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Abstract

We address the fundamentals of graph queries, which is best characterized by the no-
tion of graph pattern matching. In contrast to classical subgraph matching notions, like
graph homomorphisms or graph isomorphisms, variants of simulation have been devised
for numerous graph database management tasks.

In the late 1990s, simulations were introduced to graph database management as a
tool for modeling languages for graph-structured data. Back then, graphs were almost
always tree-like. Therefore, we devise an old theory for modern graph databases, which
are not necessarily trees. Here, we observe an interesting interplay between the notion of
simulation and the root nodes of tree-structured data. After we have reestablished the
fundamental assumptions behind root nodes � without introducing them syntactically to
general graphs � we derive a sound semantics for graph schemas. We even enhance the
original schema model by so-called mandatory attributes, strongly relating to key attributes
in the relational data model. Again we obtain a sound semantic foundations for this
model of graph schemas. However, we show that this is only possible introducing syntactic
restrictions on the graph schema model.

Simulations have a summarizing character in that they are capable of collapsing and
expanding arbitrary graphs. This is impossible in the classical graph database perspective
without an appropriate complementation of graph homomorphisms with query language
operators. Therefore, we argue for simulation to have a higher pragmatic value over graph-
homomorphic matching.

In the next step, we pull simulations out of their pure pattern matching method. We
study the query language Sparql under a simulation-based matching mechanism for basic
graph patterns. As soon as interesting query operators (like joins) are added, the resulting
language is not complete w. r. t. the original Sparql semantics. In fact, Sparql matches
get lost under simulation. For some well-known Sparql fragments, we prove completeness
and even tractability. Several steps of approximation allow for the derivation of a complete
semantics for full Sparql. The semantics produces a single match that summarizes all
original matches. From this semantics we develop a pruning method for Sparql query
processing. Therefore, we had to develop a novel algorithmic solution to the base simulation
problem because well-known general solutions do not scale with the size of the data. Our
solution exhibits the usual assumptions when dealing with (graph) database querying tasks.
Beyond performance improvements, we evaluate our newly devised pruning semantics for
Sparql query processing.
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Kurzfassung

In dieser Arbeit befassen wir uns mit den Grundlagen der Graphdatenbankanfragen, dem
sogenannten Graph Pattern Matching. Als e�ziente Alternative zur klassischen Subgra-
phisomorphie haben sich früh Varianten von Simulation für diverse Aufgaben in graphda-
tenbankverwandten Anwendungsgebieten etabliert.

Simulationen fanden in den späten 1990er Jahren Einzug in die Beschreibungsspra-
chen von Graphdaten, damals noch in Form baumstrukturierter Daten. Dieser Theorie
widmen wir uns zuallererst, da moderne Graphdatenbankmodelle nicht notwendigerweise
baumstrukturiert sind. Hier stellt sich ein interessantes Zwischenspiel zwischen der vormals
bekannten Halbordnung der Simulation und den Wurzelknoten baumstrukturierter Daten
heraus. Nachdem die zugrundeliegenden Annahmen von Wurzeln wieder von uns etabliert
worden sind, ohne dass die Wurzel als syntaktisches Datenelement auftaucht, gelingt es ei-
ne korrekte Semantik für Graphschemata abzuleiten. Zusätzlich erweitern wir das Modell
um sogenannte verp�ichtende Attribute, die beispielsweise beim klassischen relationalen
Modell als Schlüsselattribute wiederauftauchen. Auch hierfür entwickeln wir eine korrek-
te Semantik, die sich leider aber nur durch starke Einschränkungen der modellierbaren
Graphdaten aufrechterhalten lässt.

Um ein anderes Beispiel zu nennen, können Simulationen auch gut dazu verwendet
werden, Kreise durch ein einziges endliches Pattern darzustellen und in einer entsprechen-
den Datenbasis aufzu�nden. Dieses können homomorphismenbasierte Ansätze nicht leisten,
solange sie nicht von einer Graphanfragesprache komplementiert werden. Wir argumentie-
ren für Simulationen, im Speziellen für sogenannte Duale Simulationen, die einen hohen
pragmatischen Wert gegenüber der Subgraphisomorphie aufweisen.

Im nächsten Schritt der Arbeit wollen wir duale Simulationen aus dem reinen Graph
Pattern Matching herausholen und mit klassischen Operatoren der Anfragesprache Sparql
komplementieren. Leider stellt sich dieses als prinzipiell unlösbare Aufgabe heraus, sobald
man interessante Verknüpfungsoperatoren der Sprache hinzufügen möchte. Die resultieren-
den Anfragesprachen sind weder korrekt noch vollständig bezüglich der Ursprungssemantik
ist. Für Fragmente gelingt es, Vollständigkeit nachzuweisen. Sogar e�ziente Lösbarkeit der
klassischen Anfragesprachprobleme kann gezeigt werden. Über mehrere Approximierungs-
schritte gelingt es schlieÿlich eine vollständige Sparql Semantik auf Basis von dualer Si-
mulation zu de�nieren. Die Semantik selbst hat die Eigenschaft, mit einem einzigen Match
alle Sparql-Resultate zu beschreiben bzw. zusammenzufassen. Daraus entwickeln wir eine
algorithmische Lösung, die als Pruningschritt zur Sparql-Anfrageverarbeitung verwendet
werden kann. Auch hier gibt es zunächst Hindernisse. Etablierte Algorithmen, die das Si-
mulationsproblem e�zient lösen, skalieren alle gleich schlecht mit der Datenbankgröÿe.
Da wir es aber mit enorm groÿen Datengraphen zutun haben, scheinen die allgemeineren
Werkzeuge zu wenig auf die Annahmen in Graphdaten eingestellt zu sein. Wir analysieren
solche Annahmen, entwickeln auf deren Basis einen Algorithmus und eine Anwendung,
die im Vergleich zu den bestehenden Algorithmen deutlich performanter ist. Auÿerdem
evaluieren wir mit dem entwickelten Werkzeug unsere Pruning-Semantik für Sparql.
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CHAPTER 1
Introduction

Not only do graphs span a wide variety of application contexts, but these contexts have
also started producing enormous volumes of their data in graph-shape [23]. For instance,
social networks store interconnections between its participants like friendship [26]. Other
examples include knowledge [41] or knowledge paired with product information [42]. In
many more application domains [118], vast amounts of graph data require organizational
principles and operations to manipulate the data [10]. As graph data we understand en-
tities, represented by nodes, and relationships between these entities, represented by (di-
rected and labeled) edges. Organization and manipulation of vast amounts of data is the
core competence of database systems but in contrast to well-structured relational data,
graph data is usually unstructured, which massively complicates their analysis. Fortu-
nately, early standardization e�orts and foundational studies of graph data representa-
tions [8, 9, 13, 14, 62, 122] and the support of established and new database system
vendors [47, 31] took place. The Semantic Web movement, institutionalized by the W3C,
has been among the earliest such e�orts. Also, several research prototypes concentrate on
diverse graph database management tasks, e. g., from e�cient storage [104], scalable join
processing [16, 15], up to answering semantic queries [102]. Standardization and formal-
ization by the W3C do not stop at graph data representation but also include languages
for querying the stored data. Sparql [114, 65], the W3C recommendation for querying
data on the Web, is well-established by practitioners and researchers [14, 12, 71]. Al-
ternatives like Cypher1, the query language of the famous graph database management
system Neo4j2, have recently got the attention of researchers, who started formalizing the
language's semantics [88, 58]. Such a formalization forms a solid ground for future research.

When I started focusing on graph databases some years ago, the �eld presented many
familiar problems to a person with a scienti�c background in the theory of program-
ming language semantics. Back then, my advisor gave me an initial pointer to Exemplar
Queries [100].

A New and Old Way of Searching. Assume we are given a bibliographic database
(already loaded into a database system), i. e., it stores information about published papers,
preprints, authors, and the like. Unfortunately, the database system provides no interface
we are familiar with, e. g., the query language and/or the database schema are entirely
unknown to us. However, we do know something about an author and her scienti�c papers
that should be stored somewhere in the database. We provide a list of keywords, e. g.,
the author's full name and some of her most important works, which may be the starting

1https://neo4j.com/developer/cypher-query-language/
2https://neo4j.com/
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2 CHAPTER 1. INTRODUCTION

point of an Exemplar Query process. Exemplar Queries build on the premise that users
are not generally trained in posing queries (in a formal query language) but know at least
one match of interest. In the course of answering an exemplar query, a substructure from
the database, matching the keyword query [33] we mentioned before, is retrieved. It is this
substructure Mottin et al. call an exemplar [100]. In a second step, all matches similar to
the exemplar are retrieved and presented to the user.

The measures Mottin et al. use in [100] are formally grounded in graph pattern
matching. In particular, they devise their process for subgraph-isomorphic matching and
matching up to strong simulation, a matching notion that has been introduced by Ma et
al. [85]. Di�erent forms of simulations are paradigmatic semantic models of concurrent
processes [96, 107, 95, 69]. Their appearance in a database context came as a surprise at
�rst but the connection is likewise, insightful and challenging: Processes can be represented
as (possibly in�nite) graphs (e. g., by structural operational semantics [95]). Two processes
shall not be distinguished if the graphs match one another, e. g., in terms of executions
(e. g., traces), deadlock behavior (e. g., failures), or general branching structure (e. g., bisim-
ulations). In subgraph pattern matching (part 2 of exemplar queries), a subgraph from
the database must be compared to the given graph pattern/query (i. e., exemplar) up to
graph topology (e. g., graph isomorphisms). There are two distinguishing characteristics:
(1) both input graphs, i. e., the pattern and the data graph, are �nite; the pattern (i. e.,
exemplar) may also be assumed to be signi�cantly smaller than the data graph. (2) a single
match is often insu�cient; in a graph query setting, we seek for all matches from a graph
database for a given pattern. An immediate goal, guided by process-theoretic curiosity,
was to �nd out whether other well-known semantic equivalences/preorders would provide
meaning in a graph query setting.

By devising several examples, we found exciting uses for other matching notions drawn
from the standard spectrum of semantic equivalences, the linear-time branching-time spec-
trum [133]. Therefore, we had a case to ask for the meaning of graph patterns w. r. t.
graph querying, guided by the kind of matching mechanism that distinguishes matches
from non-matches [90, 91].

1.1 Research Goals

Beyond exemplar queries, surveying the (graph) database literature for other use cases
of simulation conducted in database research revealed graph schemas for semi-structured
data [28, 29, 3, 103, 127, 30] and O�ine indexing structures [98, 115, 75, 76, 35, 53,
123, 108, 125]. Simulations have also been proposed as viable alternatives to isomorphic
subgraph matching [50, 85, 48, 55]. The main driver for the research, conducted for this
thesis, circles around the following question:

How can we lift

tractable graph pattern matching

to a credible tool for

modern graph database systems?

In the course of answering this question, we take up on several challenges.

Scalability Beyond Tractability. By reviewing the motivations and experimental eval-
uations of the papers applying simulations in a graph pattern matching scenario, i. e.,
[50, 85, 48, 55], graphs associated with the label real-world graphs have remarkably few
nodes and edges. In light of a recent survey [118], real-world graph data is, in fact, very
large. If the devised pattern matching notions are tractable, why not letting them run on
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real real-world graph data? Secondly, if existing algorithms cannot cope with these extents
of data, are there other algorithms that can?

Graph Pattern Matching for Databases. A second peculiarity about the reported
works is the choice of baseline notions and systems the authors compare themselves to.
On the one hand, subgraph isomorphisms are too strict about coping with emerging ap-
plications [52, 50, 48]. On the other hand, subgraph isomorphisms and their associated
tools are favored when it comes to evaluation. If the devised pattern matching notions are
tractable and the application domain considers graph databases, why not comparing them
to the runtime of a full-�edged graph database system?

Online Graph Processing. Indexing structures should be computed outside opera-
tional phases of database systems [45]. It is well-known that some pattern matching no-
tions tend to be non-updatable, i. e., once the data graph changes, its (bi-)similarity classes
must be recomputed. If we can �nd an algorithm that ful�lls the �rst two goals, i. e., that
algorithm processes real-world graph sizes and can keep up with database systems, is this
algorithm useful for an Online task, such as graph query processing?

Credibility by Correctness. Regarding simulation as a method for schema instance
matching, we �rst have to acknowledge the elegance through which graph schemas for semi-
structured data have been devised. When considering semi-structured data, we assume a
tree structure but observing modern graph databases, tree-structuredness is not necessarily
given? Is there a way to renovate graph schemas towards modern graph database models?
Can we derive a provably correct graph modeling methodology from it?

Semantics for Graphs Data. During our course through the literature, we saw simula-
tions appearing at places where intractable matching notions like subgraph isomorphisms
or graph homomorphisms shall be evaded. Often, a single graph pattern is insu�cient to
describe a user's information need up to graph homomorphism. Therefore, powerful query
languages have been developed to complement the inabilities of basic matching. Can we
combine tractable graph pattern matching with powerful query language operators without
losing tractability or correctness?

1.2 Contributions

Throughout the last section, we brie�y sketched �ve research goals. The �ndings we collect,
describe, extend, and ultimately use to achieve our goals have partly been published in
earlier works [90, 94, 91, 92, 93, 89]. At the beginning of each chapter, we substantiate
the relationship between the chapter's contents and our earlier publications. Subsequently,
�nd a brief description of each contribution, sorted by the order of appearance throughout
this thesis.

The Semantics of (Modal) Graph Schemas. In Chapter 2, we are primarily con-
cerned with describing the mathematical basis of graph data models, which will be used
throughout the rest of this thesis. After that, we tackle our fourth research goal and devise
graph schemas by Buneman et al. [29] for our graph data model. After having found the
right preorder that relates graph schemas and their instances, also beyond a single graph
schema via re�nement, we take up on a requirement that was requested when the graph
schema method was presented. In [3], a pragmatic solution was sketched. In this thesis, we
aim for a more fundamental solution based on familiar principles from modal logics [81].
We contribute Buneman's graph schema model for modern graph databases and extend it
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to so-called modal graph schemas [89]. In both cases, we intensively discuss under which
conditions simulations provide us with a correct semantic foundation of the model.

The Semantics of Graph Patterns. Graph pattern matching is considered in Chap-
ter 3. Thereby, we start with the premise that (sub-)graph isomorphisms are unnecessarily
restrictive and devise scenarios that attest them a tendency to early incorporation of graph
query language principles. Pattern matching up to di�erent forms of similarity provides
pragmatic power for single (�nite) patterns. We contribute a comparative study of graph
matching notions to arrive at dual simulations; the notion we will primarily study through-
out the rest of this thesis. Furthermore, we contribute a failure theory for graph databases
that allows us to express negation quite naturally by alphabet extensions of the pattern
graph [90, 91].

From Graph Patterns to Graph Queries. What has been bene�cial in the protected
area of toy examples in Chapter 3, turns out to be a real barrier when trying to devise
graph query operations for simulations. We contribute semantics for Sparql that use
dual simulations instead of graph homomorphisms. For several fragments and alternative
semantic de�nitions, we provide proofs of (in-)correctness and tractability. Eventually,
we arrive at the maximal dual simulation semantics for Sparql, that culminates all the
�ndings of the earlier semantics in a single correct pruning semantics.

Fast Online Graph Processing. We believe, the reason why former graph pattern
matching algorithms have not been evaluated on real-world graph datasets and compared
to established graph database systems is that these systems are incredibly optimized.
The runtime reports of simulations in the mentioned papers are not overwhelming when
regarding the runtime statistics of full-�edged graph database systems coping with even
bigger graph data instances. Nevertheless, we have succeeded in �nding a characterization
of dual simulations that allows for �exible evaluation strategies [93, 92]. In Chapter 5, we
contribute this new characterization of dual simulations in terms of systems of inequalities
over bit-vector representations of node sets and families of bit-matrices for data graphs.
Furthermore, our representation allows for a direct implementation of the maximal dual
simulation semantics we developed in Chapter 4.



CHAPTER 2
Graph Data and Schema

Following the characterization of Angles and Gutierrez [9, 11], a graph data model has the
following three characteristic components:

Data and Schema: Data, as well as its schema, are represented by graphs, incorporating
entities or classes (as nodes) together with their properties, modeled as graph edges,
in a concise and simple model. Presumably, the experienced simplicity of graph-
based data stems from its direct visual representation. One of the core features
of such models is to naturally capture unstructured data, as opposed to other data
models like the relational data model [36]. If information about some entity is missing,
we can omit it from the database instance. It comes from this unstructuredness that
graph data is usually considered schema-less, making a clear-cut distinction between
the data and its schema hard to establish, even if a schema was explicitly given.

Data Manipulation: Specialized graph transformation and query languages are estab-
lished to operate on graph database instances. Often, such languages deal with
graph-oriented operations like shortest paths, subgraphs, or graph patterns.

Integrity Constraints: Angles and Gutierrez count schema-instance consistency, refer-
ential integrity, as well as dependencies of a graph data model to this aspect [11].

In this chapter we concentrate on the �rst part which includes the basic graph structures
and the means of modeling data and schema using graphs. Data manipulation, in terms
of graph query languages, is the subject of Chapters 3 and 4. We only indirectly deal
with constraints over data, e. g., by notions of graph schema conformance in Sections 2.3
and 2.4.

We will be concerned with one particular model of schemas for graph databases, that is
not enforced in graph data, in that a graph database management system has to prevent the
user from inserting inconsistent data. A graph schema is merely thought of as additional
structural and semantic knowledge or meta data, supporting the user in query formulation
or the query processor in the evaluation of a given user query. According to Abiteboul et
al. [3], the two key questions we need to answer about the interrelation of a graph schema
and their database instances are:

(1) When is a graph database an instance of a given schema?

(2) Which classi�cation of instance objects is implied by a schema?

It is the answers to these questions that distinguish graph schemas from other approaches
in the literature as we employ a non-standard, but formally well-founded, instance notion.

5



6 CHAPTER 2. GRAPH DATA AND SCHEMA

Goals. The main objective of this chapter is making the reader of this thesis familiar
with our basic notions and notation. Beyond traditional topics of labeled and unlabeled
graphs, e. g., graph morphisms, we strive graph simulations, which are non-standard re-
lations for comparing graphs. Simulations appear in every subsequent chapter. Besides
their de�nition, we also motivate, present, and prove theoretical results surrounding graph
simulations. We do not intend to give a comprehensive classi�cation or historical overview
of graph data models. There are already plenty of them published in worthwhile surveys
of the �eld [9, 62, 6, 11, 63].

Contribution. Throughout this chapter, we recover the notion of graph schemas, which
was introduced by Buneman et al. [29] more than 20 years ago as a modeling tool for
graph data. This notion has been grounded on a semistructured data model, which has
been popular back then. The consequences of this data model make graph schemas not
directly applicable to nowadays graph data models. Therefore, we discuss the particular
assumptions and advantages of semistructured data towards graph schemas, in order to
renovate them to a useful tool for today's more common graph data models. Beyond the
recovery of its expressive power, we add to graph schemas the ability to �exibly requiring
structure. For instance, we may want a book object to feature title, author(s), and an
ISBN. Buneman et al.'s graph schemas describe a graph database's allowed structure
while missing out on so-called key properties for the objects to be classi�ed. Parts of the
�ndings of Sections 2.3 and 2.4 have been published as a full paper at the 38 th International
Conference on Conceptual Modeling (ER 2019) [89].

Outline. In Section 2.1, we give a brief summary of basic notions and notations of (la-
beled) graphs from a mathematical perspective. Graphs as a representational instrument
for data are discussed and formalized in Section 2.2. Therein, we begin with basic con-
siderations for graph data models and present the Resource Description Framework [122],
culminating in our notion of graph databases, as used throughout the rest of the thesis.
While Section 2.3 solely cares for the notions of graph schema and graph simulations,
Section 2.4 studies the modal extension of graph schemas. By Section 2.5, we close this
chapter in a summarizing manner.

2.1 Graph Structure

Graph data models have been developed alongside diverse applications with quite di�erent
concerns of what aspect a graph shall model of data. These developments led to a variety
of proposals that are summarized in worthwhile surveys and textbooks [3, 9, 6, 10]. The
base concepts of all the di�erent graph data models stem from the mathematical model
of graphs. We summarize the core concepts and provide some data-independent examples
for illustration purposes.

2.1.1 Basic Notions

The core notion of all the upcoming models is that of a directed graph,

G = (V,E), (2.1)

which is a pair of a �nite set of nodes V (sometimes also called vertices) and a directed
edge relation E ⊆ V ×V . The elements of E, called edges, are ordered pairs of nodes. The
�rst component of an edge e = (v, w) is the source node of e, denoted source(e) = v, while
the second component, here w, is the target node of e, denoted target(e) = w. We de�ne
nodes(e) to represent the set of nodes of an edge e, i. e., nodes(e) := {source(e), target(e)}.
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q r s

t u v

Figure 2.1: A Directed (Unlabeled) Graph

Instead of (v, w) ∈ E we often use the in�x notation v E w. If v E w, w is a successor of
v in G while v is called a predecessor of w in G. The set of all successor nodes of v ∈ V
(in G) is de�ned by vE := {w ∈ V | (v, w) ∈ E}. Likewise, the set of all predecessor nodes
of v ∈ V (in G) is denoted by Ev := {u ∈ V | (u, v) ∈ E}.

Example 2.1 Consider the graph G2.1 = (V,E) with

V = {q, r, s, t, u, v} and
E = {(q, r), (r, q), (r, s), (r, t), (r, u), (s, u), (t, u), (u, v)}.

A possible graphical notation of G2.1 is depicted in Figure 2.1. The nodes of G2.1 are
drawn as black dots with their associated identities written next to them. In graphical
representations, we represent edges as directed arrows between the nodes associated with
the edge. The successor nodes of r are q, s, t, u, making up the elements of the set rE.
Note that vE = ∅ since v has no outgoing edges. Likewise, the predecessor nodes of u are
collected in Eu = {r, s, t}. �

Let G = (V,E) be a directed graph. A path in G is a non-empty sequence of nodes
π = v0v1v2 . . . vk ∈ V +, such that vi−1 E vi or vi E vi−1 (0 < i ≤ k). Note that a path
is undirected, i. e., the direction of the path components does not matter. The �rst node
of path π is denoted by first(π) = v0. The last node of path π is denoted by last(π) = vk.
We denote the set of all paths of G by Paths(G). The length of path π, denoted |π|, is
de�ned as the number of edges it traverses, i. e., for π = v0v1 . . . vk, |π| = k. A path
π = v0v1 . . . vk ∈ V + is called a directed path in G i� vi−1 E vi (0 < i ≤ k). The set of
all directed paths of G is denoted by diPaths(G). Let v, w ∈ V be two nodes of a directed
graph G = (V,E). A (directed) path π ∈ Paths(G) (π ∈ diPaths(G), resp.) is a (directed)
path between v and w i� v = first(π) and w = last(π). If π is a path between v and w, we
say that w is reachable from v (via π). Thus, if w is reachable from v, then v is reachable
from w. The set of all reachable nodes from v in G is denoted by RG(v). The graph G is
connected i� RG(v) = V (v ∈ V ).

Example 2.2 Reconsidering our graph G2.1 from Example 2.1, there are several paths to
observe, e. g., π1 = q r u v is a directed path from q to v. Furthermore, π2 = v u t r q is a
path from v to q, this time an undirected one. From any node but r and q, there are only
undirected paths to nodes r and q. There is at least one directed path to node v from any
other node. �

A node r ∈ V of a directed graph G = (V,E) is called a root node of G i� there is a
directed path to any other node in the graph, i. e.,

∀v ∈ V \ {r} : ∃π ∈ diPaths(G) : |π| > 0 ∧ first(π) = r ∧ last(π) = v.
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q r s

t u v

Figure 2.2: A Directed Tree

Thus, every node v ∈ V \ {r} is reachable from r, even by a directed path. G is called a
rooted directed graph i� it has a root node r ∈ V . If a root node r has been chosen, G is
sometimes denoted as a triple (V,E, r). While rooted graphs allow for undirected cycles,
trees do not. A rooted graph is a tree i�

∀v ∈ V \ {r} : |{π ∈ diPaths(G) | first(π) = r ∧ last(π) = v}| = 1,

i. e., the directed path from root r to a node v ∈ V is unique. If G is a tree or has a root
node, it is a connected graph.

Example 2.3 Regarding our running example, only nodes q and r qualify as root nodes
of G2.1. In order to obtain a tree from G2.1 we could remove the edges (r, q), (r, u), and
(s, u). These removals result in the tree G2.2, depicted in Figure 2.2, with root node q.
Note that r is no root node anymore because there is no directed path from r to q in G2.2.�

Distinct graphs may relate to one another. In the rest of this section, we discuss two types
of structural graph comparisons. Let G = (VG, EG) and H = (VH , EH) be two directed
graphs. G is a subgraph of H, denoted G ⊆ H, i� VG ⊆ VH and EG ⊆ EH . The subgraph
relationship depends on the identity of nodes, in that every node of G must also be a node
of H (edges accordingly). Identity-independent, i. e., purely structural, subgraph relations
may be found in the notions of homomorphisms for graphs. Instead of ⊆, functions relate
the nodes of G with those of H. A graph homomorphism between G and H is an edge-
preserving function η : VG → VH , i. e., if v EG w, then η(v) EH η(w). For a graph
homomorphism η between G and H, η(G) de�nes a subgraph of H by

η(G) := ({η(v) | v ∈ VG}, {(η(v), η(w)) | (v, w) ∈ EG}), (2.2)

the η-induced subgraph of H. An injective graph homomorphism is a subgraph isomorphism.
A bijective graph homomorphism is called a graph isomorphism. Graph homomorphisms
relate graphs with similar or even identical structures. While plain homomorphisms allow
for mapping several nodes of G to one node of H, (subgraph) isomorphisms are injective,
i. e., every two distinct nodes of G are mapped to distinct nodes of H. Graph isomorphisms
provide the formal device for proving that the same graphical representation identi�es two
formally di�erent graphs.

