generalised hypertree width 2.