Example 2.4 The subgraph relationship is the most discriminating, compared to the
other morphism-based graph relations, because nodes and edges must be identical. We
exemplify four di�erent graph structures in Figure 2.3, which we subsequently refer to by
G(a), G(b), G(c), and G(d). It certainly holds that G(a) ⊆ G2.1. However, G(b) is not a
subgraph of G2.1, although it shows high structural similarity to G(a). Function η(a)7→(b)

(y 7→ r, x 7→ s, w 7→ u) witnesses this similarity in terms of a graph homomorphism between
G(b) and G(a). In fact, η(a)7→(b) quali�es as a graph isomorphism between G(b) and G(a).
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Figure 2.3: Related (Sub-)Graphs

Hence, it is also a subgraph isomorphism between G(b) and G2.1. The subgraph G(a) is
not the only subgraph of G2.1, G(b) is isomorphic to. Function ι (w 7→ u, x 7→ t, y 7→ r) is
another subgraph isomorphism between G(b) and G2.1.

Consider now the graphs G(c) and G(d), which are neither isomorphic nor subgraph
isomorphic to one another. They can, however, be related by graph homomorphism η(c)7→(d)

(r 7→ z, q 7→ z). Thus, graph cycles can be reduced to simple loops via homomorphisms.
Furthermore, it can be shown that every directed graph G is homomorphic to graph G(d).
The necessary graph homomorphism maps every node of G to z. �

So far, directed graphs allow us to model relationships of a single type because, beyond
node identities, there is nothing that distinguishes an edge from another one. In order to
permit the expression of several relationship types, usually labeled graphs are considered
as more �exible data structures.

2.1.2 Labeled Graphs

Labels for graphs may be introduced for a plethora of purposes. One of the most important
ones is readability since abstract nodes, such as the ones we used above (v, v′, w, v1, v2, . . .),
do not necessarily translate well to real-world objects to be modeled. For instance, a road
network is recognized to model a geographical area only if the points of interest resemble
the ones in the area, at least by their names, but also by the way they are interconnected.
Another purpose is to overcome the limitations inherited from set theory partially, that is,
the impossibility to include the same object twice, i. e., having two distinct nodes or edges
modeling the same real-world object or relationship.

No matter what kind of labeling we pursue, a labeling alphabet is required. Let Σ be
such an alphabet. Although not limited in what it may contain, Σ is usually assumed to
be �nite. The least invasive form of labeling a directed graph G = (V,E) is to introduce
a node labeling function l : V → Σ, that assigns a label from Σ to every node in the
graph, maintaining G's mathematical structure as introduced in Equation (2.1). Since the
alphabet represents an integral part of labeled graphs, it is usually a component of the
signature of graphs. A directed node-labeled graph is, thus, a quadruple G = (V,Σ, E, l)
where (V,E) is a directed graph and l : V → Σ a node labeling function over the �nite
alphabet Σ.

Many of the basic notions introduced in Section 2.1.1 directly apply to node-labeled
graphs. The decision whether two node-labeled graphs are considered equal, usually de-
pends on the application but is often based on a notion of graph isomorphism. Besides
relating two such graphs, G = (VG,Σ, EG, lG) and H = (VH ,Σ, EH , lH), on a mere struc-
tural basis, i. e., by isomorphisms between (VG, EG) and (VH , EH), we may also foster more
elaborate notions of equality by integrating the labeling functions. The quasi-standard is to
require label equality of isomorphic nodes. However, more general notions are conceptually
available, for instance, alignments over Σ [110]. A binary relation over Σ, ' ⊆ Σ × Σ, is
called an alignment, which is a purpose-driven notion saying that some symbol a ∈ Σ may
be the same as another symbol b ∈ Σ, expressed by (a, b) ∈ '. We write a'b for (a, b) ∈ '.
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As a relation, an alignment may be of any form, e. g., an (injective/bijective) function or
an equivalence relation. Examples for ' are identity, i. e., ' = idΣ := {(a, a) | a ∈ Σ}, or,
less formally, synonymity, i. e., all symbols that may replace one another in any context,
based on some linguistic model. Label equality, as sketched above, is the special case of
choosing ' = idΣ. Incorporating a given alignment ', we obtain a generalization of graph
isomorphisms ι between node-labeled graphs G and H by

1. ι is a graph isomorphism between (VG, EG) and (VH , EH) and

2. ι is '-preserving, i. e., for all v ∈ VG, lG(v)' lH(ι(v)).

This alignment version of graph isomorphisms does indeed make the notion of graph iso-
morphisms more liberal as one node label may be aligned with several others. On the other
hand, alignments have the power to be more restrictive since nodes, although structurally
isomorphic, disqualify to be related as their labels cannot be aligned under '.

Example 2.5 Suppose we have a labeling alphabet Σ = {a, b, c} and an alignment ' with
a ' c and b ' c. Then we can �nd graph isomorphisms between G and H, respecting ',
only if G uses the labels a or b, while H may only use label c. As soon as G also uses label
c or H uses one of the labels a or b, no isomorphism exists, that preserves '. �

Note that we assumed G and H to be labeled over the same alphabet Σ. This assumption
may appear as limiting at �rst but actually is none. Assume, G is labeled over ΣG and H
over ΣH . Then indeed, both graphs are labeled over ΣG ∪ ΣH without contradicting any
of the previous de�nitions. Hence, graph alphabets can always be made the same without
causing harm in the course of comparing two graphs that use them. Having both graphs
labeled over the same alphabet does not necessarily mean that they are using all available
labels. The alphabet is an upper bound for which we have to check label equality (or
alignment).

In principle, the same procedure as for node labels may be followed when assigning
labels to edges employing an edge labeling function l : E → Σ. Thereby, we achieve that
two distinct edges may represent di�erent relationships, e. g., one may express friendship,
and the other might mean customer relationship. Both of these types can be expressed
in a single edge-labeled graph model. However, a concrete relationship (v, w) can only
be assigned a single relationship type (also called predicate), although more than one
relationship type associated with v and w could be desired. Therefore, the edge labeling
is usually integrated into the edge structure of a directed graph, in that an edge e is
considered to be a triple (v, a, w) of a source node v (= source(e)), a label a (= label(e)),
and a target node w (= target(e)). The labeling function is left implicit, but the number of
di�erent relationship types between any two nodes is increased to the number of di�erent
labels in Σ. Since edge-labeled graphs are the core data structure we use throughout the
rest of the thesis, we call them simply labeled graphs.

De�nition 2.6 (Labeled Graph)
A labeled graph G is a triple (V,Σ, E), where V is a �nite set of nodes, Σ a �nite (label)
alphabet, and E ⊆ V × Σ× V . N

All the notations introduced for directed graphs in Section 2.1.1 carry over to labeled
graphs, naturally. Additionally, the labeling of edges allows for more �ne-grained consid-
erations w. r. t. neighborhood. Let G = (V,Σ, E) be a labeled graph and e = (v, a, w) ∈ E.
As an in�x notation we use v Ea w, where the edge relation E is superscripted with the
label a ∈ Σ, formally justi�ed by Ea := {(v, w) | (v, a, w) ∈ E}. w is not only some
successor of v (v a predecessor of w, resp.), but, more speci�cally, w is an a-successor of v
(v is an a-predecessor of w, resp.) in G. Utilizing this notation, the sets of all a-successors
and a-predecessors (a ∈ Σ) of v ∈ V are naturally expressed by vEa and Eav.
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Figure 2.4: Sample Graphs for Labeled Morphisms

Assessing equality of labeled graphs G = (VG,Σ, EG) and H = (VH ,Σ, EH) is again
based on graph isomorphisms. Additional incorporation of alignments is imaginable. How-
ever, the most prominent cases discussed and used in the literature are bijective alignments.
Hence, the alignment itself does not play any rôle in the course of deciding label equality.
The edge labels can easily be adapted so that G and H use precisely the same labels.

Example 2.7 We align the labeled graphs G and H, where G is labeled over ΣG and
H over ΣH . Let ' be a bijective function from ΣG to ΣH , i. e., for any pair of labels
a, b ∈ ΣG, if a' c and b' c, then a = b, and for all c ∈ ΣH an a ∈ ΣG exists with a' c.
De�ne H/' to have the same set of nodes as H, but for every edge (v, c, w) of H include
the edge (v, a, w) instead, where a' c. As a consequence, H/' is labeled over ΣG. �

Thus, if not stated otherwise, we assume all graphs to be labeled over the same �xed
alphabet Σ. Since the notions of graph homomorphisms and isomorphisms are needed
often throughout the thesis, we de�ne their labeled versions formally.

De�nition 2.8 (Graph Morphisms)
Let G = (VG,Σ, EG) and H = (VH ,Σ, EH) be labeled graphs. A function η : VG → VH is
called a graph homomorphism between G and H i� v EaG w implies η(v) EaH η(w) (a ∈ Σ).
An injective graph homomorphism is called a subgraph isomorphism.

A graph isomorphism between G and H is a bijective function ι : VG → VH , such that
v EaG w i� ι(v) EaH ι(w). N

Example 2.9 Let us �rst reconsider the unlabeled graphs of Example 2.4. They are
essentially labeled graphs using a single letter from the alphabet, say τ ∈ Σ, as each edge's
label. Thus, all the homomorphisms exempli�ed there are valid homomorphisms for the
labeled versions.

In contrast, if graph G(a) and G(b) involve a di�erent labeling function, they may
not be associated by any homomorphism, as shown by the graphs depicted in Figure 2.4
(a) and (b). The only candidate homomorphism is η(a)7→(b) (r 7→ y, s 7→ x, u 7→ w) from
Example 2.4 since it is only this morphism that respects the graph structure (independently
of the labeling). But while u is the b-successor of r inG(a), the b-successor of η(a) 7→(b)(r) = y
is x and x 6= w = η(a)7→(b)(u). In fact, there is no graph homomorphism between the labeled
graphs G(a) and G(b).

Regarding the graphs G(c) and G(d) in Figure 2.4 (c) and (d), there is a homomorphism
between them, namely η(c) 7→(d) (r 7→ z, q 7→ z). The semantics of the label {a, b} associated
with the edge from z to z in G(d) is that there is an a-labeled and a b-labeled edge. �

Let G = (V,Σ, E) be a labeled graph, Γ ⊆ Σ, and v, w ∈ V . If there is an edge v Ea w
for every a ∈ Γ, we usually summarize all these edges to a single edge labeled by Γ in
drawings of G.
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2.2 Graph Data

In order to make use of labeled graphs G = (V,Σ, E) as a model for data, we have to be
clear about what the nodes and edges shall mean. Thus, we specify what the objects that
account for G represent.

Usually, graph databases capture entity-centric information, which are entities rep-
resented as nodes, their properties/attributes as edges to actual data values, and their
relations to other database objects also represented as edges. Remaining in the realm of
labeled graphs, we have at least two types of nodes, one representing entities and one for
data items such as string or number objects. One of the most general and stable data
models stems from the impressive standardization e�orts of the Semantic Web commu-
nity and the World Wide Web Consortium (W3C), trying to build �an infrastructure of
machine-readable semantics for the data on the Web� [13].

2.2.1 The Resource Description Framework

The Resource Description Framework, RDF for short, provides a simple and extensible
data model that comes with a formal semantics. It has been a W3C recommendation since
1999 and, from there on, sparked much attention from researchers and practitioners. The
current recommendation provides RDF 1.1 [38, 67]. As the name suggests, RDF allows for
expressing information about resources. A resource can be anything, from Web documents
up to physical objects or actual people [122].

Modeling information in RDF means to formulate statements about resources, following
the simple structure of

subject � predicate � object.

Subject and object are resources related by the predicate. Because RDF statements consist
of three components, they are commonly referred to as RDF triples. A set of RDF triples
makes up an RDF graph. Three di�erent types of data may occur in RDF triples, namely
IRIs, literals, and blank nodes [122].

Every resource is uniquely identi�ed and implemented by International Resource Iden-
ti�ers [44] (IRIs), a generalization of Uniform Resource Identi�ers (URIs). IRIs may occur
in the subject, object, as well as predicate position of an RDF triple. Technically speak-
ing, predicates are resources, which makes sense as soon as we think of statements about
relationship types. For example, we may want to express that is child of is the inverse
relation of is parent of. IRIs are thought of as global identi�ers, i. e., if two di�erent people
talk about the same IRI, they refer to the same object. URLs are an essential subset of
IRIs, referencing Web locations.

Literals are data values, not represented as IRIs. They come with a data type, such as
string, int, or date (cf. [38] for a list of valid data types). Such data values are used to
de�ne attribute values of a resource, such as a date of birth or a person's address, or title,
author, or publication year of a book. Therefore, literals solely occur in object position.

Finally, RDF provides us with the possibility of expressing anonymous resources, called
blank nodes. According to [38], blank nodes have a local scope, i. e., they are not to be
referenced outside an RDF graph. They can be used in subject and object positions and
refer to some unnamed data objects.

Let I, L,B be disjoint universes of IRIs, literals, and blank nodes. An RDF triple is
a triple (s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ L). A set of RDF triples G is an RDF graph.
Throughout this thesis, we are considering so-called ground RDF graphs [62], which are
subsets of I × I × (I ∪ L), i. e., the are free of blank nodes.
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Figure 2.5: (a) Graph Representation of an Example RDF Graph from DBpedia [17] (b)
An RDF Graph Describing the Predicate dbo:birthDate (c) A Graph Database Repre-
sentation of Figure 2.5 (a)
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Example 2.10 If an RDF graph G ⊆ (I ∪ B) × I × (I ∪ B ∪ L) does not contain state-
ments about predicates, it may be represented as a labeled graph G(G), as de�ned in
De�nition 2.6. All subjects and objects, occurring in G, amount to the set of nodes of
G(G). All predicates form the labeling alphabet. The set of edges is the RDF graph G
itself, i. e.,

G(G) = ({s, o | (s, p, o) ∈ G}, {p | (s, p, o) ∈ G},G).

Thus, many RDF graphs can be graphically represented as labeled graphs. An example,
manually extracted from DBpedia [17], is shown in Figure 2.5 (a). As the nodes' identities
are essential for RDF, they �ll in as node labels in the center of the respective nodes. From
now on, we solely rely on this kind of graphical notation of data modeled by graphs.

This RDF graph contains information about dbr:Albert_Einstein, the resource to ac-
cess information about the person Albert Einstein. DBpedia introduces pre�xes to shorten
IRIs, for representational purposes as well as to reduce the size of RDF dataset dump
�les. For instance, the pre�x dbr: unwinds to the URL http://dbpedia.org/resource/.
Hence, dbr:Physics actually represents http://dbpedia.org/resource/Physics, the
URL linking to a DBpedia page with information about the scienti�c �eld of physics. We
have one literal, being the date of birth of Albert Einstein. The string in brackets speci�es
the type of the literal, here xsd:date, an XML Schema De�nition for data formats.

Also included in this excerpt of DBpedia is some schema information pre�xed by
rdfs:. They state that Albert Einstein, represented by the resource Albert_Einstein,
is of the types person and scientist, represented by the DBpedia ontology classes Person
and Scientist. Every object of type scientist is also a person, stated by the triple
(dbo:Scientist, rdfs:subClassOf, dbo:Person).

As suggested by the font used for the predicates, also the edge labels are resources and
may be, as such, part of RDF statements. For instance, predicate dbo:birthDate is itself
described by an RDF graph, from which we draw an excerpt in Figure 2.5 (b). It speci�es
the domain and range of the predicate, which can be used as a constraint when inserting a
concrete RDF triple with this predicate. In this example, only persons may have associated
birth dates, which must be of type xsd:date. The graph in Figure 2.5 (a) conforms to
these constraints. However, integrating both graphs into a single graphical representation
leaves the realm of standard graphs [66] as not all information about dbo:birthDate is
collected in a single place, that is the node labeled dbo:birthDate. �

As already mentioned, and enforced by the W3C, an IRI can be anything, making RDF
highly extensible towards so-called vocabularies that capture the semantics of resources
and statements [122]. RDF supports the de�nition of such vocabularies by incorporating
RDF Schema (RDFS), which deals with typing of entities, building hierarchies of classes,
and putting restrictions on domains/ranges of predicates. To cope with these and other
extensions, RDF comes with a model-theoretic semantics [67] that formally grasps all such
features. However, our view on RDF shall be restricted to a basic representational level
because our focus will be on querying explicit extensions of graph databases. We formally
substantiate this representational level by the notion of graph databases, grounded in the
principles of RDF graphs. We provide further information about the capabilities of RDF
to express data schemas in Section 2.3.5.

2.2.2 Graph Databases

From an RDF perspective, we use the grounded model of graph data and ignore the
entailment capabilities of RDFS vocabularies. We do acknowledge there are universes of
objects U , to be used as graph nodes, and predicates P, used as edge labels. For ease
of notation, U captures everything that can be in subject or object position, including
predicates and literals. Note that this automatically implies non-disjoint universes U and
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P. Therefore, we work with a non-standard graph model G = (V,Σ, E) with a set of
objects V and a set of predicates Σ, but V ∩ Σ = ∅ does not generally hold. Although
a node's neighborhood does not exhaustively describe a single node [66], the following
contents will not su�er from this inconvenience. Beyond Example 2.10, there will be no
example that uses RDF (sub-)graphs dealing with predicates as resources explicitly.

As we are concerned with graph databases extensionally, there is also no need to include
blank nodes. Even if we used RDFS vocabulary and blank nodes, Gutierrez et al. have
shown that the maximal extension, called closure that can be derived from all the implicit
information present in an RDF graph is unique [62]. Hence, we would always work with
the closure of an RDF graph (cf. Theorem 3.6 [62]).

De�nition 2.11 (Graph Database)
A graph database is a labeled graph DB = (ODB ,Σ, EDB ) where ODB ( U and Σ ( P. N

In divergence of alternative de�nitions, e. g., the one given by Hayes and Gutierrez [66], we
omit auxiliary labeling functions of nodes and edges but assume database objects (ODB )
and predicates (Σ) to be identical with their respective labels.

Example 2.12 The graphs depicted in Figures 2.5 (a) and 2.5 (b) already are visualiza-
tions of graph databases. We will, however, make the notation easier. Every object will
be represented as a box labeled by its identi�er, written in typewriter font. We do not
insist on using IRIs and make no distinction between resources and literals. Predicates
will have an italicized font . Thus, a simpli�ed graph database representation of our RDF
graph sample on Albert Einstein (cf. Figure 2.5 (a)) is the one depicted in Figure 2.5 (c).�

Note that graph morphisms (cf. De�nition 2.8 on Page 11) serve a purely structural
comparison purpose, later excessively used for di�erent querying tasks. Mapping di�erent
database objects to one another may account for structural similarity, but an object's
identity carries information that gets lost by graph homomorphisms. Having reduced our
graph database model by blank nodes and RDFS vocabulary, the decision of equality of
two graph databases DB1 and DB2 boils down to actual equality of the database's objects
and edges, i. e., DB1 ⊆ DB2 and DB2 ⊆ DB1.

2.3 Graph Schema

One of the key features of graph data is that a prior schema, describing all the possible
entity and relationship types, is not needed. A restrictive schema that forces a graph
database management system to disallow untypable data is even rated as undesirable [28,
9, 62, 91]. Nevertheless, semantic or structural information about the stored data may
help in

(1) reducing and uncovering uncontrolled heterogeneity, e. g., heterogeneous representation
of one entity type and absent information (incompleteness),

(2) managing query formulation � a schema describes what kinds of nodes exist and how
they are related to one another in the graph � and

(3) integrating data from diverse data sources into one intermediate representation that
may �nally be transferred back to structured data.

Such a schema for graph data shall rather be descriptive than restrictive [28, 2]. To this end,
we recover graph schemas, �rst introduced by Buneman et al. [29], which we analyze and
extend w. r. t. our graph database model. This section appears, in parts, in [89]. Including
this material allows us to formally introduce graph simulations, one of the non-standard
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Figure 2.6: An Example Rooted Graph Database

pattern matching notions, that is going to be reoccurring in the remaining chapters of this
thesis. General results about simulations are presented and proven.

Throughout the rest of this section, we develop a model of schemas for graph databases,
a notion of schema instantiation, and the precise semantics of the model.

2.3.1 From Semistructured to Graph Data

Graph schemas have been developed in light of the upcoming tree-like graph data structures
of the 1990's, called semistructured data [28, 2, 9]. Hence, there are design decisions that
do not withstand more general graph databases. A graph schema forms an upper bound
of its database instances [29]. This upper bound is achieved by characterizing the instance
of-relation between graph schemas and graph databases by a proxy notion relating objects
of the database and the types speci�ed by the schema so that whenever a database object
participates in a predicate, the corresponding schema type partakes in the same predicate.
Buneman et al. [29] presumed the semistructured data model to be represented by rooted
labeled graphs DB = (ODB ,Σ, EDB , rDB ) (cf. Section 2.1.2).

Example 2.13 Figure 2.6 shows an excerpt of this chapter's bibliography �le, worked up
as a rooted labeled graph. First of all, it is incomplete. For instance, the paper with title
Adding Structure to Unstructured Data has two more authors, namely Susan Davidson and
Mary Fernandez. Second, actual data is only stored in the leaf nodes, depicted as labels
next to the nodes, a representation of rooted graph data we adopted from Abiteboul et
al. [3]. The node labeled �1999� represents a data node with the unique identi�er 9 holding
the data item 1999. The string 1999 may be interpreted as a number or, as in this example,
as a year. Alternatively, such data may be represented as labeled edges from the leaf nodes
without an explicit target node [28]. The two representations are entirely equivalent.

Independent of data representation, internal nodes serve a mere structuring purpose.
The graph is not a tree since, e. g., authors 4 (Peter Buneman) and 5 (Dan Suciu) share
both predecessor nodes, B and C.

The root node represents the bibliography as a document, an entry point for every
analysis and querying task. The second layer nodes are the bibliographic entries within
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the document. The edge labels used between root and entries constitute each entry's type.
All other nodes refer to attributes of at least one entry. Edges contradicting the pure
tree structure may occur at any level, as exempli�ed by the cited by-edge between the two
entries. This edge is dotted, as it does not qualify as classical bibliographic content of a
BibTEX document, but will be used in subsequent examples. �

It was Buneman et al.'s goal to have a schema model that resembles their graph data.
Hence, a graph schema was de�ned as a rooted labeled graph S = (VS ,Π, ES , rS), too,
where Π is a particular alphabet for schemas. For Buneman et al., Π contains �rst-order
sentences that, when used as edge labels, not only describe a single edge, but quite possibly
in�nitely many [29]. The only restriction is that each such label must stem from a decidable
�rst-order theory, i. e., for a given predicate p(x) (with free variable x) there is a decision
procedure checking whether p(a) holds for an input label a ∈ Σ.

Example 2.14 An example of such a predicate p is p(x) :⇔ x = a. This predicate is only
evaluated to true if the symbol a substitutes x. Thus, any p-labeled edge may be replaced
by an a-labeled edge.

A more sophisticated example is q(x) :⇔ x ≡ 0 mod 2, i. e., every symbol that quali�es
as an even number may substitute x. The set of all possible substitutions is, in this case,
in�nite. Thus, the structure that Buneman et al. describe is a �nite representation of an
in�nite graph object. Other examples that easily lead to in�nite structures are those using
�rst-order sentences over regular expressions. �

Leveraging such decision procedures [77] is nowadays the realm of Satis�ability Modulo
Theories solvers (SMT solvers), such as Z3 [40] or CVC4 [20].

First-order sentences can be easily reintegrated into the model we develop throughout
this section, but they do not provide any fundamental insights towards the semantics of
graph data or schemas. Therefore, we keep the alphabets for graph schemas simple, in
that they acquire symbols from the same universe as the one graph databases draw their
labels from (i. e., P). As before, the graph databases' alphabets and the ones for graph
schemas are aligned into a single alphabet (cf. Example 2.7).

One characteristic we would like to maintain from Buneman et al.'s rooted graph
schemas is the essence of the root node. Recall that from the root node, every other node
in the graph schema is reachable by a directed path. Hence, the resulting graph structure
is, at least, a connected graph. We do not explicitly introduce root nodes to graph schemas
(see Section 2.3.4 for a discussion of the consequences), but maintain the connectedness
property.

De�nition 2.15 (Graph Schema)
A graph schema S is a connected labeled graph (TS ,Σ, ES) with a non-empty node set TS ,
called the types of S. N

When describing all the structures of a graph database, possibly more than one graph
schema is needed. A rooted graph schema is depicted in Figure 2.7. Examples for graph
schemas without explicit root nodes are given in Figures 2.11 (b) and 2.11 (c) (Page 24).
Note that we primarily follow the graphical conventions we established for graph databases.
Since types are conceptually di�erent from database objects, we represent their identi�ers
by Small Capitals. By design, a graph schema S = (TS ,Σ, ES) describes the permitted
structure [29]. For instance, the schema in Figure 2.7 allows for capturing bibliographic
contents, such as inproceedings and books. Conversely, if an edge is not present in a
graph schema, it must not be used in any database instance, e. g., Figure 2.7 does not
feature a cited by-relationship concerning Book and Inproceedings. Thus, the graph
database in Figure 2.6 shall not be an instance of Figure 2.7 if the dotted edge is included.
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Figure 2.7: A Rooted Graph Schema for Bibliographic Data

Towards a formal treatment of instances of graph schemas, we need to answer the following
questions [3]: Let S = (TS ,Σ, ES) be a graph schema.

(1) What makes a graph database DB an instance of S?

(2) Once we have an instance of S, what is the induced classi�cation/typing of database
objects?

Towards (1), it is the notion of graph simulation that captures the upper bound nature of
schemas. Buneman et al. de�ne that a graph database DB conforms to graph schema S,
denoted DB 4 S, i� there is a rooted graph simulation between DB and S [29]. Before we
dive into this particular characterization of instances in the rooted graph data model, let
us �rst clarify the notion of simulation for labeled graphs.

Back in 1971, it was Robin Milner who thought about an algebraic characterization of
when one program simulates another [96]. He used so-called program graphs to abstract
from hardware and other implementation details, only representing the states (e. g., pro-
gram counters or valuations of program variables) as nodes of the graph. One step (an
edge from one node to another) transforms the current state of the program. Program P2

simulates P1 if whatever computational step P1 performs, P2 is capable of doing the same.
Intuitively speaking, P2 mimics the computational behavior of P1. If both programs start
at the same con�guration (i. e., initialization of variables), then for any con�guration P1

reaches, P2 can reach the same con�guration by simulating the steps of P1. Two programs
shall not be distinguished if they could simulate one another.

De�nition 2.16 (Graph Simulation)
Let Gi = (Vi,Σ, Ei) (i = 1, 2) be two graphs. A binary relation R ⊆ V1 × V2 is called a
graph simulation between G1 and G2 i� for every pair (v1, v2) ∈ R, v1 E

a
1 w1 implies that

w2 ∈ V2 exists with v2 E
a
2 w2 and (w1, w2) ∈ R.

G2 simulates G1, denotedG1 vsim G2, if there is a non-empty graph simulation between
G1 and G2. N
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Example 2.17 Before heading back to the realm of graph data, let us discuss simulation
with an informal picture of program graphs: The programs P andQ, whose program graphs
are depicted in Figure 2.8, execute abstract actions a, b, and c. They both terminate after
they have either executed the sequence ab or the sequence ac. If we only compare programs
P and Q up to these computational sequences (also known as traces), they are identical.
Simulation, however, distinguishes between P and Q. While program Q simulates P , e. g.,
by the non-empty graph simulation

R = {(P,Q), (P1, Q1), (P2, Q1), (P3, Q2), (P4, Q3)},

program P cannot simulate Q. If Q performs the a-move to Q1, P must decide which of
its successor states to take. Q1 outperforms P1 by a c-move and P2 by a b-move. �

Returning to the notion of graph schema conformance, as of Buneman et al. [29], a rooted
graph simulation between two rooted labeled graphs is a graph simulation that relates the
roots of the graphs. In this way, a graph schema S indeed represents an upper bound to
every graph database instance conforming to it.

Example 2.18 A rooted simulation between the graph database in Figure 2.6 (without
the dotted edge) and the graph schema in Figure 2.7 is

R̂ =


(A,Root), (B, Inproceedings), (C,Book), (1,Booktitle),
(2,Title), (3,Year), (4,Author), (5,Author), (6,Author),
(7,Title), (8,Publisher), (9,Year), (10, Isbn)

 .

R̂, in fact, represents the smallest non-empty but rooted graph simulation between the two
graphs. �

Crucial to this notion of conformance is the treatment of root nodes. Without the root
node condition, graph schema conformance is rendered trivial.

Proposition 2.19 There is a simulation R between any two graphs G1 and G2, but
G1 vsim G2 does not hold, in general.

Proof: We choose the empty simulation, that is R∅ = ∅, ful�lling the simulation property
for all pairs of graphs G1 and G2.

Towards the second goal, we give G1 = ({v1}, {a}, {(v1, a, v1)}), depicted in Fig-
ure 2.9 (a), and G2 = ({w1, w2}, {a}, {(w1, a, w2)}) in Figure 2.9 (b). Of course, R∅ is
a graph simulation between G1 and G2, but there is no other one. Every other simulation
(candidate) R needed to relate v1 of G1 with either w1 or w2 of G2. (v1, w2) /∈ R because
there is an edge (v1, a, v1) in G1 but w2 has no outgoing edge. Consequently, (v1, w1) /∈ R
because, although the a-labeled step in G1 can be simulated by w1, it reaches node w2,
which is impossible to be related to v1 by R (see argument above). Hence, there is no
non-empty simulation between G1 and G2, such that G1 vsim G2. q. e. d.
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Figure 2.9: Two Graphs (a) G1 and (b) G2 with G1��vsimG2

The empty simulation R∅ would be a viable witness for conformance between any pair of
graphs. As a consequence, if we applied the concepts of Buneman et al. to non-rooted
graph databases and schemas, we would not obtain any meaningful conformance relation
because every graph database would be an instance of every graph schema. There are
several ways out of this issue, from which we brie�y address the following three: (a) arti�cial
root nodes on the database-side, (b) arti�cial root nodes on the schema-side, and (c) require
non-emptiness of simulations R witnessing conformance.

Introducing arti�cial roots to graph databases is infeasible as, for instance, update
anomalies are foreseeable: Whenever a graph database is subject to change, its root node's
incidence must often be adjusted to meet the root node property still. Furthermore,
choosing a particular root node would have a signi�cant in�uence on conformance. In that
case, conformance needed to be adjusted to instead ask for the existence of a root node
positioning, such that conformance holds. This way, conformance boils down to �nding
minimal sets covering every other node in the graph database w. r. t. reachability, very
likely to be an intractable problem.

Second, we might reintroduce the root node concept to the notion of graph schema.
When designing a graph schema, one would be able to specify which of the types are
necessary to be covered by a graph database instance. These types of interest would
undoubtedly follow a universe of discourse-kind of argument. The more such types are
speci�ed, the more restrictive the graph schema becomes. Unfortunately, the implied
instance notion misses out on an important property: There may be two graph schemas
describing the same set of instances, which cannot be proven to be equivalent inside the
model we develop. We provide an extended discussion about this issue in Section 2.3.4.

The last of the three possibilities encounters (only but e�ectively) the issue's symp-
toms by reestablishing what rooted graph simulations have been for Buneman et al.'s
graph schemas, namely non-empty. Having the root nodes related guarantees non-empty
simulations, and, since the database's root node initiates a path to every other node in the
database, it is guaranteed that every database object is covered by at least one type. If
we require non-empty graph simulations instead of any graph simulation, we will obtain a
�rst non-trivial notion of graph schema instances. However, instances of graph schemas,
solely relying on graph simulation, will face two peculiarities, (a) the problem of partial
simulations and (b) the problem of leaf node insensitiveness.

Example 2.20 Let us review some non-empty graph simulations between the rooted
graph database and schema in Figures 2.6 and 2.7. The graph database is denoted by
DB2.6, the graph schema by S2.7. For the sake of this example, we read DB2.6 as if the
dotted edge is not present.

In R̂ from Example 2.18, all the nodes received their appropriate type, even the doc-
ument, i. e., node A in DB2.6, is associated with the root of S2.7. What if we do not
consider the root as part of the simulation? What if we only capture the book or only the
conference paper? In both cases, the resulting relations between DB2.6 and S2.7 are, in
fact, non-empty simulations. Take, for instance, the missing root node case:

R1 =


(B, Inproceedings), (C,Book), (1,Booktitle), (2,Title),
(3,Year), (4,Author), (5,Author), (6,Author), (7,Title),
(8,Publisher), (9,Year), (10, Isbn)


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Every pair in R1 ful�lls the graph simulation property. As root node A in DB2.6 is not
reachable by a directed path from any of the nodes covered by R1, it is not required to
include the pair (A,Root) in order for the relation to be a graph simulation. Of course,
R̂ ⊇ R1 and, therefore, R̂ provides us with more information about the instance DB2.6

w. r. t. S2.7. However, from a graph simulation perspective, R1 is as good as R̂ to con�rm
that DB2.6 is an instance of S2.7.

It is impossible, though, to reduce R1 above to only capture B without covering
all of its authors. Suppose we have a candidate graph simulation R that includes
(B, Inproceedings) but excludes (4,Author). Then R cannot be a graph simula-
tion between DB2.6 and S2.7 as there is an edge B Eauthor

DB2.6
4, but the only successor of

Inproceedings is node Author and (4,Author) /∈ R . �

This example shows that there are di�erent non-empty graph simulations with di�erent
capabilities towards typing. Another important observation is that graph simulations are
highly dependent on the reachability of nodes by directed paths. Pushing Example 2.20
towards the extreme case yields a graph simulation that only captures leaf nodes of the
database.

Example 2.21 Again, we are concerned with DB2.6 and S2.7 from Figures 2.6 and 2.7.
Node 10 is a leaf node of DB2.6, which shall represent the ISBN of a book object in our
bibliographic database. As there is no edge in DB2.6, having node 10 as a source node,
R2 = {(10, Isbn)} is also a valid non-empty graph simulation between DB2.6 and S2.7.
Compared to the simulations from Example 2.20, we now have R2 ⊆ R1 ⊆ R̂. For the
same reason, also

R0 = {(10,Book), (10,Title), (10,Author), (10,Year), (10,Publisher)}

is a graph simulation. Even node Root in S2.7 is capable of simulating node 10. We
could also unify each of the simulations mentioned above with R0 without harming the
graph simulation property because only outgoing edges of data nodes are considered when
checking for graph simulation. As a consequence, node 10 can be of any type captured in
S2.7, while it is an Isbn. �

The just described phenomenon of graph simulation is well-known in process theories.
In process-theoretical terms, simulations are not deadlock-sensitive [95]. Node 10 is a
classical deadlock for its incapability of performing any action, which would be displayed
by an outgoing edge. Rephrased in our graph data scenario, we �nd that simulations are
leaf node insensitive, which may lead to terrible classi�cations, as in Example 2.21. The
following proposition provides a formal argument of this insensitiveness towards leaf nodes
(or deadlocks, resp.).

Proposition 2.22 Let Gi = (Vi,Σ, Ei) (i = 1, 2), such that there is a node d ∈ V1 with⋃
a∈Σ dE

a
1 = ∅. Then R = {(d, v) | v ∈ V2} is a non-empty simulation between G1 and G2

if V2 6= ∅.

Proof: There is at least one (d, v) ∈ R because V2 6= ∅. Hence, R 6= ∅. Let (d, v) ∈ R.
Since dEa1 = ∅ for all a ∈ Σ, v canonically simulates d without further consideration.
Hence, R is indeed a non-empty simulation. q. e. d.

Even in general graph databases, simulations quickly trivialize the instance notion. For
example, in light of literals in RDF graphs, there is a canonical simulation between any
RDF graph and every graph schema. Of course, node 10 in DB2.6 is not a book, or a
title, or anything else but an ISBN. What makes it an ISBN, at least in this example,
is that it is the target node of an edge labeled by isbn. Simulations neglect incoming



22 CHAPTER 2. GRAPH DATA AND SCHEMA

edges completely1, leading to simulations like R0 in Example 2.21. Capturing all kinds of
relationships a database object participates in, including the ones expressed by backward
edges, is crucial when it comes to graph schemas and the conformance of graph databases.
The extension of simulations incorporating backward edges, in a graph database setting,
was �rst sketched by Abiteboul et al. [3] and later coined to the notion of dual simulation
by Ma et al. [85].

De�nition 2.23 (Dual Simulation)
Let Gi = (Vi,Σ, Ei) (i = 1, 2) be two graphs. A binary relation R ⊆ V1 × V2 is called a
dual simulation between G1 and G2 i� for every pair (v1, v2) ∈ R,

1. v1 E
a
1 w1 implies ∃w2 ∈ V2 with v2 E

a
2 w2 and (w1, w2) ∈ R, and

2. u1 E
a
1 v1 implies ∃u2 ∈ V2 with u2 E

a
2 v2 and (u1, u2) ∈ R.

G2 dual simulates G1, denoted G1 vDsim G2, if there is a non-empty dual simulation
between G1 and G2. N

Only isolated nodes, i. e., nodes with neither incoming nor outgoing edges, may be simu-
lated by any other node and thus by any other graph. Although we did not restrict our
graph database model to obey all restrictions of RDF, it is still worthwhile noticing that
RDF graphs cannot contain isolated nodes because every data object must occur in an
RDF triple (cf. Section 2.2.1). Thus, every data object occurs at least as one subject or
object, i. e., source or target of an edge in the graph database.

Example 2.24 We review the graph simulations R̂, R1, R2, and R0 from Examples 2.20
and 2.21 between the graph database DB2.6 and schema S2.7. Graph simulation R̂ is a dual
simulation. R1, being R̂ without pair (A,Root), is not a dual simulation. Here, property
2 recognizes, for instance, edge A Ebook

DB2.6
C. Since (C,Book) ∈ R1, De�nition 2.23 expects

some node v in S2.7 with v Ebook
S2.7

Book and (A, v) ∈ R1. But the only node qualifying as
v is Root and (A,Root) /∈ R1. Not even R2 is a dual simulation: Although node 10 is a
node representing an Isbn, the predecessor nodes of 10 are not covered by R2. The same
holds for R0. In summary, while R̂ is a dual simulation, neither R0, R1, nor R2 are. �

We have �nally reached a reasonable notion of conformance between a graph database DB
and a graph schema S, namely non-empty dual simulations between DB and S.

De�nition 2.25 (Graph Schema Conformance)
Let S be a graph schema. A graph database DB conforms to S, denoted DB 4 S, i�
DB vDsim S. We call a non-empty dual simulation R between DB and S a conformance
witness between DB and S. If DB 4 S, then DB is called an instance of S. N

An empty-structured graph database DB , i. e., DB = (ODB ,Σ, ∅) with ODB 6= ∅, trivially
conforms to any graph schema (cf. Proposition 2.22). Conversely, every graph database
conforms to the unit graph schema, which is a schema with a single node U and a Σ-
self-loop, as depicted in Figure 2.10. Node U dual simulates every node of a given graph
database, indicated by the self-loop labeled by Σ. Hence, the unit graph schema may be
a good start when designing a schema for graph data from scratch.

In summary, we have developed a non-trivial schema for graph databases, captur-
ing relationships in general, no matter whether incoming or outgoing edges model them.
Compared to Buneman et al. [29], the only trait we have dropped is that the root node
on the database-side guarantees to cover all other database nodes. In their case, either all
database objects participate in a conformance witness, or none do. Hence, we may observe
conformance witnesses concerning some part of a graph database while neglecting another.

1Neglecting backward edges in program graphs is feasible because programs/processes usually do not
run backward.
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Figure 2.10: The Unit Graph Schema

Example 2.26 Consider the graph depicted in Figure 2.11 (a), denoted as DB2.11 (a). As
before with our rooted graphs, DB2.11 (a) represents some bibliographic contents, here the
book Data on the Web (DotW) and the survey article Survey of Graph Database Models
(SGDM). DB2.11 (a) consists of two instances of separate graph schemas. While DotW has
type Book w. r. t. the graph schema in Figure 2.11 (b), SGDM has type Article w. r. t.
the schema depicted in Figure 2.11 (c). Thus, DB2.11 (a) is an instance of both graph
schemas, but one of its connected subgraphs is untyped w. r. t. a single one. For instance,
SGDM is not a Book, according to the graph schema in Figure 2.11 (b), as type Book has
no outgoing edge labeled journal . �

Thus, we may miss out on some subgraphs of a graph database, which is to be expected in
such data models. Otherwise, we guarantee meaningful conformance witnesses by requiring
graph schemas to be connected.

2.3.2 Object Classi�cation

In the analysis of Abiteboul et al. [3], deriving a classi�cation of graph database objects (in
their case, of semistructured data objects) is characterized by three aspects, distinguishing
it from other data models, such as relational or object-oriented databases:

(1) A type is less precise, i. e., one database object may belong to more than one type.
This aspect is covered by the nature of dual simulations, being relations rather than
functions.

(2) An object may belong to no type at all. We sketched this situation by Example 2.26.
In semistructured data, modeled by rooted labeled graphs, it was impossible to leave
a database object untyped because, once the database's root node participates in a
simulation (which was required by Buneman et al. [29]), every database object is also
covered by the respective conformance witness (as they are reachable via directed paths
from the root).

(3) The induced typing is approximate, meaning some objects do not meet all struc-
tural aspects of a type. For instance, the bibliographic objects in DB2.11 (a) do not
carry any information about their authors, while the respective graph schemas include
them. Nevertheless, DB2.11 (a) is an instance of both graph schemas in Figures 2.11 (b)
and 2.11 (c).

By graph schema conformance, we have an answer of how to assess whether a graph
database is an instance of a given schema. We make use of the conformance witnesses to
derive a classi�cation of graph database objects w. r. t. a graph schema [3].

De�nition 2.27 (Object Classi�cation)
Let S = (TS ,Σ, ES) be a graph schema and DB a graph database with DB4S. An object
o of DB has type t ∈ TS , denoted o `S t, i� there is a conformance witness R between DB
and S with (o, t) ∈ R. N
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Figure 2.11: (a) A Disconnected Graph Database (b) A Graph Schema Describing Books
(c) A Graph Schema Describing Articles



2.3. GRAPH SCHEMA 25

Example 2.28 Suppose we have given the graph schema S2.11 (b)+2.11 (c), being the join
of the graphs depicted in Figures 2.11 (b) and 2.11 (c). Both graph schemas agree on
the types Title and Year, making S2.11 (b)+2.11 (c) a connected graph, as required by
De�nition 2.15. As argued in Example 2.26, DB2.11 (a) is an instance of both graph schemas
in Figures 2.11 (b) and 2.11 (c). Consequently, DB2.11 (a) is an instance of S2.11 (b)+2.11 (c).
A conformance witness validating SGDM `S2.11 (b)+2.11 (c)

Article may be given by

R1 =

{
(SGDM,Article), (Survey of Graph Database Models,Title),
(2008,Year), (ACM Computing Surveys,Journal)

}
.

The same witness cannot be used to verify DotW `S2.11 (b)+2.11 (c)
Book. However,

R2 =

{
(DotW,Book), (Date on the Web,Title),
(1999,Year), (978-1-55860-622-7, Isbn)

}
would do. �

This approach to classi�cation is not very practical since the number of conformance wit-
nesses is in O(2|ODB |·|TS |). Scanning through an exponential number of witnesses in order
to verify a single typing, especially in a big data setting, is infeasible. Fortunately, (dual)
simulations are union-closed [96, 86], which entails the fundamental (dual) simulation prop-
erty: Uniqueness of the greatest (dual) simulation.

Theorem 2.29 Let Gi = (Vi,Σ, Ei) (i = 1, 2) and S(G1, G2) the set of all dual simula-
tions between G1 and G2. Then the following properties hold.

(1) S(G1, G2) is union-closed, i. e., for every X ⊆ S(G1, G2) with |X| ≥ 1,
⋃
X ∈

S(G1, G2).

(2) S(G1, G2) has a unique greatest element w. r. t. ⊆.

Proof: (2) follows directly from (1). Towards a contradiction, assume there are two
distinct greatest elements R1

ω and R2
ω in S(G1, G2), i. e., for all R′ ∈ S(G1, G2), Riω ⊆ R′

implies Riω = R′ (i = 1, 2). Thus, Riω * Rjω (i, j = 1, 2 and i 6= j). Consider now
Rω = R1

ω ∪ R2
ω. It holds that Riω ⊆ Rω (i = 1, 2) and because of (1), Rω ∈ S(G1, G2).

Thus, R1
ω = Rω and Rω = R2

ω, contradicting the assumption that Riω (i = 1, 2) are distinct
elements from S(G1, G2). Therefore, (2) holds if (1) holds.

It remains to be shown that (1) holds, proven by induction on the size ofX ⊆ S(G1, G2)
for |X| ≥ 1.

Base: If |X| = 1, it contains a single dual simulation R ∈ S(G1, G2), i. e., X = {R}.
Since

⋃
X = R,

⋃
X ∈ S(G1, G2) by assumption.

Hypothesis: For all X ⊆ S(G1, G2) with |X| < n, it holds that
⋃
X ∈ S(G1, G2).

Step: Let X ⊆ S(G1, G2) with |X| = n. Then X = X<n ∪{R∗}, such that |X<n| = n− 1
and R∗ ∈ S(G1, G2). Since |X<n| = n − 1, it holds that

⋃
X<n ∈ S(G1, G2), i. e.,⋃

X<n is a dual simulation between G1 and G2. It holds that
⋃
X = R∗ ∪

⋃
X<n,

of which we need to show that it is a dual simulation between G1 and G2. Let
(v1, v2) ∈

⋃
X and v1 E

a
1 w1.

1. If (v1, v2) ∈ R∗, there is a w2 ∈ V2 with v2 E
a
2 w2 and (w1, w2) ∈ R∗ because

R∗ is a dual simulation. Hence, (w1, w2) ∈
⋃
X.

2. If (v1, v2) ∈
⋃
X<n, there is a w2 ∈ V2 with v2 E

a
2 w2 and (w1, w2) ∈

⋃
X<n

because
⋃
X<n is a dual simulation by induction hypothesis.
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Hence, (w1, w2) ∈
⋃
X because (w1, w2) ∈ R∗(⊆

⋃
X) or (w1, w2) ∈

⋃
X<n(⊆

⋃
X).

The case of u1 Ea1 v1 is completely analogous. Thus,
⋃
X is a dual simulation

between G1 and G2.

It holds that
⋃
X ∈ S(G1, G2) for every X ⊆ S(G1, G2). q. e. d.

Between any two graphs, there is a unique greatest dual simulation that subsumes every
other dual simulation between the two graphs. Since this particular dual simulation is of
primary importance, also beyond this chapter, we de�ne it formally as the maximal dual
simulation, justi�ed by Theorem 2.29.

De�nition 2.30 (Maximal Dual Simulation)
Let Gi = (Vi,Σ, Ei) (i = 1, 2) be two graphs. The union of all dual simulations between
G1 and G2 is called the maximal dual simulation between G1 and G2. N

Example 2.31 We apply the maximal dual simulation to conformance witnesses R1 and
R2 from Example 2.26. R1 ∪ R2 is the maximal dual simulation between DB2.11 (a) and
S2.11 (b)+2.11 (c). It veri�es both, SGDM `S2.11 (b)+2.11 (c)

Article and DotW `S2.11 (b)+2.11 (c)

Book. �

Hence, the typing relation `S of database objects from DB and types from S (DB 4 S) is
the maximal dual simulation between DB and S. Beyond object classi�cation, the maximal
dual simulation helps us deciding whether there is a non-empty dual simulation between
graphs G1 and G2, i. e., if G1 vDsim G2, being a direct consequence of Theorem 2.29.

Corollary 2.32 Let G1, G2 be graphs. G1 vDsim G2 i� the maximal dual simulation
between G1 and G2 is non-empty.

2.3.3 Semantics of Graph Schemas

Dual simulations provide us with the means of graph schema instances (cf. De�nition 2.25).
In this section, we study the properties of dual simulations in a broader context to �nd out
what they entail for graph databases and schemas. This way, we will obtain the precise
semantics of graph schemas.

First note that a graph G always dual simulates itself by a non-trivial, i. e., non-empty,
dual simulation R. The necessary dual simulation is the identity function on the set of
nodes of G. Second, if we have dual simulations R1 between graphs G1 and G2, and R2

between G2 and G3, then

R1 ◦R2 := {(u,w) | ∃v : (u, v) ∈ R1 ∧ (v, w) ∈ R2} (2.3)

is a dual simulation between G1 and G2.

Proposition 2.33 Let Gi = (Vi,Σ, Ei) (i = 1, 2, 3) be graphs.

(1) idV1 is a dual simulation between G1 and G1.

(2) Let Ri (i = 1, 2) be dual simulations between Gi and Gi+1. Then R1 ◦ R2 is a dual
simulation between G1 and G3.

Proof: Note, according to Proposition 2.19, the empty simulation proves the existence
of dual simulations in both cases. The claims here are stronger.

(1) Let (v1, v2) ∈ idV1 and v1 E
a
1 w1. Since v2 = idV1(v1) = v1, take w2 = w1. For sure,

v2 = v1 E
a
1 w1 = w2 and w2 = w1 = idV1(w1), i. e., (w1, w2) ∈ idV1 . The case u1 E

a
1 v1

is completely analogous. Thus, idV1 is a dual simulation.
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Figure 2.12: Non-Transitivity of 4

(2) Let (v1, v3) ∈ R1 ◦R2 and v1 E
a
1 w1. By construction of R1 ◦R2 (cf. Equation (2.3)),

there is a v2 ∈ V2 with (v1, v2) ∈ R1 and (v2, v3) ∈ R2. Because R1 is a dual simulation
between G1 and G2, there is a w2 ∈ V2 with v2 E

a
2 w2 and (w1, w2) ∈ R1. Because

R2 is a dual simulation between G2 and G3, there is a w3 ∈ V3 with v3 Ea3 w3

and (w2, w3) ∈ R2. Take v3 Ea3 w3 to dual simulate v1 Ea1 w1. By construction,
(w1, w3) ∈ R1 ◦R2. Again, the case of u1 E

a
1 v1 is completely analogous. q. e. d.

This proof is an important step towards the semantics of graph schemas. We already know
that a graph schema S dual simulates itself by a non-empty dual simulation. Prolonging
this fact to the instance level, we derive

DB 4 S vDsim S. (2.4)

Moreover, Proposition 2.33 tells us how to obtain a conformance witness between DB and
the right-most graph schema S: The conformance witness R between DB and the inner S
is concatenated with the identity on the nodes of S. As R is non-empty, its concatenation
with the identity on the right yields R, thus, a non-empty dual simulation.

What if we replace the right-most occurrence of S in (2.4) by another graph schema T?
Does DB 4S vDsim T still guarantee that DB is an instance of T? While Proposition 2.33
has been shown for general graphs, it turns out that vDsim is, in general, not a preorder
since non-emptiness of dual simulations is not transitively guaranteed, even if the dual
simulation components are non-empty.

Example 2.34 Consider the three graphs G(a), G(b), and G(c) in Figure 2.12 (a), (b),
and (c). It holds that G(a) vDsim G(b) and G(b) vDsim G(c) by non-empty dual simulations
R1 = {(A′, A), (B′, B)} and R2 = {(C,C ′), (D,D′)}. By Proposition 2.33, R1◦R2 is also a
dual simulation, but in this case R1 ◦R2 = ∅. The two witnesses R1 and R2 provide proofs
of vDsim in di�erent subgraphs of G(b). There is no non-empty dual simulation between
G(a) and G(c). �

Fortunately, graph schemas are not general graphs but they are connected graphs (cf.
De�nition 2.15). The reason for this early design decision may �nally be justi�ed by
the requirement to maintain the non-emptiness of dual simulations transitively. We call
the thus obtained restriction of non-empty dual simulations between graph schemas graph
schema re�nement.

De�nition 2.35 (Graph Schema Re�nement)
Let S1 and S2 be two graph schemas. S1 re�nes S2, denoted S1 4 S2, i� there is a non-
empty dual simulation between S1 and S2. Analogously to conformance witnesses (cf.
De�nition 2.25), we call a non-empty dual simulation R between S1 and S2 a re�nement
witness between S1 and S2. N

As the only di�erence to graph schema conformance is the type of graphs participating
in 4, graph schema re�nement extends graph schema conformance to arbitrary graph
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schemas. Thus, the minimal elements of 4 are database instances that may conform to
several less and less restrictive, graph schemas. Graph schema re�nement is, in fact, a
preorder.

Lemma 2.36 Graph schema re�nement 4 is a preorder.

Proof: Let Si = (Ti,Σ, Ei) (i = 1, 2, 3) be graph schemas.

Re�exivity: S1 4 S1 is already proven in Proposition 2.33 because the identity on the
nodes of S1 is non-empty if there is at least one type in S1, a requirement of De�ni-
tion 2.15.

Transitivity: Let S1 4 S2 by witness R1 and S2 4 S3 by witness R2. Again by Proposi-
tion 2.33, R1 ◦R2 is a dual simulation between S1 and S3. If R1 ◦R2 is non-empty,
the proof is complete.

Towards a contradiction, assume R1 ◦ R2 is the empty dual simulation. Since R1

and R2 are re�nement witnesses, and thereby non-empty, for every pair (u, v) ∈
R1 there is no pair (v, w) ∈ R2 (for some w ∈ T3), i. e., node v ∈ T2 cannot be
simulated by any node of S3. As R2 6= ∅, there is some pair (v0, w0) ∈ R2. If we
can show that for every node v1 that can be reached by a path from v0, there is
some pair (v1, w1) ∈ R2, (v, w) /∈ R2 only means that S2 is a disconnected graph,
contradicting the prerequisite that S2 is a graph schema (cf. De�nition 2.15). Hence,
the assumption is wrong and R1 ◦R2 is a re�nement witness between S1 and S3.

It remains to be shown that if π is a path between v0 (recall that (v0, w0) ∈ R2) and
some nodes v1 ∈ T2, then there is a node w1 ∈ T3 with (v1, w1) ∈ R2. By induction
on the length of π.

Base: If |π| = 0, then π = v0 and (v0, w0) ∈ R2 by assumption. Hence, set w1 = w0.

Hypothesis: For paths π between v0 and v1 with |π| < n, there is a w1 ∈ T3 with
(v1, w1) ∈ R2.

Step: Let π be a path with |π| = n. Hence, π = π<n · v1 with |π<n| = n − 1 < n.
Let v<n = last(π<n). Thus, by induction hypothesis, there is a w<n ∈ T3

with (v<n, w<n) ∈ R2. As π is a path, for some a ∈ Σ either (i) v<n Ea2 v1

or (ii) v1 E
a
2 v<n. Since R2 is a dual simulation, (i) ((ii), resp.) implies the

existence of a w1 ∈ T3 with w<n Ea3 w1 (w1 E
a
3 w<n, resp.) and (v1, w1) ∈ R2.

Thus, every node reachable from v0 by a path π must also occur in R2. Consequently,
there must be a pair (v, w) ∈ R2 and R1 ◦R2 is non-empty.

Thus, graph schema re�nement is a preorder. q. e. d.

In S 4 T , graph schema S is thought of as more restrictive w. r. t. its database instances
than graph schema T . A re�nement witness automatically covers all objects of S but not
necessarily all of T . Hence, a database instance of S may be typed by T as well.

Example 2.37 Consider S2.13 in Figure 2.13, a graph schema for instances storing chap-
ters of book publications. The only di�erence to the graph schema about books (cf.
Figure 2.11 (b), referred to as S2.11 (b)) is that an Inbook features a Chapter. All other
properties are kept the same. Thus, an instance of S2.13 describes every instance S2.11 (b)

describes. Additionally, instances of S2.13 are allowed to have a Chapter associated with
the bibliographic item.
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Figure 2.13: A Graph Schema Describing Inbook

Every instance of type Book is an instance of Inbook. Re�nement allows us to make
this relationship precise, in that S2.11 (b) 4 S2.13. The necessary re�nement witness is

R =


(Book, Inbook), (Isbn, Isbn), (Title,Title),
(Year,Year), (Month,Month), (Author,Author),
(Editor,Editor), (Publisher,Publisher),
(Edition,Edition), (Series,Series)

 .

Chapter does not occur in R at all. Hence, there are instances of S2.13 that are not
instances of S2.11 (b). �

In order to show transitivity of 4, the proof of Lemma 2.36 relied on non-emptiness of R1

and the fact that R2 is a re�nement witness between S2 and S3, where connectedness of
S2 was exploited. Especially S1 does not necessarily have to be a graph schema. We make
use of this observation in showing that an instance of S is an instance of T , given that
S 4 T .

Lemma 2.38 (Soundness of 4) Let S1, S2 be graph schemas. If S1 4 S2, then every
instance of S1 is an instance of S2, i. e., DB 4 S1 implies DB 4 S2.

Proof: Let DB be an instance of S1, i. e., DB 4 S1 by a non-empty dual simulation
(conformance witness, resp.) R1. Since S1 4 S2, there is a non-empty dual simulation
(re�nement witness, resp.) R2 between S1 and S2. By the proof of Lemma 2.36, R1 ◦R2 is
a non-empty dual simulation between DB and S2 because S1 is a connected graph. Hence,
R1 ◦R2 is a conformance witness between DB and S2, i. e., DB 4 S2. q. e. d.

Therefore, an iterative design process for graph schemas is justi�ed due to re�nement.
Start with some initial graph schema S0 and re�ne it to S1, S2, . . . , Sk (k ∈ N) with
Si 4 Si−1 (1 ≤ i ≤ k). Lemma 2.38 guarantees that every instance of Si is an instance of
Sj (1 ≤ i < j ≤ k). Is this preservation of instances under re�nement a coincidence, or is
there a general pattern to be recognized? If, for graph schemas S and T , every instance
of S is also an instance of T , re�nement between S and T detects this for us.

Lemma 2.39 (Completeness of 4) Let S1 and S2 be graph schemas. If all instances
of S1 are instances of S2, then S1 4 S2.
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Proof: Towards a contradiction, assume S1 ��4 S2, i. e., there is no non-empty dual simu-
lation between S1 and S2. Then there is a largest subgraph Smax ⊆ S1 such that Smax4S2

because, in the worst case, we remove every edge from S1, leaving all its nodes isolated.
Recall that graph schemas have at least one type (cf. De�nition 2.15). By a similar ar-
gument as for simulations (cf. Proposition 2.22), a disconnected node (no incoming or
outgoing edges) is dual simulated by every graph node. Now we add a single edge from S1

that is not yet present in Smax, let us refer to the resulting graph as DB . Since DB ⊆ S1,
there is a non-empty dual simulation between DB and S1 (cf. Theorem 3.24 on Page 58).
Therefore, DB 4S1. But DB ��4S2 because Smax was chosen to be a largest subgraph of
S1 with Smax 4 S2, i. e., every additional structure from S1 leads to non-conformance to
S2. DB ��4S2 is a contradiction to the assumption that every instance of S1 is an instance
of S2. Thus, S1 4 S2. q. e. d.

Graph schema re�nement is a sound and complete characterization of the inclusion of
instances of graph schemas. The following theorem is a direct consequence of Lemmas 2.38
and 2.39.

Theorem 2.40 Let S1, S2 be two graph schemas. An instance of S1 is an instance of S2

i� S1 4 S2.

Thus, we have reason to formulate the semantics of graph schemas as their sets of instances.
As 4 relates graph schemas only if their sets of instances are related, it holds that two
graph schemas S and T have the same instances i� they are equivalent up to 4, i. e., S4T
and T 4 S.

De�nition 2.41 (Graph Schema Semantics)
The semantics of a graph schema S up to 4 is de�ned by

JSK4 := {DB | DB 4 S}. N

Note that the semantic function J·K4 maps from a virtual universe of all graph schemas to
a subset of another virtual universe, the set of all graph databases. Applying Theorem 2.40
to the semantics of graph schemas S and T , we obtain the following result as a corollary.

Corollary 2.42 Let S1, S2 be two graph schemas. JS1K4 ⊆ JS2K4 i� S1 4 S2. JS1K4 =
JS2K4 i� S1 4 S2 and S2 4 S1.

Buneman et al. have given the same de�nition of graph schema semantics up to graph
simulation [29]. We extended their results to dual simulations. What distinguishes our
presentation from theirs is that Buneman et al. presumed the semantics to be de�ned
as in De�nition 2.41 and derived a sound and complete procedure for deciding instance
subsumption and equivalence. We started from the properties of dual simulation, leading
to graph schema re�nement being a preorder, from which we were able to prove that
instances are preserved (Lemma 2.38). We then showed that, if instances are preserved
between any two graph schemas, then this is because the graph schemas re�ne one another
(Lemma 2.39). These two results allowed us to give a formally justi�ed de�nition of the
graph schema semantics.

There is a subtle di�erence in the results obtained by Buneman et al., found in the
proof of Lemma 2.39. Buneman et al.'s proof is based on the observation that a graph
schema S is a least upper bound (w. r. t. 4) of the set JSK4 (Theorem 7 in [29]). In their
work, JSK4 is partially ordered by 4, i. e., also database instances can be related by 4. 4
is a preorder when de�ned as rooted graph simulations on rooted labeled graphs. This is
a property we could not rely on (cf. Example 2.34). From JSK4 ⊆ JT K4, Buneman et al.
deduce for every least upper bound S′ of JSK4, there must be a least upper bound T ′ of
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Figure 2.14: (a) A Schema Graph S and (b) Di�erent Instances of S

JT K4, such that S′ 4 T ′. Hence, let T ′ be a least upper bound of JT K4 with S 4 T ′. From
Theorem 7 in [29], Buneman et al. deduce that T is a least upper bound of JT K4. Thus,
T ′ 4 T . By transitivity of 4, S 4 T (Corollary 8 in [29]). The central idea of Buneman et
al.'s proof is to exploit that 4 is a preorder, also on the level of their graph data.

2.3.4 On Types of Interest

In an earlier version of graph schemas, we have been using so-called types of interest instead
of relying on non-emptiness of dual simulations for the notion of conformance witnesses.
Each graph schema S = (TS ,Σ, ES) was equipped with a designated subset of its types,
X ⊆ TS , representing the types the schema designer is interested in modeling. We denoted
such graph schemas by S[X] = (TS ,Σ, ES , X). A dual simulation would qualify as a
conformance witness between a graph database DB and S if it covered all types of interest
x ∈ X. An advantage of this kind of modeling tool is that S[X] describes databases that
guarantee to have objects of type x for all x ∈ X. Furthermore, an appropriate re�nement
between graph schemas turned out to have almost all bene�cial properties, e. g., it was a
preorder. The particular formulation we used is:

Graph schema S[X] re�nes graph schema T [Y ], denoted S[X] 4 T [Y ], i�
there is a dual simulation R between S and T , such that for all y ∈ Y there is
an x ∈ X with (x, y) ∈ R.

Note that, by design, X,Y 6= ∅ for every graph schema, guaranteeing non-empty dual
simulations as re�nement witnesses. The soundness theorem (cf. Lemma 2.38) was repro-
ducible for graph schemas with types of interest. However, when it comes to completeness
(cf. Lemma 2.39), the set of all instances of schema S[X] fails to capture what S[X] is
actually about.

Example 2.43 Consider the graph schema S depicted in Figure 2.14 (a). Depending on
whether we choose x, y, or z as a type of interest, we describe di�erent sets of instances.
For example, focusing on x will yield the �rst two (from left to right) types of database
instances in Figure 2.14 (b). The instance depicted on the right-hand-side cannot be typed
by S[{x}] because it is impossible to �nd an object whose incidence is re�ected by node
x. Node 8 has an outgoing b-labeled edge and node 7 an incoming one, while x has only
an outgoing a-labeled edge. The same argument holds for S[{z}] when trying to obtain
an instance with nodes 1 and 2. Thus, the sets of instances of S[{x}] and S[{z}] are
incomparable, which is also con�rmed by re�nement since neither S[{x}] 4 S[{z}] nor
S[{z}]4 S[{x}].
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When it comes to y, S[{y}] describes all three instances depicted in Figure 2.14 (b).
In fact, JS[{x}]K ⊆ JS[{y}]K and JS[{z}]K ⊆ JS[{y}]K. However, S[{x}]��4 S[{y}] (in the
above-mentioned sense) because y does not dual simulate x in S. Likewise, S[{z}]��4S[{y}].
In this situation, although one graph schema (S[{x}] or S[{z}]) describes a subset of the
instances of another (S[{y}]), 4 cannot con�rm this circumstance. �

Hence, graph schema re�nement would not reliably identify the subsumption of graph
schema instances, meaning, JS[X]K4 is not only a set of database instances of S[X], but
must also include a distinguishing characteristic for the instances derived from the graph
schemas in Example 2.43. One possible road to overcome this issue is taken in Section 2.4.
As far as this section is concerned, we consider the characterization of graph schemas and
their semantics completed.

2.3.5 Graph schemas in RDF

Our graph schema model is an extension of the one that Buneman et al. [29] and Abiteboul
et al. [3] propose for semistructured data. Alternatively, RDF comes itself with a notion of
instances, substantiated in graph homomorphisms between RDF graphs [62]. Because of
blank nodes and RDFS vocabulary, RDF is a language describing schemas and instances
that build on the same principles, namely that of RDF graphs. Let G and H be RDF graphs.
H is an instance of G if there is a map between G and H. A function µ : (I ∪ B ∪ L) →
(I ∪B ∪ L) is called a map between G and H i�

(1) µ(n) = n for all IRIs and literals n ∈ I ∪ L, and

(2) (µ(s), µ(p), µ(o)) ∈ H for all RDF triples (s, p, o) ∈ G.

Note that maps are graph homomorphisms with the additional feature that also the edge la-
bels are mapped by µ, mainly because predicates are resources also occurring as nodes [66].
Since predicates are IRIs, condition (1) requires µ to map each predicate to itself, being
one speci�c form of alphabet alignment, namely identity (cf. Section 2.1.1). Due to (2), H
is an instance of G if there is a graph homomorphism between G and H [62], when viewed
from a graph-theoretic perspective.

Maps identifying instances of RDF graphs represent the �rst stage of what is called
entailment in RDF terminology [62, 67]. Although not customary, we call G above an RDF
schema graph. Compared to the method of graph schemas, every edge of the schema graph
must be matched by its instances. Thus, RDF schema graphs comprise lower bounds of the
instances. As a modeling tool for knowledge, RDF's instantiation highly relies on logical
devices. A statement, once present, must not disappear in the course of instantiation.
There is, however, the freedom (a) to join or instantiate one or more blank nodes and
(b) to add arbitrarily many facts, not covered by the RDF schema graph. Regarding (b),
our notion of graph schema conformance entails the same e�ect. If some subgraph of the
database has nothing to do with the schema, it is not respected by conformance. However,
RDF's instantiation is not robust w. r. t. incomplete information. If an RDF schema graph
states a book to contain information about the title, author, and ISBN, an object, missing
only a single attribute, disquali�es as an object of type Book. In this respect, graph
schemas are more liberal instead, meeting the requirements of typing unstructured data
(cf. Section 2.3.2). Towards (a), it is blank nodes that may be used to implement graph
schema types, but instances may grow over their type in an uncontrolled fashion. Graph
schemas provide, thus, more information about the possible structures of an entity type.
Providing arbitrary, even nonsensical, information for a book instance, e. g., a death date or
place of living, is allowed. There are other correctives to encounter such arbitrary additions.
For instance, a death date is restricted to objects of type person [17], being outside the
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scope of this thesis. Furthermore, in order to obtain a typing of instance nodes in RDF, we
had to enumerate all maps between schema and instance, for sure, an intractable task [68].
Here, graph schemas also promise a tractable alternative as (maximal) dual simulations
are computed in Ptime [69, 85, 93].

Further entailment regimes, incorporating RDF Schema (RDFS) [24], require a model-
theoretic semantics [67, 62]. For sure, such capabilities make RDF more expressive, com-
pared to graph schemas. Any extension to the map-based entailment regime leaves the
scope of this thesis. We deal with required structures, the core competence of RDF maps,
in the next section.

2.4 Modal Graph Schema

Graph schemas represent upper bounds to their database instances. Presume some graph
database DB and graph schema S. A database object o quali�es as type t, o `S t, if o does
not exceed the structure t allows. For instance, a single object that participates in rela-
tionships labeled title and author may qualify as a book chapter (Inbook in Figure 2.13),
a journal article (Article in Figure 2.11 (c)), as well as a book (Book in Figure 2.11 (b)).
All three graph schemas feature a title and an author. However, does any object with
a title and an author qualify as each of the types above? As far as graph schemas are
concerned, we have no chance to disqualify one of the types. In order to better recognize a
bibliographic item as a journal article, we must additionally include a journal (Journal)
and a year of publication (Year). For all entry types, BibTEX has a list of required �elds2.
We wish to express such required properties as part of our graph schema model.

Calvanese et al. extend graph schemas to overcome some limitations, including a form
of requirement expressions [32]. They use description logics to complement a single graph
schema, but maintain tree-shaped graph data. Furthermore, they extend the labeling
alphabet of schemas for more expressiveness. As Abiteboul et al. highlight, a logical
system, like Datalog or one of the description logics, always serves as a highly expressive
alternative. However, general Datalog programs may capture many more constraints, not
necessarily classifying as pure schema information [3]. In order to study schemas for graph
data, independent of further constraints, such as keys or dependencies [49, 54, 32], we
pursue a model staying inside the graphical formalism we adopted for graph schemas. To
this end, Abiteboul et al. sketch dual graph schemas [3], that capture required properties,
i. e., a core structure to be exhibited by any graph database instance. Since dual graph
schemas are again rooted graphs, the expression of required properties is restricted to those
reachable from the root nodes.

Example 2.44 An example dual graph schema is depicted in Figure 2.15. It is dual to
the rooted graph schema from the beginning of this chapter (cf. Figure 2.7 on Page 18).
An instance obeying the schema in Figure 2.7 and its dual schema in Figure 2.15 must not
exceed the structure of the graph schema but is required to include objects of both types,
books as well as inproceedings. It is impossible to only conditionally require title, author(s),
and ISBN if a book is present. The same holds for the inproceedings case. �

We aim for a more �exible model that allows us to formulate graph requirements alto-
gether with allowed structures in an integrated fashion. We achieve the desired �exibility
by employing the theory of Modal Speci�cations, initially introduced by Larsen and Thom-
sen [78]. It has been their goal to have a system speci�cation language capturing the
behavior of a variety of implementations [81]. This goal is quite comparable to ours since
the graph schemas can be seen as speci�cations and instances as their implementations.

2See the BibTEX documentation available at https://ctan.org/pkg/bibtex.
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Figure 2.15: A Dual Graph Schema for Bibliographic Contents

Larsen and Thomsen employ a may/must dichotomy, translating to allowed and required
system behavior. We use the same dichotomy in our extended graph schema model, the
modal graph schema, to capture allowed and required graph structures.

De�nition 2.45 (Modal Graph Schema)
S = (TS ,Σ, E

♦
S , E

�
S ) is a modal graph schema i� skeleton(S) := (TS ,Σ, E

♦
S ) is a graph

schema, called the skeleton of S, and E�S ⊆ E
♦
S (syntactic consistency). N

A modal graph schema S = (TS ,Σ, E
♦
S , E

�
S ) comes with two types of edges. First, the

may edges E♦S are those describing the allowed structure. As the instances will optionally
match them, they are graphically represented by dashed edges, as e. g., in Figure 2.16.
The must edges E�S are graphically drawn as solid directed edges. The may modality (♦)
is thought of as expressing the allowed structures in the same way as graph schemas do
(De�nitions 2.15 and 2.25). The must modality (�) encodes the required edges. In fact,
every graph schema S = (TS ,Σ, ES) is the skeleton of a modal graph schema (TS ,Σ, ES , ∅).
Syntactic consistency is necessary because the structure can only be required if it is allowed.
Other than this mild syntactic requirement, may and must edges are free to be used
throughout the whole graph, which is the main syntactic distinction to dual graph schemas
(cf. Example 2.44).

We use v E♦S (a) w as the in�x notation for (v, a, w) ∈ E♦S . Accordingly, v E�S (a) w
denotes (v, a, w) ∈ E�S . Conformance between databases and modal graph schemas have
to obey the meaning of may and must edges.

Example 2.46 Let us reconsider graph database DB2.11 (a) in Figure 2.11 (a) on Page 24.
According to the non-modal graph schemas in Figures 2.11 (b) and 2.11 (c), objects SGDM
and DotW can be typed, the former as an Article while the latter is of type Book. With
respect to modal graph schemas for Article and Book in Figures 2.16 (a) and 2.16 (b),
DB2.11 (a) cannot be typed anymore. In order to get DotW typed as a Book, its schema
requires at least one author and one publisher. Likewise, SGDM also misses out on any
authors. Thus, modal graph schema conformance shall not qualify DB2.11 (a) as an instance
of either modal schema. �

While for may edges we follow the same lines as for graph schema conformance of Sec-
tion 2.3, the must edges of a modal graph schema are simulated by a graph database
instance, resulting in an alternating-style of dual simulation.
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De�nition 2.47 (Modal Graph Schema Conformance)
For modal graph schema S = (TS ,Σ, E

♦
S , E

�
S ) and graph database DB = (ODB ,Σ, EDB ),

we say that DB conforms to S, denoted DB 4m S, i� DB 4 skeleton(S) by conformance
witness R, such that for (v1, v2) ∈ R,

1. v2 E
�
S (a) w2 implies ∃w1 ∈ ODB : v1 E

a
DB w1 ∧ (w1, w2) ∈ R and

2. u2 E
�
S (a) v2 implies ∃u1 ∈ ODB : u1 E

a
DB v1 ∧ (u1, u2) ∈ R.

Similarly to De�nition 2.25, we call R a modal conformance witness between DB and S.N

By modal graph schema conformance, a schema simulates an instance and an instance
simulates the required (must) edges of its schema. The built-in may/must dichotomy
implies three di�erent aspects, now covered in a single concise model: allowed, required,
as well as forbidden structure. In accordance with non-modal graph schemas, database
object classi�cation is performed under the same assumptions as given in Section 2.3.2,
i. e., we employ the modal conformance witnesses. Modal conformance witnesses are closed
under set-union, making the greatest modal conformance witness between a database and
a modal graph schema unique.

Proposition 2.48 Let DB be a graph database and S a modal graph schema with DB4mS.
The greatest modal conformance witness R̂ between DB and S, subsuming every other
witness, exists. We call R̂ the maximal modal conformance witness between DB and S.

Proof: Let R1, R2 be two modal conformance witnesses between DB and S. We subse-
quently show that R1 ∪ R2 is a modal conformance witness between DB and S. As R1

and R2 are modal conformance witnesses, they are conformance witnesses between DB
and skeleton(S), i. e., non-empty dual simulations. Their union is again non-empty. Fur-
thermore, by Theorem 2.29, R1 ∪ R2 is a dual simulation, hence, a conformance witness
between DB and skeleton(S). It remains to be shown that the must requirements of Def-
inition 2.47 are met. These are automatically met since (v1, v2) ∈ R1 ∪ R2 implies either
(v1, v2) ∈ R1 or (v1, v2) ∈ R2. In both cases, each must edge initiating/terminating in
v1 is re�ected by an appropriate edge initiating/terminating in v2 because R1 and R2 are
modal conformance witnesses.

Towards a contradiction, suppose there are two distinct greatest modal conformance
witnesses R̂1 and R̂2, i. e., there is no modal conformance witness R with R̂i ( R (i =

1, 2). As R̂1 ∪ R̂2 is again a modal conformance witness, R̂i ⊆ R̂j (i = 1, 2 and i 6= j),
contradicting the assumption that R̂1 and R̂2 are distinct largest witnesses. q. e. d.

Thus, once again, it is the maximal modal conformance witness that presents to us the
typing of database objects w. r. t. a graph schema.

De�nition 2.49 (Database Object Classi�cation)
Let DB = (ODB ,Σ, EDB ) be a graph database and S = (TS ,Σ, E

♦
S , E

�
S ) a modal graph

schema. An object o ∈ ODB is of type t ∈ TS (w. r. t. S) i� o `S t, where `S is the
maximal modal conformance witness between DB and S (cf. Proposition 2.48). N

2.4.1 Expressive Power

In analogy to non-modal graph schemas, the semantics of a modal graph schema might
be de�ned as the set of its instances. We formulate this de�nition as a claim, rather than
an actual de�nition because we have not yet studied the properties of our conformance
relation 4m.
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Claim The semantics of a modal graph schema S is the set of instances of S, i. e.,

JSKm := {DB | DB 4m S}. ♠

Subsequently, we study the consequences of this semantics of modal graph schemas w. r. t.
expressiveness. Recall that the properties of 4 led to the de�nition of the semantics of
(non-modal) graph schemas S. Here, we study whether the claimed semantics of modal
graph schemas S, JSKm, withstands its notions.

First, observe that modal graph schemas are conservative extensions of graph schemas
without modalities, in that the skeleton of a modal graph schema is a graph schema. Hence,
the set of instances of a modal graph schema is a subset of the instances of its skeleton.

Proposition 2.50 Let S = (TS ,Σ, E
♦
S , E

�
S ) be a modal graph schema.

(I) skeleton(S) ∈ JSKm and

(II) JSKm ⊆ Jskeleton(S)K4.

Proof: We show that idTS is a modal conformance witness for skeleton(S) and S. Of
course, idTS is a non-empty dual simulation between skeleton(S) and skeleton(S) (Propo-
sition 2.33) and, as such, is a conformance witness between skeleton(S) and skeleton(S).
It remains to be shown that De�nition 2.47 is satis�ed. Let (v1, v2) ∈ idTS , i. e., idTS (v1) =
v2 = v1 with v2 E

�
S (a) w2 (w2 E

�
S (a) v2, resp.). As v2 = v1 (by idTS ), there is of course a

w1 with v1 E
�
S (a) w1 (w1 E

�
S (a) v1, resp.) and (w1, w2) ∈ idTS (as w1 = w2). Hence, idTS

is indeed a modal conformance witness for skeleton(S) and S, which justi�es (I).
Towards (II), we show that every instance DB of S, i. e., DB 4m S, is an instance

of skeleton(S), i. e., DB 4 skeleton(S). There is, by De�nition 2.47, a non-empty dual
simulation R between DB and skeleton(S). Thus, by De�nition 2.25, R is a conformance
witness for DB and skeleton(S), implying DB 4 skeleton(S). q. e. d.

In Section 2.3, 4 extended to graph schemas nurtured the desired semantics of graph
schemas. A modal version of graph schema re�nement provides us with a similar extension.

De�nition 2.51 (Modal Graph Schema Re�nement)
Let S1 = (T1,Σ, E

♦
1 , E

�
1 ) and S2 = (T2,Σ, E

♦
2 , E

�
2 ) be two modal schema graphs. S1

re�nes S2, denoted S14mS2, i� skeleton(S1)4 skeleton(S1) by re�nement witness R, such
that for all (v1, v2) ∈ R,

1. if v2 E
�
2 (a) w2, then there is a w1 ∈ T1 with v1 E

�
1 (a) w1 and (w1, w2) ∈ R, and

2. if u2 E
�
2 (a) v2, then there is a u1 ∈ T1 with u1 E

�
1 (a) v1 and (u1, u2) ∈ R.

Analogously to De�nition 2.35, we call R a modal re�nement witness. N

Example 2.52 Consider the two graph schemas S2.17 (a) and S2.17 (b) in Figures 2.17 (a)
and 2.17 (b). It holds that S2.17 (b)4mS2.17 (a), but not vice versa. While S2.17 (a) only allows
to mention the Publisher, S2.17 (b) requires it. Hence, an instance of type Incollection
certainly is also an instance of Inproceedings, but not vice versa. �

The informal outcome of Example 2.52 is grounded in the following soundness result for
4m, analogously to Lemma 2.38.

Lemma 2.53 (Soundness of 4m) Let Si = (Ti,Σ, E
♦
i , E

�
i ) (i = 1, 2) be modal graph

schemas. If S1 4m S2, then every instance DB of S1 is an instance of S2.
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Figure 2.17: (a) Modal Graph Schema of Inproceedings (b) Modal Graph Schema of
Incollection
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Proof: The proof follows the same principles as performed for Lemma 2.38. We will
observe that 4m is a preorder that may be prolonged to modal instances on the left.

Let DB 4m S1 by modal conformance witness R1. Furthermore, S14m S2 is witnessed
by R2. Since R1 and R2 are dual simulations (cf. De�nitions 2.47 and 2.51), R1 ◦R2 is a
dual simulation by Proposition 2.33. We show that

(i) R1 ◦R2 is non-empty, analogously to Lemma 2.36, and

(ii) R1 ◦R2 is a modal conformance witness.

Towards a contradicition of (i), assume R1 ◦ R2 is the empty dual simulation. As R1 is
a modal conformance witness and R2 a modal re�nement witness, both dual simulations
are non-empty. Hence, R1 ◦R2 = ∅ only if for every pair (u, v) ∈ R1, there is no matching
pair (v, w) ∈ R2. Let (u, v) ∈ R1, i. e., there is no w ∈ T2 with (v, w) ∈ R2. Since R2 6= ∅,
there is at least one pair, say (v0, w0) ∈ R2. Analogously to the proof of Lemma 2.36, we
show that every node v1, reachable from v0, has a partner w1 such that (v1, w1) ∈ R2.
Thus, (v, w) /∈ R2 implies that S1 is disconnected, contradicting the assumption that S1

is a modal graph schema.
By induction, we show that for every path π of S1 with v0 = first(π) and v1 = last(π),

there is a node w1 ∈ T2 with (v1, w1) ∈ R2.

Base: For |π| = 0, we have π = v0 and (v0, w0) ∈ R2 (by assumption).

Hypothesis: Assume for nodes v1 ∈ T1, for which a path π from v0 with v1 = last(π) and
|π| < n (n ∈ N) exists, there is a w1 ∈ T2, such that (v1, w1) ∈ R2.

Step: Let π be a path from v0 to v1 with |π| = n. Then π = π<n·v1 with |π<n| = n−1 < n.
By induction hypothesis, there is a w′ ∈ T2 for v′ = last(π<n) such that (v′, w′) ∈ R2.
As π is a path, either (i) v′ E♦1 (a) v1 or (ii) v1 E

♦
1 (a) v′. As R2 is a modal re�nement

witness, there is a w1 ∈ T2 with w′ E
♦
2 (a) w1 (w1 E

♦
2 (a) w′, resp.) and (v1, w1) ∈ R2.

Hence, there is a w ∈ T2 with (v, w) ∈ R2, implying R1 ◦R2 6= ∅.
Let us now tackle (ii). Since R1 ◦ R2 is a non-empty dual simulation, we show that

every pair (u,w) ∈ R1 ◦ R2 meets the requirements of De�nition 2.51, i. e., for an edge
w E�S2

(a) w′ (w′ E�S2
(a) w, resp.), we give a u′ ∈ ODB with u EaDB u′ (u′ EaDB u, resp.)

and (u′, w′) ∈ R1 ◦R2. By construction of R1 ◦R2, there is a node v ∈ T1 with (u, v) ∈ R1

and (v, w) ∈ R2. As R2 is a modal re�nement witness, there must be a node v′ ∈ T1 with
v E�S1

(a) v′ (v′ E�S1
(a) v, resp.) with (v′, w′) ∈ R2. As R1 is a modal conformance witness,

there is a node u′ ∈ ODB with u EaDB u′ (u′ EaDB u, resp.) with (u′, v′) ∈ R1. Thus, from
(u′, v′) ∈ R1 and (v′, w′) ∈ R2, (u′, w′) ∈ R1 ◦R2, which completes the proof. q. e. d.

Thus, there is also a sound design process for modal graph schemas, similar to the one
described for (non-modal) graph schemas (after Lemma 2.38 on Page 29).

Unfortunately, there are modal graph schemas S and T with JSKm ⊆ JT Km but S��4mT .
This is a well-known problem of modal re�nement and every re�nement notion �xing this
problem yields at least a conp-hard re�nement problem [80], as opposed to the Ptime
complexity of checking graph schema conformance and re�nement [69, 86, 93].

Example 2.54 The modal graph schemas depicted in Fig. 2.18 are adapted versions of
the counterexample given by Larsen et al. [80] since the original counterexample cannot
cope with the dual simulation aspect of our modal re�nement. Let S(a) be a modal schema
according to Figure 2.18 (a) and S(b) to Figure 2.18 (b). Of course S(a) ��4m S(b) since in
any modal re�nement witness R, (n,m) ∈ R. But mE�S(b)

(b) 6= ∅, whereas n has only
a b-labeled may edge, i. e., m requires b whereas n only allows it. Nevertheless, it holds
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Figure 2.18: Counterexample Completeness of Modal Re�nement, adapted from [80]

that JS(a)Km ⊆ JS(b)Km because for databases DB conforming to S(a) that do not include
a b-labeled edge, DB also conforms to S(b) by exploiting the non-determinism of the edges
labeled by a. Node l perfectly simulates every node with an incoming a-labeled edge but
a missing outgoing b-labeled edge. �

Thus, if S ��4m T for modal graph schemas S and T , this does not necessarily imply
JSKm��⊆JT Km. In other words, JSKm for modal graph schemas S is not the set of all in-
stances of S, at least not up to 4m.

2.4.2 Sources of Nondeterminism

The counterexample given in Example 2.54 exploits nondeterminism of S(b), as it contains
two distinct paths accounting for graph database instances with an a-labeled edge. The
one ending in l does not need to be completed by a b-labeled edge. The one ending in
m simulates a-b-sequences. Even if we excluded this example, we would still miss an
important source of nondeterministic structure.

Example 2.55 Consider the two modal graph schemas S(a) (Figure 2.19 (a)) and S(b)

(Figure 2.19 (b)). Of course, S(a)��4mS(b) because every modal re�nement witness R would
have to include (v, y) (and (w, z)), but y requires an outgoing b-labeled edge, which is only
allowed by v. However, every instance of S(a) has either no edges (only isolated database
objects) or at least one b-edge. Both types of instances are also supported by S(b) because
isolated nodes are typed by x and b-edges are covered by nodes y and z. Additionally, S(b)

allows for a-edges followed by b-edges. Nevertheless, JS(a)Km ⊆ JS(b)Km but S(a)��4m S(b).�

The fundamental problem in this example is the freedom of choosing the types of S(b),
that participate in the modal conformance witnesses. In a database with isolated nodes
but no b-edges, type x is the preferred type, while in databases with at least one b-edge,
type y �lls in. If we �nd a way to uncover this exchange of rôles in-between types of graph
schemas, we will obtain the semantics of modal graph schemas.

2.4.3 Semantics of Deterministic Modal Graph Schemas

In Example 2.55, if we �xed y as mandatory type in S(b), every instance of S(b) would
have contained at least a b-labeled edge. In this setting, y plays the rôle of a root node.
Unfortunately, as discussed in Section 2.3.4, reintegrating root nodes on the schema-side
does not entail a sound and complete theory of graph schemas. However, if we only observe

v w
b

(a)

x y
a

z
b

(b)

Figure 2.19: Deterministic Counterexample for Completeness of Modal Re�nement
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for y the set of database objects it types by `S(b)
, we evade Example 2.43 on Page 31 as

well as Example 2.55.

Example 2.56 Let us reconsider S(a) and S(b), as in Example 2.55, but, this time, let us �x
type v in S(a) and type y in S(b). An empty-structured graph database DB = (ODB ,Σ, ∅)
with ODB 6= ∅ is an instance of S(a). The maximal modal conformance witness between
DB and S(a) assigns to type v all the database objects. In contrast, although DB is an
instance of S(b), there is not a single database object conforming to type y. As there is
no modal re�nement witness between S(a) and S(b), that relates types v and y, we will
again �nd that S(a) ��4m S(b). When comparing the instances of S(a) and S(b), we will now
consider the induced typing of v and y, which distinguishes the sets of instances in the
desired manner. It is exactly this distinction we subsequently exploit to derive a sound
and complete characterization of the semantics of modal graph schemas. �

Fixing a single type (of interest) per modal graph schema will ensure the absence of
the �rst kind of nondeterminism (cf. Example 2.55). In order to avoid the second kind
(cf. Example 2.54), a deterministic modal graph schema additionally exploits a determin-
istic edge relation E♦S . This means, for every two edges (v, a, w1), (v, a, w2) ∈ E♦S (or,
(w1, a, v), (w2, a, v) ∈ E♦S , resp.), it holds that w1 = w2.

De�nition 2.57 (Deterministic Modal Graph Schema)
A quintuple S[x] = (TS ,Σ, E

♦
S , E

�
S , x) is a deterministic modal graph schema i� S =

(TS ,Σ, E
♦
S , E

�
S ) is a modal graph schema with E♦S is deterministic and x ∈ TS . A graph

database DB is an instance of S[x] i� DB 4m S. The set of all objects o ∈ ODB with
o `S x is denoted by S[x](DB).

Let S′[y] be another deterministic modal graph schema. S[x] modally re�nes S′[y],
denoted S[x]4m S′[y], i� S 4m S′ by modal re�nement witness R with (x, y) ∈ R. N

Example 2.58 Besides the rooted graph schema in Figure 2.7 (on Page 18), all graph
schemas, with and without modality, are deterministic. As exempli�ed by the rooted graph
schema, whenever we join two or more of the other schemas (Figures 2.11 (b), 2.11 (c), 2.13,
2.16 (a), 2.16 (b), 2.17 (a) and 2.17 (b)), the resulting (modal) graph schemas are connected
but nondeterministic as, for instance, all of them feature typesTitle, Author, andYear.
The joined schemas exhibit a nondeterministic structure in these types, as there is more
than one (backward) edge, labeled title, author , and year , leading to di�erent types within
the schema. �

As we merely restricted our scope of modal graph schemas to the deterministic case and
kept the notion of instances invariant, the database instances DB 4m S[x] are instances
of T [y], given that S[x] 4m T [y]. Furthermore, even the induced typing of x and y is
guaranteed to subsume one another.

Lemma 2.59 (Soundness of 4m � The Deterministic Case)
Let S1[x] and S2[y] be deterministic modal graph schemas. If S1[x]4m S2[y], then DB 4m
S1[x] implies DB 4m S2[y] and S1[x](DB) ⊆ S2[y](DB).

Proof: Since S1[x] 4m S2[y] reduces to S1 4m S2 (cf. De�nition 2.57), every instance
of S1[x] is an instance of S2[y] by Lemma 2.53. It remains to be shown that for every
instance DB of S1[x], S1[x](DB) ⊆ S2[y](DB). Let DB 4m S1[x] and o `S1[x] x. We need
to show that o `S2[y] y. Recall that `S1[x] is the maximal conformance witness between
DB and S1[x] (cf. Proposition 2.48), i. e., `S1[x] is a non-empty dual simulation. As
S1[x]4mS2[y], there is a re�nement witness R between S1[x] and S2[y], such that (x, y) ∈ R
(cf. De�nition 2.57). Hence, following the proof of Lemma 2.53, `S1[x] ◦R is a non-empty
dual simulation between DB and S2[y]. Thus, `S1[x] ◦R is contained in the maximal
conformance witness `S2[y] between DB and S2[y] and, therefore, o `S2[y] y. q. e. d.
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Additionally to the set of instances per schema, observing the induced typing of the nodes
of interest resolves the issue presented in Section 2.3.4.

Lemma 2.60 (Completeness of 4m � The Deterministic Case)
Let S1[x] and S2[y] be deterministic modal graph schemas. If for every instance DB 4m
S1[x], it holds that DB 4m S2[y] and S1[x](DB) ⊆ S2[y](DB), then S1[x]4m S2[y].

Proof: By Proposition 2.50, skeleton(S1)4m S1. Therefore, skeleton(S1)4m S1[x] with
x ∈ S1[x](skeleton(S1)) (the proof of Proposition 2.50 uses idTS1

as conformance witness).
As every instance of S1[x] is an instance of S2[y],

skeleton(S1)4m S2[y] and x ∈ S2[y](skeleton(S1)). (2.5)

The second part of (2.5) is guided by the assumption that S1[x](DB) ⊆ S2[y](DB) for
every instance DB of S1[x].

Towards a contradiction, suppose S1[x] ��4m S2[y], i. e., there is no modal re�nement
witness R between S1 and S2 with (x, y) ∈ R. By this assumption and (2.5), there are
paths (of minimal length) π1 = t0t1t2 . . . tk of S1 and π2 = u0u1u2 . . . uk of S2 (k ≥ 0),
such that

(i) t0 = x and u0 = y,

(ii) ti−1 E
♦
2 (ai) ti and ui−1 E

♦
2 (ai) ui (0 < i ≤ k), but

(iii) either uk E�2 (a) u and tkE�1 (a) = ∅, or u E�2 (a) uk and E�1 (a)tk = ∅.

Construct DB from π1 as the smallest instance of S1[x] that contains all the edges
(ti−1, ai, ti) used in (ii). It holds that DB contains the path π1 with all its nodes, from
x to tk, with x ∈ S1[x](DB ), but neither an incoming a-edge to nor an outgoing a-edge
from tk. Note, DB may contain more edges than the ones in (ii) to guarantee edges to
be preserved as they are must edges, incident to any of the ti (0 ≤ i ≤ k).

Because S1[x](DB ) ⊆ S2[y](DB ), the maximal modal conformance witness R̂ be-
tween DB and S2[y] has the pair (x, y) as an element. Because S2[y] is deterministic,
the only path of S2, dual simulating π1, is π2. But (tk, uk) /∈ R̂ because uk requires
an incoming/outgoing a-edge not present in DB . Each pre�x of π1 cannot be dual
simulated by a pre�x of π2. Hence, (x, y) /∈ R̂ which contradicts the assumption that
S1[x](DB) ⊆ S2[y](DB) for all DB 4m S1[x].

Hence, S1[x]4m S2[y], given that all instances DB of S1[x] are instances of S2[y] and
S1[x](DB) ⊆ S2[y](DB). q. e. d.

The proof only uses the fact that S2[y] is deterministic in S1[x] 4m S2[y]. Although this
fact allows for more general subsumptions, the equivalence of two modal schemas requires
both schemas to be deterministic.

Consequently, the semantics of a deterministic modal graph schema S[x] is not only its
set of instances but also the induced typing of x. We, thereby, withdraw the claim at the
beginning of Section 2.4.1 (Page 37) and conclude the semantics of deterministic modal
graph schemas to be de�ned as follows.

De�nition 2.61 (Semantics of Deterministic Modal Graph Schema)
Let S[x], T [y] be a deterministic modal graph schema. The semantics of S[x] is de�ned by
JS[x]Km := {(DB , S[x](DB)) | DB 4m S[x]}.

JS[x]Km is subsumed by JT [y]Km, denoted JS[x]Km v JT [y]Km, i� for all (DB , X) ∈
JS[x]Km, a (DB , Y ) ∈ JT [y]Km exists with X ⊆ Y .

JS[x]Km is equivalent to JT [y]Km, denoted JS[x]Km ≡ JT [y]Km, i� JS[x]Km v JT [y]Km
and JT [y]Km v JS[x]Km. N
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As promised at the end of Section 2.3.4, we now obtained a feasible solution for the issues
discovered with nodes of interest, at least for the deterministic case. Contrarily to the
re�nement notion sketched there, we do not enforce a typing of the variables of interest,
but use them as an additional information source to derive the semantics of modal graph
schemas. With regard to Example 2.43 (Page 31), it holds that JS[x]Km��vJS[y]Km because,
although the sketched instance types of S[x] are also instance types of S[y], x and y ful�ll
completely di�erent rôles as veri�ed by the absence of a non-empty dual simulation relating
x and y.

Theorem 2.62 Let S1[x] and S2[y] be deterministic modal graph schemas. JS1[x]Km v
JS2[y]Km i� S1[x] 4m S2[y]. Consequently, JS1[x]Km ≡ JS2[y]Km i� S1[x] 4m S2[y] and
S2[y]4m S1[x].

Proof: The characterization of subsumption (v) follows directly from Lemmas 2.59
and 2.60. Equivalence (≡) is de�ned by two subsumptions (cf. De�nition 2.61). q. e. d.

2.5 Summary

Throughout this chapter, we have learned about basic notions of graph structures, such
as unlabeled and labeled graphs, as well as some elementary techniques relating graphs.
These notions included graph homomorphisms, (sub-)graph isomorphisms, and (dual) sim-
ulations. To bring data into graphs, we roamed through the structural components of RDF
and derived a useful model for graph databases. Although graph data is usually schema-
less, some insights into the stored structure may have advantages for query formulation and
query processing [28, 29, 57, 3, 21, 127]. We de�ned graph schemas and a sensible instance
notion that even allowed us to put an order on graph schemas. This study culminated in
the semantics of graph schemas, given as the set of instances they describe.

Our graph data model is a labeled graph, relating data objects from a universe of data
objects U with other data objects. The relationships expressed in this model stem from a
universe of predicate symbols P. Data objects are the nodes of a graph database, while
the edges represent the properties associated with the objects. We may generally model all
kinds of relationships, but they must be explicitly given. We exclude entailment regimes
and other deductive devices from our graph data model but stay within the algebraic
framework of labeled graphs.

A graph schema is a connected labeled graph with at least one node. The nodes of a
graph schema represent types, later assigned to the database objects of the instances of
the schema. The relationships of a graph schema form an upper bound of the relations
occurring in an instance. Thereby, we meet the three characteristics of typing graph data
(cf. Section 2.3.2), being (a) lack of precision (types do not partition the set of database
objects), (b) incompleteness (some objects do not belong to any type), and (c) approx-
imation (not all structural aspects of a type must be met). The notion of conformance
witnesses, given as non-empty dual simulations, allowed us to derive a concise means of
object classi�cation. Furthermore, we provide a formal semantics of graph schemas up to
dual simulations. It holds that two graph schemas have the same set of instances i� they
(non-trivially) dual simulate one another (cf. Theorem 2.40).

The notable restriction of our model is the connectedness of graph schemas, which is
a necessary design decision that allowed us to prove that graph schema re�nement (4)
is a preorder, a prerequisite for a sound and complete method to decide graph schema
equivalence. Hence, when we join the example graph schemas that appeared in Section 2.3
to one single graph, we have to ensure connectedness. We cannot simply combine the
schemas of books and journal articles (Figures 2.11 (b) and 2.11 (c)) separating the types
Author, Title, Year, and Month. This way, we would reach a schema that describes
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books and articles with their respective authors. An author who wrote a book and an
article must occur as two separate objects in an instance of such a schema, one for each
rôle, e. g., as book author and as journal author. In most cases, though, such a schema
is undesirable, as it does not capture any interrelations of books and journal articles. A
graph database conforming to such a disconnected schema may very well be separated
into two, as there is no answer to a query that asks for some relation between books
and articles. Although we cannot completely exclude a use case for disconnected graph
schemas, this example at least questions the usefulness of such a model of graph schemas.
If a graph database is an instance of more than one graph schema, conformance can be
checked schema-wise.

Algorithms verifying conformance between a graph database and a graph schema are
available and described in Chapter 5. The core problem to be solved is the non-emptiness
problem of dual simulations, asking for the existence of a non-empty dual simulation.
This problem is Ptime-solvable by HHK by Henzinger et al. [69], GPP by Gentilini et
al. [60] (later corrected by van Glabbeek and Ploeger [132]), or our own solution [93].
Especially the development of fast decision procedures, such as HHK running in cubic
time (in the size of the input graphs), paved the way for simulation concepts to be used
in the context of early graph databases [28, 3]. Each of the algorithms mentioned above
primarily compute the maximal (dual) simulation between two given graphs. Thus, there
is a non-empty (dual) simulation if the computed maximal (dual) simulation is non-empty
(Corollary 2.32). This solution to the dual simulation problem decides graph schema
conformance and directly returns the typing relation `S between the objects of a database
DB and the types in graph schema S.

The way we derived the semantics of graph schemas up to graph schema re�nement
(4) in Section 2.3.3 may be adopted to other notions relating graph schemas. Given such
a relation v between graph schemas, we would have to answer, whether the instances
of a graph schema S are preserved in T if S v T . Moreover, we would be asked if
this information about the instances is su�cient, in the sense of completeness. Finally,
a sensible semantics up to v of a graph schema S, JSKv, would have to be obtained.
This semantics would feature the property we have proven for 4 in Theorem 2.40, i. e.,
JSKv ⊆ JT Kv i� S v T . Adjustments to the models of graph schema and conformance
are imaginable. We have seen one such study (beyond graph schema conformance) in
Section 2.4 when we studied the modal extension of graph schemas.

Schema graphs, here and 20 years ago, provide a means of allowed structures, but
it is sometimes necessary to also require structure by a schema [3]. To address this in-
capability of graph schemas, we proposed a �exible incorporation of required structures
employing modal speci�cations [78, 81]. The may/must dichotomy, employed by Larsen
and Thomsen [78], translates to allowed and required system behavior, which we reinterpret
as allowed and required graph structure in modal graph schemas. We presented modal ver-
sions of conformance as well as re�nement, being conservative extensions of graph schema
conformance and re�nement. Unfortunately, the additional requirements, emerging from
the must modality, have severe consequences for re�nement as well as for the implied al-
gorithmic complexity. It was only the restriction to deterministic modal graph schemas
allowing for a sound and complete characterization of graph schema subsumption.

The extension of graph schemas to graph databases, as well as by modalities, has
been published as a full paper in the proceedings of the 38th International Conference on
Conceptual Modeling (ER 2019) [89]. Sections 2.3 and 2.4 provide more explanation, full
proofs, and more detailed examples than the conference version could contain, given the
limited space.



CHAPTER 3
Graph Patterns

Throughout the last chapter, we have cared for the representation and the description
of graph data. After basic notions, we rediscovered a model describing the graph data's
schematic structure. Hypothetically, a system that builds on the principles of Chapter 2
is a system that allows for describing, storing, and viewing graph data. By the semantics
we developed for graph schemas, which is based on graph (dual) simulations, the system
automatically (and e�ciently) identi�es typing information for database objects stored in
our database instance. Any further manipulation takes place by posing graph patterns
and �nding those subgraphs of the database that match the pattern [59, 50].

Interest in graph patterns for graph querying tasks has been raised by requirements
of application domains, like the Semantic Web [8, 14], social network analysis [26, 48], or
modern Web-based techniques [41]. The volume of such data sources vastly increased over
the last decade, e. g., Wikidata has grown from more than 45 Million entities in 2018 [87]
to 64,055,544 items, as of today1. Graph homomorphisms or graph isomorphisms form the
quasi-standard for the graph pattern matching problem [50]. Alternatives are only rarely
spotted, e. g., [26, 51, 85]. According to Gallagher [59], the graph pattern matching problem
gets a data graph G = (V,Σ, E) and a pattern graph Q = (VQ,Σ, EQ) as input. Matching
requires �nding the set JQKG of all subgraphs of G that are matches for Q. Instantiated
for graph isomorphisms, a subgraph A ⊆ G is an isomorphic match for Q in G i� there is
a graph isomorphism between Q and A.

Matching up to graph isomorphisms often su�ers from a bad reputation regarding its
complexity. The infamous subgraph isomorphism problem is among Cook's np-complete
problems, for which he provides a reduction from 3sat [37]. The situation is no better
with subgraph homomorphisms as the decision problem behind it remains np-complete [68].
According to Fan et al., (bijective) functions are often too strict [51], by which they mean
to say that in real-world graph data, a single graph pattern does not su�ce to satisfy
the information need of a user or application. Graph isomorphisms do not cope well
with incompleteness of data, i. e., the exactness required by isomorphisms clashes with
heterogeneity in graph databases. Another reason is that graph isomorphisms do not
allow for iterations.

Example 3.1 Assume, we want to identify citation rings2 in our bibliographic database.
The presence of a directed cycle characterizes such a ring, exempli�ed for two, three,
and four research works in Figure 3.1. If we knew the number of participants k in every
citation ring in the graph database in advance, we would just pick one of the respective

1statistics retrieved on Oct 22, 2019, from https://www.wikidata.org/wiki/Wikidata:Statistics
2This example is adopted and adjusted from the examples used by Fan et al. [51] and Ma et al. [85].
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Figure 3.1: Three Non-Isomorphic Citation Ring Patterns

ring patterns, e. g., Figure 3.1 (b) for k = 3. Usually, more than one such k exists, which
is why we need to pose several ring patterns and collect all their results. It is impossible
for graph-isomorphic matching to �nd cycles of some �nite length k ∈ N. Even if this
maximal number is known, a possible query, formulated in Sparql, is rather complex:

((0, cite, 1) AND (1, cite, 0))︸ ︷︷ ︸
Figure 3.1 (a)

UNION ((0, cite, 1) AND (1, cite, 2) AND (2, cite, 0))︸ ︷︷ ︸
Figure 3.1 (b)

UNION ((0, cite, 1) AND (1, cite, 2) AND (2, cite, 3) AND (3, cite, 0))︸ ︷︷ ︸
Figure 3.1 (c)

�

For sure, iterating through data graphs may be done by path queries, which are built
into many modern graph query languages [5, 83], but the general computational problems
behind answering path queries often exceed np-completeness of graph-isomorphic pattern
matching [19]. What if a single graph pattern already describes the essence of a citation
ring?

Another issue of graph isomorphisms reveals itself by considering graph schema confor-
mance and object classi�cation from Section 2.3.2. If we had chosen graph isomorphisms
instead of (dual) simulations, the conformance check would have immediately turned np-
complete. Furthermore, in order to obtain object classi�cations, there is no more elegant
way than enumerating all graph isomorphisms between (subgraphs) of the database and
the graph schema. There is no union-closedness result for graph isomorphisms. The just
described issue also has a graph querying-related correspondence.

Example 3.2 Assume we want to �nd the papers written by Turing Award winners.
Up to any relevant notion, a single pattern as the one depicted in Figure 3.2 su�ces.
However, depending on the number of adjacent paper nodes, a single Turing Award winner

Turing Award Writer
hasWon

Paper
writtenBy

Figure 3.2: A Graph Pattern Asking for the Paper(s) Written by Turing Award Winners

is represented in as many matches as there are papers written by her, when considering
matching up to graph isomorphisms. For instance, this yields at least 373 matches3 having
a node Michael Stonebraker as Writer. Would not a single match, collecting all the
written papers in a bag, su�ce? �

3On October 24, 2019, https://dblp.uni-trier.de/pers/hd/s/Stonebraker:Michael lists 373
records.
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Summarizing, the most prominent issue of graph homomorphisms in the literature is in-
tractability. Also, Sahu et al. certify general scalability of graph database techniques to
be the most pressing issue, likewise by researchers and practitioners [118].

Goals. Beyond intractability, we argue for a low pragmatic value of graph homomor-
phisms: A single pattern is often insu�cient. Hence, full-�edged graph query languages
are developed around graph homomorphisms. Loosely speaking, graph homomorphisms
are early adopters of external operations like joins or unions. Simulations, we became
familiar with during Chapter 2, resolve some of the issues of graph homomorphisms men-
tioned above. Since simulations are union-closed relations between the nodes of the pattern
and those of the data graph (cf. Theorem 2.29), they allow for summarization of single
matches. Of course, they have been proposed as tractable alternatives to otherwise in-
tractable matching tasks based on graph homomorphisms [51, 85, 53]. However, there
are some cases where the pragmatic value of simulations is at least mentioned [26, 51].
Uniqueness of the maximal dual simulation already aided the methods of graph schema
conformance and object classi�cation (cf. Sections 2.3.1 and 2.3.2). Furthermore, the ci-
tation network task requires only a single pattern, e. g., the one depicted in Figure 3.1 (a),
to cope with citation rings with arbitrarily many participants. The reason is that all three
graph patterns in Figure 3.1 are equivalent up to dual similarity. Remarkably, one �nite
pattern allows for expressing a class of in�nitely many graph patterns by employing graph
similarity principles in the pattern matching task.

Contribution. We contribute an exercise in comparative semantics for graph pattern
matching in graph databases. In a series of pattern matching mechanisms, such as graph
homomorphisms and several forms of graph simulation, we outline their landscape and
elaborate on their uses in concrete scenarios. Therefore, we �rst study graph equivalences
(', -D, and ↔D) to estimate the degrees of freedom we have in the matching process.
Knowing about what graphs are indistinguishable by a matching mechanism re�ects on
the matches we can expect. Of course, we lose precision w. r. t. graph isomorphisms in
the pattern matching task but, at the same time, gain tractability (cf. Chapter 5) and
the ability to describe in�nitely many patterns �nitely and without the machinery of path
queries and the like. Furthermore, simulations show all the peculiarities already discussed
in Chapter 2, e. g.,leaf node insensitiveness (cf. Example 2.21), leading to an early adoption
of dual simulation principles. From a formal perspective, bisimilarity (-) and similarity
(↔) lose their status as equivalences in the general graph setting. Only the simultaneous
consideration of backward and forward edges reestablishes rightful equivalence notions for
(connected) graphs via dual bisimilarity (-D) and dual similarity (↔D).

We brie�y discuss instances of subgraph matching problems, based on the just estab-
lished equivalence notions. Unfortunately, whenever we ask for subgraphs as solutions, the
associated matching problem is np-complete. Loosening the relationship between graph
pattern and data graph will guide us from intractable graph-homomorphic matching to
dual simulation pattern matching, which inherits all properties we studied for dual simi-
larity and overcomes intractability of subgraph dual similarity matching.

Besides all the advertised characteristics of dual simulations, they are at least as bad at
recognizing incompleteness of data as graph isomorphisms. To partially overcome this is-
sue, we borrow ideas from another semantic equivalence, that has been used to characterize
(partial) deadlock situations in processes. We pick the idea of process failures [25, 133] and
devise them for graph pattern matching incorporating a light-weight means of negation.
Therefore, we contribute a complementary failures theory and exemplify it as an extension
to subgraph matching up to dual simulations (vDsim).
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Figure 3.3: The Graph Matching Notions and Their Interrelation

We published an earlier comparative study of graph matching notions in the proceed-
ings of the 36th International Conference of Conceptual Modeling [90]. Back then, we
included trace-based equivalences and studied the incomparability of simulations and fail-
ures equivalence. We made the failures theory more concise in a special interest article
that appeared in the Datenbankspektrum [91]. In this chapter, we collect and combine our
earlier �ndings with related work to obtain a discussion of the pragmatic value of di�erent
graph pattern matching mechanisms. Compared to [90, 91], we also include bisimilarity
and argue for the early adoption of dual simulation principles.

Outline. The study of graph equivalences in Section 3.1, comprising graph isomorphisms,
similarity, and bisimilarity, enables us to discuss what a single graph pattern expresses.
Intuitively, two equivalent graph patterns return the same matches. Based on these equiva-
lences, we discuss the particular subgraph matching problems in Section 3.2. In Section 3.3,
our focus will be on matching graph patterns without the need of a subgraph mechanism.
The failures theory for graph databases is developed and applied in Section 3.4. Section 3.5
summarizes the material of this section by justifying Figure 3.3.

3.1 Cornerstones

In this section, we consider di�erent relations between graphs. Hence, we usually pose
connected graphs G1 = (V1,Σ, E1) and G2 = (V2,Σ, E2) and ask whether or not they are
related. Some of these relations are equivalences. Requiring connectedness, at least for the
graph pattern (later G1), is a usual assumption in graph pattern matching [59, 48]. The
most discriminating form of equivalence is identity. This kind of equality, i. e., G1 = G2,
only holds if V1 = V2 and E1 = E2. By most discriminating we mean that any other
relation/equivalence of this section is coarser than identity, i. e., two identical graphs will
always be related/equivalent up to some other notion in this section. The relations are
binary relations over a virtual universe of graphs. Recall, an equivalence ≡ over graphs
is re�exive (i. e., G ≡ G for all graphs G), symmetric (i. e., G ≡ H implies H ≡ G for
all graphs G and H), and transitive (i. e., G1 ≡ G2 and G2 ≡ G3 imply G1 ≡ G3 for all
graphs G1, G2, G3).

3.1.1 Graph Isomorphisms

The �rst relation we discuss is an equivalence relation, namely equivalence up to graph
isomorphism. We already introduced basic graph morphisms formally in De�nition 2.8,
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including graph isomorphisms, that were bijective homomorphisms with a 1-to-1 corre-
spondence on the graph edges. If there is a graph isomorphism between graphs G1 and
G2, we say that G1 and G2 are equivalent up to graph isomorphism, denoted by G1 ' G2.
Alternatively, we say that G1 and G2 are (graph-)isomorphic. As the name suggests it, '
is an equivalence relation.

Proposition 3.3 ' is an equivalence for graphs.

Proof: Let Gi = (Vi,Σ, Ei) (i = 1, 2, 3) be graphs.

Re�exivity: G1 ' G1 by canonical isomorphism idV1 .

Symmetry: Let G1 ' G2 by graph isomorphism ι : V1 → V2. ι is a bijective function and,
therefore, ι−1 is also a bijective function. It remains to be shown that ι−1 is a graph
homomorphism between G2 and G1. From v Ea2 w, we know that ι−1(v) Ea1 ι

−1(w)
because if ι(ι−1(v)) = v and ι(ι−1(w)) = w and ι is a graph isomorphism (cf. 2.8).

Transitivity: Let G1 ' G2 by ι1 and G2 ' G3 by ι2. As ι1 and ι2 are bijective, ι1 ◦ ι2 is
bijective. We show that ι1 ◦ ι2 is a graph isomorphism between G1 and G3. Thus,
G1 ' G3 follows: v Ea1 w i� ι1(v) Ea2 ι1(w) i� ι2(ι1(v)) Ea3 ι2(ι1(w)). q. e. d.

There are su�cient conditions that apply to graph-isomorphic graphs G1 and G2. First,
the sizes of the node sets are identical, i. e., |V1| = |V2|, being a consequence of bijectivity
of graph isomorphisms. Furthermore, if we obtain a sorted list of node degrees (number
of neighbors) from G1 and G2, they will turn out identical. Graph isomorphisms are mere
renaming functions between the nodes of G1 and those of G2. Loosely speaking, matching
up to graph isomorphisms follows a what-you-ask-is-what-you-get manner, which is highly
precise on one hand, but also in�exible on the other hand.

Throughout this section, we will use the abstract but simple graphs, depicted in Fig-
ure 3.4, to illustrate the di�erences between the graph equivalence notions. These are more
or less standard graphs, that may also be found in collections of comparative semantics
of process theories, e. g., in van Glabbeek's Linear-Time Branching-Time Sepctrum [133].
The interpretation towards graph pattern matching for graph databases is our contribution.

Example 3.4 Consider �rst G(a) and G(b) in Figure 3.4. They are isomorphic by ι (A 7→
A,B1 7→ B′2, B2 7→ B′1, C1 7→ C ′2, C2 7→ C ′1). Neither G(a) nor G(b) are graph-isomorphic to
G(c) because there is no graph isomorphism between these graphs. Observe the di�erent
number of nodes (5 in G(a)/G(b) and only 4 in G(c)). Similarly, G(d) is not isomorphic to
G(a), G(b), or G(c). However, G(d) has two subgraphs that are isomorphic to G(a) and G(b),
i. e., G(d) basically considers the same kinds of entities as G(a) and G(a). There would be
no harm in identifying these two graphs. �

3.1.2 Similarity

As already mentioned throughout Section 2.3, graph isomorphisms have been found as too
strict in diverse domains. Robin Milner presented the algebraic notion of graph similar-
ity [96] with the identical intend: comparing program graphs by graph isomorphisms is
too restrictive to account for the computational behavior of processes. Graphs, or process
graphs, shall not be distinguished if they can simulate one another (cf. Example 2.17).
Graph similarity between two graphs G1 and G2, denoted G1 ↔ G2, requires G1 vsim G2

and G2 vsim G1, i. e., we need two non-empty simulations, one between G1 and G2 and
another one between G2 and G1. If G1 ↔ G2 holds, then G1 and G2 are similar or related
up to similarity.
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Figure 3.4: Example Graphs that Distinguish Graph Equivalences of Section 3.1
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Example 3.5 (Example 3.4 continued) First, every graph-isomorphic pair of graphs
is also similar (cf. Theorem 3.24), e. g., G(a) ↔ G(b). Second, G(a) and G(b) are similar to
G(c) and G(d). For instance,

S = {(A,A), (B1, B2), (B2, B1), (C1, C), (C2, C)}

is a simulation between G(a) and G(c). Its inverse S
−1, i. e.,

S−1 = {(A,A), (B2, B1), (B1, B2), (C,C1), (C,C2)}

is the required simulation between G(c) and G(a). �

Hence, similarity capable of splitting and joining nodes with similar incidences. The two
decoupled simulations allow for even worse topological destructions between two similar
graphs.

Example 3.6 Consider the graphs G(e) and G(f) in Figure 3.4. G(e) has a subgraph that
is isomorphic to G(f). Simulation

S(e)→(f) = {(A,A), (B1, B), (B2, B), (C1, C1), (C2, C1), (C3, C2)}

justi�es G(e) vsim G(f). This, time S−1
(e)→(f) is not a simulation because (B,B1) ∈ S−1

(e)→(f)

and (B, c, C1) ∈ E(f), but there is no node reachable via a c-edge from B1. However, G(e)

simulates G(f) by only taking the right-hand side a-branch:

S(f)→(e) = {(A,A), (B,B2), (C1, C2), (C2, C3)}.

Thus, G(e) ↔ G(f). �

Evidently, graph simulations do not hold node relationships as tight as graph isomorphisms
do which is a reason why similarity is not a general equivalence for graphs. An extreme
case, showing that non-empty simulations are not transitively preserved, has been discussed
by Example 2.34, meaning, similar graph patterns may yield drastically di�erent matches
in a graph pattern matching scenario (cf. Section 3.2). Just in case we have a simulation
S between G1 and G2, so that S−1 is a simulation between G2 and G1, veri�es a stronger
correspondence between the graph patterns. In that case, we call S a graph bisimulation,
which contributes to the notion of graph bisimilarity.

Note, similarity as it appears in process theories [96, 95, 133] is an equivalence relation.
The reason is that every process has an initial state, i. e., one node in the graph, from which
all computations begin. In graph database settings, such an initial state is comparable with
the notion of a root node (cf. Section 2.1.1). As argued throughout Section 2.3.1, modern
graph databases do not necessarily possess such a root node. Hence, we also lose the status
of equivalence of graph similarity, which will be regained in Section 3.1.4.

3.1.3 Bisimilarity

Bisimilarity has been introduced to computer science as a proof method for algebraic
�xpoint theories over concurrent processes by David Park [107], but has earlier appeared
in the philosophical context of modal logics [131, 119] and has now become the quasi-
standard of equivalence notions for concurrent processes [95, 97, 126]. Also, the �eld of
databases keeps in touch with the developments on bisimilarity [116, 109, 123, 30, 4].
Bisimulations ask for tightly connected simulations between the graph subjects.

De�nition 3.7 (Bisimulation)
Let Gi = (Vi,Σ, Ei) (i = 1, 2) be graphs. A simulation R between G1 and G2 is a
bisimulation between G1 and G2 i� R−1 is a simulation between G2 and G1. If a non-empty
bisimulation between G1 and G2 exists, G1 and G2 are bisimilar, denoted G1 - G2. N
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As an alternative characterization, consider bisimulations between G1 and G2 as relations
R ⊆ V1 × V2, so that whenever (v1, v2) ∈ R,

(1) v1 E
a
1 v
′
1 implies a v′2 ∈ V2 with v2 E

a
2 v
′
2 and (v′1, v

′
2) ∈ R and

(2) v2 E
a
2 v
′
2 implies a v′1 ∈ V1 with v1 E

a
1 v
′
1 and (v′1, v

′
2) ∈ R.

Example 3.8 We already had bisimulations, namely S and S−1 in Example 3.5. Hence,
G(a) - G(c). In fact, all four graphs, G(a) to G(d), are bisimilar. Note, if S is a bisimulation,
then S−1 is bisimulation. Regarding Example 3.6, there is no bisimulation R between
graphs G(e) and G(f) with (A,A) ∈ R. As soon as (A,A) ∈ R, also (B1, B) ∈ R, but
B Ec

(f) C1 and B1 E
c
(e)= ∅. �

Similarly to the case of graph similarity, we do not speak of bisimulation equivalence
because, for the same reasons as discussed for similarity, bisimilarity fails to persist tran-
sitively. What would be needed is complete coverage of the left-hand side graph. The
complementation of (bi-)similarity of the next section provides relief in this respect.

3.1.4 On Graph Topology and (Bi-)Simulation Equivalence

The issue of partial matching we exempli�ed for graph similarity in Example 3.6 is only
one dimension of a bigger issue of graph similarity and bisimilarity, absent in graph iso-
morphisms and homomorphisms. Because homomorphisms are functions from one node
set to the other, it is guaranteed that all nodes of the �rst graph are captured. In contrast,
(bi-)simulations are relations with no such condition. This yields di�erent decisions of
bisimilarity than we suggested earlier.

Example 3.9 (Example 3.8 continued) Although G(e) and G(f) are not bisimilar by
a relation R with (A,A) ∈ R, they are bisimilar, e. g., by

R(e)→(f) = {(B2, B), (C2, C1), (C3, C2)}. �

This is an issue we already discussed for simulations as it eventually culminates in leaf node
insensitiveness (cf. Examples 2.20 and 2.21, or Proposition 2.22). Beyond insensitiveness
towards leaf nodes, there is also a more pragmatic reason why we look for something
di�erent in graph database pattern matching.

Example 3.10 Consider the graphs G(g) and G(h) in Figure 3.4. They are bisimilar,
hence also similar, by the bisimulation relation

R∗ = {(A,A), (B1, B3), (B2, B4), (B3, B5), (C1, C3), (C1, C4), (C2, C3), (C2, C4)}.

Note, (C1, C4) and (C2, C3) are related by R∗. Hence, a pattern matching process based on
(bi-)similarity treats both nodes as equivalent, although C1 is the target node of c-labeled
edges, only. In contrast, C4 participates in c- and b-relationships. Putting it in a more
realistic context, consider the label b to represent an author relation and c as an editor
relation. Hence, C1 represents an editor of some journals/proceedings and C2 an author
of articles. R∗ suggests that also C3 is an author but disregards it as an editor in the
relationship (C2, C3) ∈ R∗, which makes a di�erence in the quality of the results obtained
from G(g) and those from G(h). Bisimilarity does not distinguish them at all. �

Fortunately, the same formal method as for simulations in Chapter 2, namely the simul-
taneous consideration of forward and backward edges, resolves the issue. Following the
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naming convention of Ma et al. [85, 86], we obtain dual similarity (↔D) and dual bisimi-
larity (-D) based on the notion of dual simulations4 (cf. De�nition 2.23).

De�nition 3.11 (Dual (Bi-)Similarity)
Two graphs G1 and G2 are dual similar i� G1 vDsim G2 and G2 vDsim G1. They are dual
bisimilar i� G1 vDsim G2 by dual simulation R, such that R−1 is a dual simulation between
G2 and G1. N

Example 3.12 (Example 3.10 continued) Relation R∗ is a not a dual bisimulation
because (C2, C3) ∈ R∗ and B4 Ec

(h) C3 but Ec
(g)C2 = ∅. Furthermore, R(e)→(f) from

Example 3.9 is not a dual bisimilarity between G(e) and G(f) because (B2, B) ∈ R(e)→(f)

and A Ea(e) B2, but (A,A) /∈ R(e)→(f). G(e) and G(f) are not dual bisimilar because
every dual bisimulation must contain (A,A) but, as argued in Example 3.8, a bisimulation
containing (A,A) does not exist. All other (bi-)similar examples are dual (bi-)similar. �

As already mentioned, the idea of incorporating dual simulations already appeared in
1999 [3]. In the process-theoretic context, a similar notion appeared as invariants of a
proof calculus ten years earlier [74]. Lynch and Vaandrager [84] established some of its
properties regarding trace-based proof methods.

The resulting notions of dual (bi-)similarity are equivalence relations, given that we
assumed connected graphs in this section. Dual similarity is an equivalence because of the
proof steps we performed in Lemma 2.36. To be self-contained, we provide the equivalence
result for dual bisimilarity.

Proposition 3.13 -D is an equivalence relation over connected graphs.

Proof: Let Gi = (Vi,Σ, Ei) (i = 1, 2, 3) be connected graphs.

Re�exivity: G1 -D G1 by canonical bisimulation idV1 . In fact, every graph isomorphism
is a dual bisimulation (cf. Theorem 3.24).

Symmetry: If G1 -D G2, then there is a non-empty dual bisimulation R ⊆ V1 × V2. We
show that R−1 := {(w, v) | (v, w) ∈ R} is a dual bisimulation between G2 and G1.
Therefore, consider (v2, v1) ∈ R−1 and v2 Ea2 w2. It holds that (v1, v2) ∈ R and
v1 E

a
2 w1 with (w1, w2) ∈ R because R is a dual bisimulation. Thus, (w2, w1) ∈ R−1.

The case of u2 E
b
2 v2 follows a similar line of arguments. Furthermore, the cases

v1 E
a
1 w1 and u1 E

b
1 v1 are handled analogously.

Transitivity: Let G1 -D G2 by R1 and G2 -D G3 by R2. We show that R1 ◦ R2 is a
dual bisimulation between G1 and G3. Let (u1, w1) ∈ R1 ◦ R2. Then there is some
v1 ∈ V2 with (u1, v1) ∈ R1 and (v1, w1) ∈ R2. For some edge involving u1 (w1,
resp.), i. e., u1 E

a
1 u2 or u0 E

b
1 u1, we need to show a w2/w0 ∈ V3, so that w1 E

a
3 w2

or w0 Ea3 w1 and (u2, w2) ∈ R1 ◦ R2 or (u0, w0) ∈ R1 ◦ R2. As the other cases
are completely analogous, we only show the case of u1 E

a
1 u2. Since R1 is a dual

bisimulation, v1 E
a
2 v2 with (u2, v2) ∈ R1. Since R2 is a dual bisimulation, w1 E

a
3 w2

with (v2, w2) ∈ R2. Thus, (u2, w2) ∈ R1 ◦R2 by construction.

The remainder, namely that R1◦R2 6= ∅, follows identical principles as we performed
for showing that graph schema re�nement (4) is a preorder. The crucial argument
is connectedness of G2. Thus, G1 -D G3. q. e. d.

4In contrast to what the name suggests, dual simulation is not at all the dual concept of simulation, in
a mathematical sense. Dual simulations are rather back-and-forth simulations or transposition-invariant
simulations. Admittedly, the notion Ma et al. chose is way more catchy.
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The characteristic missing in dual (bi-)similarity is locality [85, 53]: The matched sub-
graphs will only be bounded by characteristics of the database, not by those of the graph
pattern, especially in the presence of cycles.

Example 3.14 Consider our three cyclic graphs from Figure 3.1. They are dual bisimilar,
and for every number k > 2, a cycle with k − 1 nodes, following the shape of those in the
�gure, is bisimilar to Figure 3.1 (a). Thus, the size of the induced match graphs up to dual
bisimilarity will not be determined by characteristics of the pattern graph. �

Ma et al. even show that any matching mechanism that �xed this so-called bounded cycle
problem directly entails np-completeness of the respective pattern matching problem [86].

Instead of stigmatizing unboundedly cyclic matching of (dual) (bi-)similarity, we lift
it as a feature of the mechanisms. Recall our Example 3.1, where we postulated a single
pattern to represent an unbounded number of graph patterns. Thus, every citation ring
will be discovered in a given graph database DB by posing Figure 3.1 (a) (as the minimal
candidate) as graph pattern. It is not necessary to collect any statistics from the graph
database instance DB because all the graphs in Figure 3.1 are dual bisimilar.

3.2 Graph Pattern Matching

So far, we have studied di�erent graph relations that may be used to compare graph
patterns with one another. We subsequently integrate the graph equivalence notions (',
-D, and ↔D) of the last section into a general pattern matching framework. Collected
from diverse areas of computer science and non-computer science, Gallagher [59] identi�es
the following task as graph pattern matching.

Problem (Graph Pattern Matching (up to ≡))
Input: Labeled graphs Q = (VQ,Σ, EQ) and G = (V,Σ, E), where Q is connected [59].
Output: The set JQK≡G of all subgraphs M ⊆ G with Q ≡ G.

Q is generally called the pattern graph while G is called the data graph [59, 48]. There is a
graph pattern matching problem for graph isomorphisms (⊆iso), one for dual bisimilarity
(⊆-D

), and another one for dual similarity (⊆↔D
). All three problems are related as

indicated in Figure 3.4, being proven in Theorem 3.24 in Section 3.5. By using equivalences
on (connected) graphs, we directly obtain an equivalence result for graph pattern matches.

Proposition 3.15 Let Q1 and Q2 be two graph patterns and let ≡ be an equivalence
relation on connected graphs. If Q1 ≡ Q2, then JQ1K≡G = JQ2K≡G for all data graphs G.

Proof: M ∈ JQ1KG i� Q1 ≡M . Furthermore, by the symmetry of ≡, we have Q2 ≡ Q1.
Thus, Q2 ≡ M (by transitivity of ≡) which implies M ∈ JQ2KG. The case of M ∈ JQ2KG
uses the reversed argumentation. q. e. d.

The converse direction also holds for our equivalences (',-D, and ↔D). A potential proof
would construct a counterexample database Ĝ, for which Q1��≡Q2 implies JQ1KĜ 6= JQ2KĜ,
a contradiction to the assumption. The proof strategy would be the same as the one we
used for proving completeness of graph schema re�nement in Lemma 2.60.

All the implied graph pattern matching mechanisms face an inevitable di�culty re-
garding practical implementations: they all have an np-complete non-emptiness problem
(cf. Chapter 4 for more details in a graph query context).

Proposition 3.16 ([37, 43, 101]) The following problem is np-complete for all ≡∈ {'
,-D,↔D}: For graph pattern Q and data graph G, decide whether JQKG 6= ∅.
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The problem instance for graph isomorphisms is the standard subgraph isomorphism prob-
lem [37, 68]. Through subgraph (bi-)similarity, we gain the ability to describe in�nitely
many graph patterns by a single �nite one but remain intractable in answering the sub-
graph matching problem. A di�erent angle on graph pattern matching partially resolves
the issue. Thereby, we �nally reach our notion of dual simulations in the graph pattern
matching context.

3.3 Graph Pattern Matches

Graph pattern matching, as described in the last section, has two subtasks: (1) obtaining
a subgraph M of G and (2) comparing Q and M for equivalence (≡). (1) is an immediate
candidate for dropping from the formulation of the graph pattern matching problem to
potentially gain tractability. One of the computational di�culties of the discussed sub-
graph matching problems might stem from the intuition, that we always have to guess a
subgraphM of G, for which equivalence with Q can be established. However, the following
discussion reveals that np-completeness is decoupled from this intuition, at least for graph
isomorphisms (and generally, homomorphisms).

The subgraph isomorphism problem may be turned into the following equivalent prob-
lem: Given Q and G, collect in JQK≡G all witnesses for ≡, e. g., subgraph isomorphisms for
≡='. Instead of collecting all subgraphs of G isomorphic to Q, we capture the subgraph
isomorphisms themselves. However, each of these subgraph isomorphisms induces a sub-
graph that would be contained in the set JQK'G. By this reduction sketch, we derive that
capturing the subgraph isomorphisms instead of isomorphic subgraphs of G also poses an
np-complete non-emptiness problem and subgraph isomorphism problem.

Recall that subgraph isomorphisms are surjective graph homomorphisms. Pattern
matching up to graph homomorphisms (vhom) collects all graph homomorphisms between
Q and G. Once again, the associated subgraph homomorphism problem is implied by
using the resulting homomorphisms to induce subgraphs of G. Graph homomorphisms
form the ground for many graph query languages [5]. However, they inherit some of the
in�exibility of its stricter siblings (graph isomorphisms). As we already discussed at the
end of Section 2.2.2, graph homomorphisms may collapse similar nodes, e. g., there are
graph homomorphisms between the graph G(a) (G(b), resp.) and G(c), but these graphs
are not equivalent up to graph homomorphisms. Graph homomorphic-matching represents
a more liberal matching mechanism than subgraph isomorphic matching, but it is by no
means tractable. Obtaining any graph homomorphism is as hard as obtaining any subgraph
isomorphism [68]. Hence, it is the tight connections between the node sets due to functions
that make the problem so restrictively hard.

Resolution has been found in the notion of simulations [51, 48], and in particular dual
simulations [85, 86].

De�nition 3.17 (Dual Simulation Pattern Matching)
Let Q be a connected graph pattern and G be a data graph. A non-empty dual simulation
is called a dual simulation match for Q in G. The set of all dual simulation matches for
Q in G is denoted by JQKvDsim

G . N

Dual simulations are preorders between connected graph patterns (cf. Lemma 2.36).
Hence, Q1 vDsim Q2 implies JQ1KvDsim

G ⊆ JQ2KvDsim
G for all graphs G. Furthermore, we

also know that JQKvDsim
G is union-closed and, if JQKvDsim

G 6= ∅, it has a unique greatest dual
simulation match (cf. Theorem 2.29 and De�nition 2.30). Especially the unique greatest
dual simulation match will be handy when considering dual simulations in the context of
graph query language operators (cf. Chapter 4).
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Figure 3.5: Heterogeneity in Subgraph Similar Matches

By dual simulation pattern matching, we have found a tractable [85] alternative to
homomorphism-based pattern matching. As discussed in Section 3.1.4, the lack of locality,
that dual simulation matches inherit from dual similarity (cf. Section 3.1.4), is a feature
that allows for obtaining matches, even if the structures are not identical. Thereby, a single
pattern graph easily represents an in�nite family of pattern graphs (cf. Figure 3.1) without
prior knowledge of the structures that are captured in a graph database instance. Next,
we combine these features with a notion of negation, that we also borrow from process
theories.

3.4 Failures Theory for Graph Patterns

Let us recapitulate one of our earlier examples, namely G(e) and G(f) of Figure 3.4, now in
terms of graph pattern matching up to dual simulations/dual similarity. Recall from Ex-
ample 3.6, that G(e) ↔ G(f). The simulations we gave in the example are dual simulations.

Example 3.18 Assume G(f) is given as the pattern graph and the graph G as given in
Figure 3.5. It holds that G(e) is a subgraph of G. Hence, G(e) is a subgraph match up to
dual similarity because G(e) and G(f) are equivalent up to dual similarity. If we present
G(e) alone as a match for G(f), two di�erent reasons for this match can be: (1) There is no
b-labeled edge from node B1 or (2) we do not know whether B1 has an outgoing b-labeled
edge, based on the given match. The second reason at least does not impose the wrong
facts about the database. However, can we know that there is an outgoing b-labeled edge?
Alternatively, can we exclude the match G(e) to the pattern G(f) in G? �

After a subgraph has been drawn from the data graph, the cut-out adjacencies are lost.
Even without the tool of obtaining subgraphs, dual simulations conceal wanted hetero-
geneity.

Example 3.19 Once more, we look at G(e) and G(f). This time, G(e) shall be the pattern
graph, and G(f) is the data graph. As both graphs are dual similar, there is a non-
empty dual simulation between G(e) and G(f), namely S(e)→(f) (cf. Example 3.6). Thus,
G(e) vDsim G(f) and S(e)→(f) is a dual simulation match for G(e) in G(f). Observe that
(B1, B) ∈ S(e)→(f) but B1 has no outgoing b-labeled edge. As far as dual simulations are
concerned, this is �ne because it implements a minimum support for the adjacent edges
of the pattern graph. Reviewing the other simulation given in Example 3.6 revealed the
partial relation of B1 and B, but then the intractable subgraph dual similarity must be
employed. Is there a way to impose a restriction on the pattern that rules such (possibly)
unwanted matches out? �
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In the Example 3.18, it is su�cient to observe that node B1 in G(e) has no outgoing edge
labeled by b while B in G(f) has one. Pattern matching is then restricted to those matches
with the same (in-)capabilities as the pattern node they match via simulations. Regarding
Example 3.19, it is again su�cient to observe that B1 in G(e) does not have an outgoing
b-labeled edge, this time it is thought of as a property of the pattern graph. For the second
example, we have introduced a failure theory for graph databases in [91]. Here, we extend
and analyze this notion to also cope with Example 3.18.

3.4.1 Failures

As in the case of graph simulations, the original notion of failures appeared as part of the
analysis of abstract programs/program graphs [25]. Let G = (V,Σ, E). In a �rst attempt,
a graph node v fails a relation symbol a ∈ Σ if vEa = ∅, i. e., v has no outgoing edge labeled
by a. As discussed for graph (bi-)similarity in Section 3.1.4, the direction of relationships,
here embodied by the notion of failure, plays a vital rôle when assessing the matches to a
pattern. We, therefore, observe each relation symbol a ∈ Σ in two di�erent shapes. First,
we have a failure a of v, meaning that there is no outgoing a-labeled edge from v, as before.
Second, we also encode failures due to incoming edges by ā, i. e., v fails at ā i� Eav = ∅.

This is the only time, throughout the whole thesis, that we diverge from our assump-
tion that graphs that are compared by some matching notion share their alphabets. In
the failure setting, a graph pattern will provide its own alphabet to specify its relation-
ships/predicates of interest. The notion of failures is, thus, parameterized by some alphabet
Γ ⊆ Σ ( P.

De�nition 3.20 (Γ-Failure)
Let G = (V,Σ, E) be a graph, v ∈ V , Γ ⊆ Σ any �nite alphabet alphabet. De�ne the
directed alphabet over Γ as Γ̄ := {a, ā | a ∈ Γ}. α ∈ Γ is a Γ-failure of v i� α = a implies
vEa = ∅ and α = ā implies Eav = ∅. FΓ

G(v) denotes the set of all Γ-failures of v. N

Example 3.21 (Example 3.18 and Example 3.19 continued) Let Γ = {a, b, c}. Ac-
cording to De�nition 3.20 Γ̄ = {a, ā, b, b̄, c, c̄}. In G(e), b, b̄ ∈ F

γ
G(B1). In contrast, while b̄

is a Γ-failure of B2 in G(e), b is none. �

3.4.2 Failure Simulation in Two Examples

A formal account for the de�nition of failure simulation may be found in our previous
work [91]. Here, we want to resolve the issues of the examples from the beginning of this
section, informally.

The way we generally assess failures in a dual simulation pattern matching scenario is
that we �rst establish dual simulations S between the node sets of the graphs. Towards
failure incorporation, the pattern nodes carry information about their failures. Let Q =
(VQ,Γ, EQ) be a graph pattern and let G = (V,Σ, E) be a data graph. Based on the
alphabet of Q, there is a set of Γ-failures for every pattern node v ∈ VQ. If we establish
a dual simulation between Q and G, i. e., a relation S ⊆ VQ × V , we may additionally
require that FΓ

Q(v) = FΓ
G(w) for all (v, w) ∈ S.

Example 3.22 (Example 3.19 continued) Let Γ = {a, b, c} be the alphabet of G(e).
We had G(e) vDsim G(f) by S(e)→(f). But (B1, B) ∈ S(e)→(f) and FΓ

Q(B1) ⊇ {b} * FΓ
G(B).

Hence, S(e)→(f) is ruled out by regarding the failure of b in B1. �

The other scenario we exempli�ed in Example 3.18 may be resolved by the same means.

Example 3.23 (Example 3.18 continued) Recall, we had G(f) given as pattern graph
and G (depicted in Figure 3.5) as data graph. By subgraph similarity, we obtained G(e)
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as a subgraph of G, for which G(e) ↔D G(f) by S(e)→(f) and S(f)→(e). We get that

(B1, B) ∈ S(e)→(f) and F
{a,b,c}
G(f)

6= F{a,b,c}G(e)
by the same reason as before. �

Hence, failures additionally implement negation of node properties, being missing informa-
tion in a general sense. Of course, graph query languages like Sparql provide an operator
to express negation [65] (the minus operator [12]). While this operator is associated with
high complexity bounds, dual simulations appreciate failures in a more lightweight sense.
Recall that the �rst step we sketched was establishing a dual simulation between the pat-
tern and the data graph. The next step requires a polynomial iteration over all pattern
nodes and their matches. Failures can be indexed so that the actual computational time
is spent on computing dual simulations, a task performed in Ptime (cf. Chapter 5).

3.5 Summary

All the matching notions are interrelated, as summarized in Figure 3.3. We read the �gure
by picking any two relations r1 and r2 connected by a directed path, e. g., r1 =-D and
r2 =vsim but not r1 =⊆iso and r2 =-. The general idea of a path is that whenever two
graphs are related by r1, then they are also related by r2. We even prove a stronger result,
regarding so-called witnesses of r1 and r2. A witness for ', ⊆iso, or vhom is a graph
isomorphism, a subgraph isomorphism, or a graph homomorphism. Likewise, witnesses
for the similarity notions -D, ⊆-D

, ↔D, ⊆↔D
, and vDsim are dual bisimulations and dual

simulations. Ordering graph matching notions in the way of Figure 3.3 is a useful tool in
comparative semantics [133] and helps in estimating how strongly or weakly two graphs
are related. Furthermore, the hierarchy itself (Figure 3.3) provides a proof method. If we
know already that two graphs are related by r2, then they cannot be related by any r1

with a directed path to r2. Conversely, proving relatedness by r1 implies that the graphs
are related by r2.

Theorem 3.24 Let Ψ = {',⊆iso,vhom,-D,⊆-D
,↔D,⊆↔D

,vDsim} and r1, r2 ∈ Ψ, such
that r1 −→∗ r2. Every witness for r1 is a witness for r2.

Proof: Let G1 = (V1,Σ, E1) and G2 = (V2,Σ, E2) be two graphs. The case of r1 = r2 is
trivial, e. g., a witness ι for G1 ' G2 is a graph isomorphism. We distinguish the cases of
the direct neighbors in Figure 3.3 and then show that −→ is transitive.

'−→-D: Let ι be a graph isomorphism between G1 and G2 and let (v1, v2) ∈ ι, i. e.,
ι(v1) = v2. If v1 E

a
1 w1, then there is a w2 = ι(w1) and v2 E

a
2 w2, because ι is a

homomorphism. For the same reason, if u1 E
b
1 v1, then there is an u2 = ι(u1) and

u2 E
b
2 v2. Conversely, if v2 E

a
2 w2, then there is a w1 = ι−1(w2) with v1 E

a
1 w1,

because ι is a surjective homomorphism. Again for the same reason, if u2 E
b
2 v2,

then ι−1(u2) = u1 exists with u1 E
b
1 v1.

-D−→↔D: By De�nition 3.11, there is a dual simulation R between G1 and G2.

'−→⊆iso: Every graph isomorphism ι is a bijective homomorphism (cf. De�nition 2.8),
i. e., it is surjective and injective. Thus, ι is a subgraph isomorphism. As subgraph
of G2 choose G2 itself.

-D−→⊆-D
: We need to give a subgraph of M ⊆ G2, so that G1 -D M . Choose M = G2.

↔D−→⊆↔D
: By the same argumentation, G1 ↔D G2 and G2 ⊆ G2 justi�es the claim.

⊆−→⊆iso: Assume G1 ⊆ G2, i. e., V1 ⊆ V2 and E1 ⊆ E2. It holds that idV1 is an injective
graph homomorphism between G1 and G2 as (i) idV1(v) = idV1(v′) implies v = v′ and
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(ii) if v Ea1 w, then idV1(v) Ea2 idV1(w). (ii) is justi�ed by idV1(v) = v and idV1(w) = w,
v, w ∈ V1 ⊆ V2, i. e., v, w ∈ V2, and (v, a, w) ∈ E1 ⊆ E2, i. e., (v, a, w) ∈ E2.

⊆iso−→⊆-D
: LetM be a subgraph of G2 with G1 'M . G1 -D M since '−→-D. Hence,

G1 ⊆-D
G2.

⊆-D
−→⊆↔D

: Take subgraph M of G2 with G1 -D M . By -D−→↔D, G1 ↔D M . Thus,
G1 ⊆↔D

G2.

⊆iso−→vhom: Every subgraph isomorphism η is a homomorphism (cf. De�nition 2.8).

⊆↔D
−→vDsim: Take M ⊆ G2 with G1 ↔D M . Hence, there is a non-empty dual simula-
tion R between G1 and M . As M is included in G2, R is a dual simulation between
G1 and G2. Thus, G1 vDsim G2.

vhom−→vDsim: Let η be a graph homomorphism between G1 and G2 with η(v1) = v2,
i. e., (v1, v2) ∈ η, and v1 E

a
1 w1. Since η is a graph homomorphism, η(v1) Ea2 η(w1)

and, thus, there is a w2 = η(w1) with v2 E
a
2 w2 and (w1, w2) ∈ η. Furthermore,

if u1 E
a
1 v1, then there is a u2 = η(u1) with η(u1) Ea2 η(v1) because η is a graph

homomorphism. Thus, η is a dual simulation between G1 and G2.

It remains to be shown that −→ can be iterated transitively. Let therefore r1, r2, r3 ∈
{',⊆iso,vhom,-D,vDsim,-,vsim}, such that r1 −→ r2 and r2 −→ r3, i. e., every witness
of r1 is a witness of r2 and every witness of r2 is a witness of r3. Let us denote the
witnesses by Wri(G1, G2) (i = 1, 2, 3). By assumption, Wr1(G1, G2) ⊆ Wr2(G1, G2) and
Wr2(G1, G2) ⊆ Wr3(G1, G2). The claim follows by transitivity of ⊆ and an inductive
argument over −→∗. q. e. d.

Through small examples, we have argued for lack of pragmatic value of matching up to
graph isomorphisms. Therefore, we �rst looked at equivalences up to graph isomorphisms
and compared it to bisimilarity and similarity. These two notions are not equivalences over
connected graphs, in contrast to their process-algebraic counterparts [95, 133]. Only the
complementation due to dual simulations reestablished the equivalences, now called dual
(bi-)similarity. We provided examples of how far these notions enhance the pragmatic value
of graph isomorphisms. First of all, dual simulations are relations and, therefore, have the
potential to represent a single match where otherwise multiple matches must be inspected.
This is one aspect of simulations also found positive in user studies regarding Exemplar
Queries [100]. Furthermore, every notion we presented is capable of unifying in�nitely
many graph patterns in a single �nite graph pattern. Therefore, graph simulations may
be applied where otherwise, path queries are necessary.

Our interpretations were not driven by computational complexity. However, we nev-
ertheless provided proof that subgraph matching problems are np-complete. Dual bisim-
ilarity and dual similarity, on the other hand, can be computed in Ptime. Thereby,
bisimilarity is a special case as it is among the hardest problems solvable in Ptime [18].
Incorporation of graph query language principles [5] would even turn the respective query-
ing problems Pspace-complete.

Beyond all the useful properties of simulations, graph pattern matching based on dual
simulations also has its drawbacks, regarding awareness of incomplete data. We have given
two examples, in which dual simulation matches are hard to justify. To overcome the issues,
we introduced failures as a light-weight addition to express a minimal amount of negation.
We applied the failures theory to subgraph dual similarity and dual simulation pattern
matching.

For future work, an in-depth analysis of the failures theory in more application-driven
contexts, e. g., as conformance notion for graph schemas, must be carried out. Beyond that,
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there are certainly more scenarios, in which failures and versions of them help in estab-
lishing more accurate results without falling back to the weaknesses of graph-isomorphic
matching. Beyond graph homomorphisms and simulations, there is a plethora of other
matching notions to be explored, e. g., [133]. So far, the coverage of the spectrum by
van Glabbeek is quite limited and might even stay invariant over the next few years be-
cause the matching notions cannot conservatively be transferred. We believe, particular
adaptations or even wholly new mechanisms need to be developed. For instance, Fan et
al. provide p-homomorphisms and bounded simulations [50, 52] that incorporate a means
of counting-quanti�cation over the traversed edges of a match. Thereby, a single graph
pattern may describe not necessarily in�nitely many graph patterns that are simultane-
ously matched, but at least more than the single graph pattern describes up to graph
isomorphisms. Thus, the pragmatic value of these notions is already enhanced upon graph
homomorphisms. Furthermore, the principles of [52, 50] went into the development of a
key paradigm for graph databases [49]. What we learn from these and other examples is
that a concrete application or information need drives new developments in graph pattern
matching. (Sub-)graph isomorphisms are not always the best choice. Sometimes a way
coarser matching notion is even more powerful w. r. t. what a single pattern expresses.

Having learned about pattern matching that does not need the machinery of graph
query languages, we are curious about what happens if we complement one of the matching
notions with operators from graph query languages. During the next chapter, we will devise
several Sparql versions whose semantic foundation is redirected to dual simulations. Will
the query results have anything to do with those of the original language? Regarding the
complexity game, do we win upon the original semantics? What practical impact does
such a Sparql version possess?



CHAPTER 4
Graph Queries

So far, we assumed graph patterns to be given by some virtual entity, e. g., some application
user. As soon as graph database management systems are involved, the creation of graph
patterns is encapsulated in a more general process, namely the formulation of an expression
of a graph query language. A graph query language allows for combining and restricting
graph patterns, matched in a graph database instance. Loosely following Vardi [134], we
consider a (graph) query language L to be a pair (L, J·K_) where L is the set of query
expressions in L and J·K_ is a function mapping expressions Q ∈ L and (graph) databases
DB to the result (set) of Q in DB , denoted by JQKDB . We call a query expression Q ∈ L
a query in/from L, or just L-query. Matches of a query stem from some abstract domain
D. Thus, �xing a (graph) database DB , we have J·KDB : L → 2D. For instance, for
tuple relational queries Q, D would be chosen to be the set of all tuples over an active
domain [1].

For a query language L, the complexity of evaluating queries of the language, according
to its semantics, is a fundamental issue [34, 1, 106]. It is customary to consider the decision-
version of the evaluation problem of L [134].

Problem (Evaluation(L, J·K
_

))

Input: Query Q ∈ L, database DB , and candidate µ ∈ D.
Output: True i� µ ∈ JQKDB .

In the evaluation problem we are not only given a query and a database, but also a
candidate match µ, as input. The complexity of Evaluation(L, J·K_) accounts for how
hard it is to verify whether µ is a match for a given query Q ∈ L in the database DB , rather
than enumerating all the matches in JQKDB . Following the input structure of the evaluation
problem, we consider both, the database DB and the query Q as input. The implied
complexity measure is called combined complexity. According to Vardi [134], there are two
more measures, namely data complexity and expression complexity. While data complexity
assumes the query to be �xed, i. e., it measures the complexity of the problem only in
the size of the database, expression complexity �xes the database to be queried. Often,
combined complexity and expression complexity are very close, if not even identical [134].
Data complexity is a measure of expressiveness of L [134]. As we want to assess complexity
for every possible query in L, we will mainly give combined complexity results here. From
combined complexity, we directly derive the data complexity by assuming all query-based
factors to be constants.
L-queries may not only return matches carrying information about the data asked for

by some users. Often, query languages o�er modi�ers altering the result form of a query
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Q, e. g., asking whether there is any match µ to be found for Q in a given database DB .
The associated problem is the non-emptiness problem of L.

Problem (NonEmpty(L, J·K
_

))

Input: Query Q ∈ L and database DB .
Output: True i� JQKDB 6= ∅.

The same complexity measures as for the evaluation problem apply. For graph pattern
matching (cf. Chapter 3), the non-emptiness problem is considered the standard prob-
lem: The subgraph isomorphism problem asks whether there is a subgraph isomorphism,
rather than enumerating all of them. Since the subgraph isomorphism problem is np-
complete [37], it follows that its respective evaluation problem is in p.

Graph patterns, as discussed throughout Chapter 3, form a fragment1 of so-called
conjunctive (graph) queries [1]. The use of the most primitive language construct, which
in most graph languages are edge patterns and conjunctions thereof, characterize such
queries. For this class, we already analyzed the meaning of the queries according to
di�erent matching mechanisms, from homomorphism-based to failures- and simulation-
based. A full-�edged graph query language combines graph patterns by further operators
and modi�ers. To this end, we cover Sparql in this thesis, which refers to edge patterns as
triple patterns and conjunctive queries as basic graph patterns. Compared to other query
languages, Sparql's W3C recommendation [65] is highly accepted by researchers and
practitioners [62], its semantics has been formalized [112, 113], and its associated querying
problems are well-studied [113, 121, 72].

Goals. Sparql is the name of the query language S = (S, J·KS_), provided with recom-
mended syntax and semantics by the W3C [114, 65]. Its semantics is based on homo-
morphisms, directly rendering the non-emptiness problem for basic graph patterns np-
complete [68]. So-called optional patterns drastically increase upon evaluation complex-
ity [113, 121]. Based on the fact that dual simulations between graphs can be veri�ed and
found in Ptime [69, 86, 93] (cf. Chapter 5 for more details), we desire a di�erent semantic
function associated with Sparql exhibiting dual simulations to achieve (I) correctness
and (II) tractability.

Since dual simulations provide a weaker mechanism than matching up to homomor-
phisms (cf. Chapter 3), there will be dual simulation matches that do not relate to any
Sparql match, already in the case of basic graph patterns. Recall that this matching be-
havior is a feature of dual simulations that is missing in graph isomorphisms. Nevertheless,
in need of a gold standard, we require completeness to accomplish (I), letting the new dual
simulation semantics preserve all of Sparql's original matches2. Losing soundness in the
course of rede�ning the matching semantics of Sparql queries must not come at the price
of complexity. Notably, we solely aim for tractable semantics, i. e., those semantics entailing
Ptime non-emptiness and evaluation. Correctness and tractability as attributes of query
languages L will guide us through the following sections. A correct and tractable query
language is a valuable aid for Sparql query evaluation, e. g., as a querying preprocessor.

Contribution. We are the �rst studying interactions between dual simulations and the
query language Sparql w. r. t. correctness and tractability. Initially, we de�ne dual simula-
tions as matches for basic graph patterns and analyze the consequences upon the remaining
concepts of Sparql. While for basic graph patterns, we directly obtain a correct seman-
tics that is tractable, Sparql's join operators (i. e., inner and left outer join) render this
canonical dual simulation semantics incorrect for full Sparql. We identify a non-trivial

1We miss projections in graph patterns.
2A formal de�nition of preservation of Sparql matches will be given by De�nition 4.31 on Page 76.
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fragment of Sparql for which the canonical dual simulation semantics is correct, called
well-designed Sparql. This fragment exhibits a conp-complete evaluation problem [113].
We show evaluation as well as non-emptiness to be tractable querying problems of this
fragment under a dual simulation semantics.

Up to this point, the correctness of dual simulations is only achievable for well-designed
Sparql, missing out on many queries asked for by users [71]. To obtain a correct seman-
tics for full Sparql, we use an approximation principle entailing a unique greatest dual
simulation between any Sparql query and graph database, the maximal dual simulation
semantics for Sparql. The correctness of this semantics entails that every Sparql match
will be found in the maximal dual simulation. Conversely, if the maximal dual simulation
does not cover a candidate, then it is not a match for the query. Thus, if the greatest
dual simulation between a query and a database is empty, the result set according to
Sparql is guaranteed to be empty as well. We do not only formally justify correctness
and tractability of this �nal semantics, but also evaluate its e�ectiveness as a pruning
process for Sparql on large-scale synthetic and real-world datasets. The evaluation of its
e�ciency is postponed to Chapter 5, where we discuss an implementation of the maximal
dual simulation semantics of Sparql in more depth.

Summarizing, we present two di�erent semantics for Sparql based on dual simulations.
The �rst semantics is correct and tractable only for the well-designed fragment of Sparql.
The other semantics approximates the matches of Sparql in such a way that a single match
includes all original Sparql matches.

Outline. We introduce abstract syntax and semantics of Sparql in Section 4.1, includ-
ing the formal statements about the complexity of Sparql from the literature. As a next
step (Section 4.2), we take dual simulations to substitute homomorphisms in Sparql's
semantics of basic graph patterns and study the consequences of this change w. r. t. cor-
rectness. In Section 4.3, we prove correctness and tractability of the dual simulation
semantics for well-designed Sparql. We develop and evaluate a correct and tractable
dual simulation semantics for full Sparql in Section 4.4. A �nal discussion and summary
in Section 4.5 concludes this chapter.

4.1 Landmark

Since its �rst release by the W3C as a public working draft in 2004, Sparql has been
rapidly adopted as the standard query language for data on the Semantic Web [13]. Its
name �Sparql� is a recursive acronym and reads as Sparql Protocol and RDF Query
Language. Already in 2008, it became a W3C recommendation [114]. In 2013, Sparql 1.1
has been released [65]. The query language Sparql, to be denoted by S, contains triple
patterns and combinations by joins, union, and built-in �lter conditions. Throughout the
thesis, we will concentrate on these pattern matching capabilities. Our formalization of
Sparql is inspired by the seminal work of Pérez et al. [113], which we adapt to �t in with
our notations, as well as further assumptions to be explained throughout the subsequent
sections. Following syntax and semantics of Sparql, we state the basic results concerning
the complexity of Sparql's evaluation and non-emptiness problems from the literature
(cf. Section 4.1.2). Consequently, we will be able to rate di�er fragments of Sparql by
their tractability.

4.1.1 Graph Pattern Expressions

As for RDF, triples are �rst-class citizens of Sparql, now called triple patterns. Every
RDF triple is a valid triple pattern [65]. Besides the universes of objects U and proper-
ties/predicates P, Sparql employs a universe of variables V = {x, y, z, . . .}. During the
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Figure 4.1: An Author-Citation Network

evaluation of Sparql queries, matches map the variables occurring in a query to actual
(database) objects in U . Every component of a triple pattern t = (s, p, o) may be a variable
or a constant (i. e., s, o ∈ U ∪V and p ∈ P ∪V). Thus, Sparql's triple patterns follow the
general shape of (U ∪ V)× (P ∪ V)× (U ∪ V).

Throughout the next few examples, we consider the graph database DB4.1, depicted in
Figure 4.1. It represents an author-citation network where nodes John, Robert, Kristin
are meant to be authors and P1,. . . ,P4 are the papers written by those authors in an author -
relationship with one of the author nodes. Furthermore, the cite-relation associates papers
by the source node's reference list, e. g., triple (P3, cite, P4) means that P4 occurs in the
reference list of P3.

Example 4.1 Valid triple patterns are all edges in DB4.1, e. g., (P3, author, Robert) or
(P2, cite, P4). These two example triple patterns match in DB4.1. (P3, cite, P1), however,
does not match in DB4.1 because there is no such edge.

Let x, y, z ∈ V be Sparql variables. Then by query (x, author, John) we intend to �nd
all papers John has (co-)authored. In this particular case, two matches would be returned,
mapping x to P1 or P2. We may also ask for relationships between two nodes, e. g., the
match for (P1, x, P3) in DB4.1 assigns the predicate citedBy to variable x. Since variables
may occur in every position, we may also ask What did P2 do with whom? by (P2, x, y).
The result re�ects on the authorship of John and the reference to P4. Finally, (x, y, z)
would simply return all edges from DB4.1. �

Before we go on with more complex constructs, we make a simplifying assumption about
the shape of triple patterns: Subjects and objects stem from V while predicates stem from
P, i. e., every triple pattern t is an element of V × P × V. The semantics we develop
applies to more general shapes of triple patterns (cf. Section 4.5), but including all of
them unnecessarily expands our proof obligations to more cases that are handled almost
identically to the case of t ∈ V ×P × V. Hence, they only add a practical value that pays
out when writing down complex queries. Furthermore, matching simpli�ed triple patterns
t ∈ V ×P×V better resembles the pattern matching scenario we established in Chapter 3.

Syntactically, Sparql variables v ∈ V are introduced by a leading question mark,
i. e., ?v. Constants, here predicates from P, are encoded by IRIs, i. e., enclosed in angle
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brackets. Triple patterns, or general Sparql queries, are embedded in modi�ers, specifying
the result form of the query.

Example 4.2 The query

SELECT * WHERE { ?paper <author> ?researcher . }

asks for all matches to the triple pattern (paper, author, researcher). A match will be a pair
identifying concrete substitutions for paper and researcher being in an author relationship.
The SELECT-modi�er here takes a list of projection variables, or * to denote all variables
occurring in the pattern, to instruct the query processor which variable matches to return.
Hence, the query

SELECT ?paper,?researcher WHERE { ?paper <author> ?researcher . }

is equivalent to the one above. The result set of

SELECT ?researcher WHERE { ?paper <author> ?researcher . }

projects the matches of the �rst query to the variable researcher. The projection operator
from relational algebra has the same e�ect [1].

The ASK-modi�er instructs the query processor not to compute and enumerate all the
results but to return True if there is any match for the pattern and False otherwise,
e. g., query

ASK * WHERE { ?paper0 <cites> ?paper . }

evaluates to False in DB4.1. Since the assumed predicate cites is not used in DB4.1, triple
pattern (paper0, cites, paper) cannot be matched. �

In formal notation, we drop the syntactic conventions on variables as well as the query
modi�ers. We recognize the modi�ers by studying the particular decision problems, i. e.,
SELECT * through the evaluation problem and ASK * using the non-emptiness problem.
We do not consider projection lists di�erent from * in order to keep the focus of our study
on pure pattern matching problems for Sparql. The W3C recommendation lists two more
modi�ers, the DESCRIBE- and the CONSTRUCT-modi�er, being out of the scope of this thesis
because they do not relate to pattern matching capabilities of Sparql.

Triple patterns, or Sparql queries in general, may be combined by two join operators:
conjunction (inner join) and optional patterns (left outer join). If Q1 and Q2 are Sparql
queries, query Q = Q1 AND Q2 represents their conjunction. Such queries are meant to
return those matches constructed (by ∪) from matches to both query parts.

Example 4.3 With regard to DB4.1, a query asking for researchers (r) of papers (p) and
the papers they cited (s for source) may be expressed by the conjunction

Qa = (p, author, r) AND (p, cite, s).

The query's results (w. r. t. DB4.1) are summarized in the following table:

p r s

matches of Qa


P1 John P1

}
match of Qb

P2 John P4

P3 Robert P2

P3 Robert P4

P4 Kristin P2
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Each row entry represents a match of Qa in DB4.1. Note that the �rst row assigns P1 to
both variables, p and s3. We observe, Sparql matches are homomorphisms rather than
isomorphisms. The query

Qb = (p, author, r) AND (p, cite, p)

returns a single match, as indicated in the table above. The actual match is obtained by
ignoring the s-column. �

Optional patterns Q = Q1 OPT Q2, on the other hand, are Sparql's way of handling
missing data. If a match for Q1 can be conjunctively combined with a match of Q2, the
combination is returned. Therefore, every match of Q1 ANDQ2 is included in the result set
of Q. If a match for Q1 cannot be combined with any match for Q2, it is considered a
match for Q. This operator naturally handles the Semantic Web assumption, that every
application/RDF database has only partial knowledge about its resources [12].

Example 4.4 For instance, �nding all authors and their papers and, possibly, papers
which cite the current piece may be expressed by query

Qc = (p, author, r) OPT (s, cite, p).

The following table summarizes its results w. r. t. DB4.1.

p r s

P1 John P1

P2 John P3

P2 John P4

P3 Robert �
P4 Kristin P3

P4 Kristin P4

Note the match of Robert with the non-existent (or NULL) entry for s. This is because
P3 is not in any of the other papers' reference lists, but then the query only asks for the
citations optionally.

Employing optional patterns, we may also express a form of preference. Exhibiting the
interpretation of cite-self-loops from Example 4.3, we may ask for papers citing papers or
their same-titled technical reports by

Qpref = (p, author, r)︸ ︷︷ ︸
M

OPT ((p, cite, s) AND (s, cite, s))︸ ︷︷ ︸
O1

OPT ((s, citedBy, p) AND (s, cite, s))︸ ︷︷ ︸
O2

.

This query exhibits the left-associativity of the optional operator [113], trying to evaluate
O1 �rst together with M . Only if O1 does not match, O2 is evaluated. This mutually
exclusive matching behavior is reached (w. r. t. DB4.1) by using the same variables in
both optional parts. Note that between any two connected nodes from {P1, P2, P3, P4},
either cite or citedBy is used as an edge label. The result to establish for the query is the
following.

p r s

P1 John P1

P3 Robert P1

P4 Kristin �
3Although this example appears a little arti�cial, it might be explained by an extraction error or the

circumstance that conference versions of research papers and their preliminary/extended versions (e. g.,
technical reports) often share their title.
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Figure 4.2: An Extended Version of Figure 4.1

Note that if there was a cite-self-loop incorporating P4, as in Figure 4.2, P1 would not
occur as a match for s with Robert. Such preference queries represent instances of the
missing monotonicity of Sparql, which we make more precise after having introduced
Sparql's semantics formally. �

Beyond Sparql's join operators, queries Q1 and Q2 may be further combined by union to
Qu = Q1 UNIONQ2, or �ltered by built-in �lter conditions R via Qf = Q1 FILTERR. While
Qu returns the matches from Q1 and Q2, Qf includes only those matches for Q1 that
satisfy condition R. Such built-in �lter conditions may compare the values of variables
to each other (x = y) or to constants (x = o). Furthermore, a �lter condition may check
whether a match binds a variable, i. e., if a node is assigned to the variable (bound(x)). At
last, Boolean connectives (∧, ∨, ¬) may be used to combine one or more �lter condition.

Example 4.5 Suppose, we look for the papers authored by Robert, and their list of
references, i. e., those papers that the one written by Robert cites. As we know from
previous examples, there are two predicates expressing citation relationships, cite and
citedBy . To obtain a complete list, we have to query for both, e. g.,

Qd = (p, author, r) AND ((p, cite, s) UNION (s, citedBy, p)) .

The result to this query does not only contain matches assigning Robert to r, but every
other author in DB4.1:

p r s

matches of Qd



P3 Robert P1
matches of QeP3 Robert P2

P3 Robert P4

P1 John P1

P2 John P4

P4 Kristin P2
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A condition, restricting r to Robert, �lters those results assigning only Robert to r, as in

Qe = ((p, author, r) FILTER r=Robert) AND ((p, cite, s) UNION (s, citedBy, p)) .

The result in DB4.1 obtained from Qe is indicated in the result table above. Contradicting
our syntactic convention for triple patterns, using Robert as a constant instead of r yields
the same result. When using a constant in subject and/or object position, i. e., t =
(c1, a, c2), the triple pattern may easily be rewritten to (xc1 , a, xc2)FILTER xc1=c1∧ xc2=c2,
a query obeying our syntactic restriction, where xc1 , xc2 are globally fresh variables. Hence,
t may be seen as a shorthand for the unfolded version using a built-in �lter condition. �

De�nition 4.6 (Sparql Syntax)
The language S of all Sparql queries is de�ned by the following grammar,

Q ::= t Q ANDQ Q OPTQ Q UNIONQ Q FILTERR,

where for x, y ∈ V and a ∈ P, t = (x, a, y) is a triple pattern and R a built-in �lter condition,
drawn from the inductively de�ned set of all built-in fulter conditions:

(1) If x, y ∈ V and o ∈ U , then bound(x), x=o, and x=y are built-in �lter conditions.

(2) If R and S are built-in �lter conditions, then ¬R, R ∨ S, and R ∧ S are built-in �lter
conditions.

Operator OPT is left-associative, i. e., Q1 OPTQ2 OPTQ3 = (Q1 OPTQ2) OPTQ3. N

In Q = Q1θQ2 (θ ∈ {AND, OPT, UNION}), queries Q1 and Q2 are called clauses of Q. In
the special case of optional patterns Q = Q1 OPT Q2, Q1 is further di�erentiated as the
mandatory clause of Q while Q2 is the optional clause of Q.

To formally justify the indicated matches in Examples 4.1 to 4.5 we need to give a
de�nition of what a querying process shall return for a query Q ∈ S w. r. t. a graph
database DB = (ODB ,Σ, EDB ). Candidate matches, or candidates for short, for Sparql
queries are partial functions µ : V ↪→U , i. e., candidates assign objects to variables. dom(µ)
denotes the set of all variables x ∈ V for which µ(x) is de�ned. To match a triple pattern
t = (x, a, y), we need to �nd substitutes ox, oy ∈ ODB for x, y, such that (ox, a, oy) ∈ EDB ,
justifying the match µ = {(x, ox), (y, oy)}. Formally, by vars(t) we denote the set of
variables occurring in triple pattern t, i. e., vars(t) = {x, y} for t = (x, a, y). A candidate
µ is a match for triple pattern t in DB i� dom(µ) = vars(t) and, assuming t = (x, a, y),
(µ(x), a, µ(y)) ∈ EDB , abbreviated by µ(t) ∈ DB .

Example 4.7 Reconsider the triple pattern t = (p, author, r) from Example 4.2. The
partial functions µ1, µ2, µ3, µ4 are all matches for t in DB4.1:

µ1 = {(r, John), (p, P1)} µ2 = {(r, John), (p, P2)}
µ3 = {(r, Robert), (p, P3)} µ4 = {(r, Kristin), (p, P4)}

For all i ∈ {1, 2, 3, 4}, dom(µi) = {r, p} = vars(t). Each µi (i ∈ {1, 2, 3, 4}) represents a
row of the indicated result table.

ν1 = µ1 ∪ {(s, P3)} is not a match for t as dom(ν1) and vars(t) are not equal, i. e.,
dom(ν1) = {r, p, s} 6= vars(t). ν2 = {(r, John), (p, P3)} is not a match for t because
(P3, author, John) is not an edge of DB4.1. �

As a notational convention, we may specify partial functions by in-line lists of assignments,
e. g., µ1 from Example 4.7 by (r 7→ John, p 7→ P1).

The conjunction Q1 AND Q2 joins pairwise compatible matches of Q1 and Q2. Two
candidates µ1, µ2 : V ↪→U are compatible, denoted by µ1 � µ2, i� for all variables v shared
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between µ1 and µ2, i. e., v ∈ dom(µ1)∩dom(µ2), µ1 and µ2 agree on their assignment, i. e.,
µ1(v) = µ2(v). Let µ1 be a match for Q1 and µ2 a match for Q2 in some database DB .
Then µ1 ∪ µ2 is a match for Q1 ANDQ2 in DB i� µ1 and µ2 are compatible. As indicated
in Example 4.4, optional patterns Q1 OPT Q2 are evaluated as if they were conjunctions
Q1ANDQ2. Additionally, those matches µ for Q1 are returned, which cannot be compatibly
extended by matches for Q2.

Example 4.8 To obtain a result for query Qa from Example 4.3,

Qa = (p, author, r)︸ ︷︷ ︸
t1

AND (p, cite, s)︸ ︷︷ ︸
t2

,

we take a look at the matches for its two triple patterns, e. g., µ1 (p 7→ P1, r 7→ John)
for t1 in DB4.1 and µ2 (p 7→ P1, s 7→ P1) for t2. Matches µ1 and µ2 are compatible since
dom(µ1) ∩ dom(µ2) = {p} and µ1(p) = P1 = µ2(p). µ′2 (p 7→ P3, s 7→ P2) is incompatible
with µ1 (as µ1(p) = P1 6= P3 = µ′2(p)). Hence, µ1 ∪ µ2 is a match for the conjunction
above, while µ1 ∪ µ′2 is not a match.

For the optional pattern

Qc = (p, author, r) OPT (s, cite, p)

from Example 4.4, not only compatible matches to the triple patterns make up the result,
but also partial matches only considering the left side are included. For instance, µ (r 7→
Robert, p 7→ P3) matches the mandatory clause of Qc in DB4.1. There is, however, no
compatible match for the respective optional clause. Thus, µ is a match of Qc in DB4.1

(cf. Example 4.4).
As a last example, let us reconsider our preference query,

Qpref = (p, author, r)︸ ︷︷ ︸
M

OPT ((p, cite, s) AND (s, cite, s))︸ ︷︷ ︸
O1

OPT ((s, citedBy, p) AND (s, cite, s))︸ ︷︷ ︸
O2

.

Consider now DB4.2, depicted in Figure 4.2. From the mandatory clause, we obtain the
match µ (r 7→ Robert, p 7→ P3) and both optional clauses yield matches that are compatible
with µ, i. e., µ1 (p 7→ P3, s 7→ P4) for O1 and µ2 (p 7→ P3, s 7→ P1) for O2. However,
only µ ∪ µ1 is considered a match. Recall that optional patterns are left-associative,
i. e., in order to include µ2 in a match with µ, it must be compatible with µ ∪ µ1. But
(µ ∪ µ1)(s) = P4 6= P1 = µ2(s). Thus, µ ∪ µ1 ��� µ2. �

Unions, i. e., Q = Q1 UNION Q2 simply consider all matches for Q1 and those for Q2 as
matches for Q. Hence, if µ is a match for Qi (i ∈ {1, 2}), then µ is a match for Q. The
validity of built-in �lter conditions is evaluated match-wise, i. e., if µ is a match for Q,
then µ is a match for Q FILTER R i� µ satis�es R, denoted µ |= R. The evaluation of
µ |= R is de�ned in the subsequent semantics of Sparql.

De�nition 4.9 (Sparql Semantics)
Let DB = (ODB ,Σ, EDB ) be a graph database. The Sparql semantics of a query Q ∈ S
w. r. t. DB , denoted JQKSDB , is de�ned inductively on the structure of Q:

JtKSDB := {µ : V ↪→U | dom(µ) = vars(t) ∧ µ(t) ∈ DB}
JQ1 ANDQ2KSDB := {µ1 ∪ µ2 | µ1 ∈ JQ1KSDB ∧ µ2 ∈ JQ2KSDB ∧ µ1 � µ2}
JQ1 OPTQ2KSDB := JQ1 ANDQ2KSDB∪

{µ1 ∈ JQ1KSDB | ∀µ2 ∈ JQ2KSDB : µ1 ��� µ2}
JQ1 UNIONQ2KSDB := JQ1KSDB ∪ JQ2KSDB

Let R be a built-in �lter condition and µ : V ↪→U a candidate. µ |= R i�
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� R = bound(x) implies x ∈ dom(µ),

� R = x=o implies x ∈ dom(µ) and µ(x) = o,

� R = x=y implies x, y ∈ dom(µ) and µ(x) = µ(y),

� R = ¬R1 implies µ��|=ψ,

� R = R1 ∨R2 implies µ |= R1 or µ |= R2, and

� R = R1 ∧R2 implies µ |= R1 and µ |= R2.

Then JQ FILTERRKSDB := {µ ∈ JQKSDB | µ |= R}. N

Based on the semantics J·KS_, operators AND and UNION inherit commutativity, associativity,
and distributivity from their logical counterparts (∧ and ∨).

Proposition 4.10 (Lemma 2.5 [113]) Operators AND and UNION are commutative and
associative. Furthermore, AND distributes over UNION.

Commutativity and associativity of AND justify the notion of basic graph patterns. A basic
graph pattern is a set of triple patterns G ⊆ V × P × V and is interpreted as shorthand
for the conjunction of all t ∈ G. Function vars extends to BGPs by

vars(G) :=
⋃
t∈G

vars(t). (4.1)

Intuitively, µ is a match of G i� µ is a match of all triple patterns t ∈ G. More formally,
let V ⊆ V. Then µ�V : V ↪→U is the partial function µ restricted to input variables v ∈ V ,
i. e.,

µ�V (w) :=

{
µ(w) if w ∈ V

undefined otherwise.

Thus, µ is a match for BGP G i� for all t ∈ G, µ�vars(t) is a match for t.
Every BGP G can be interpreted as a graph (pattern) G(G) := (VG,Σ,G) by taking

the set of variables occurring in G as set of nodes, i. e., VG = {v,w | (v, a,w) ∈ G}. Based
on this interpretation, we easily see that matches for basic graph patterns G in DB embed
graph homomorphisms between G(G) and DB .

Proposition 4.11 Let DB be a graph database, G a basic graph pattern, and µ ∈ JGKSDB .
µ�vars(G) is a graph homomorphism between G(G) and DB .

Proof: First note that µ�vars(G) is a function from vars(G) to U . Let v ∈ vars(G). Then
there is a triple pattern t ∈ G with v ∈ vars(t). Since µ is a match for G in DB , µ�vars(t)

is a match for t in DB . Hence, vars(t) = dom(µ) and µ(v) is de�ned.
It remains to be shown that µ �vars(G) is a homomorphism between G(G) and DB .

Therefore, suppose there is an edge (v, a, w) in G(G). As the edge relation of G(G) is the
set of triple patterns G, (v, a, w) ∈ G. Following the arguments above, µ�{v,w} is a match
for (v, a, w). Thus, there is an edge (µ(v), a, µ(w)) in DB . As this argument carries over
to all edges of G(G), µ�vars(G) is a graph homomorphism between G(G) and DB . q. e. d.

As BGPs are solely constructed by conjunctions of triple patterns, the Sparql fragment
of basic graph patterns is denoted by SA. In general, the Sparql fragments using AND,
UNION, OPT, or FILTER are indicated by subscripts A, U, O, or F of the language symbol
S. Each of these syntactic fragments of S forms its own query language fragment., e. g.,
(SA, J·KS_) or (SAO, J·KS_).
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Before diving into the complexity of Sparql, let us discuss two normal forms of
Sparql. The �rst tackles the issue of non-monotonicity of Sparql's optional patterns.
A query Q ∈ S is monotone i� for all pairs of graph databases DB ,DB ′ with DB ⊆ DB ′,
we do not lose information inbetween JQKSDB and JQKS

DB ′ . Strong monotonicity requires

JQKSDB ⊆ JQKS
DB ′ . Requiring subsumption (v) between JQKSDB and JQKS

DB ′ yields the
notion of weak monotonicity [14]:

JQKSDB v JQKS
DB ′ :⇔ ∀µ ∈ JQKSDB∃µ

′ ∈ JQKS
DB ′ : µ ⊆ µ′.

Note that strong monotonicity implies weak monotonicity. Optional patterns are not even
weakly monotone [14].

Example 4.12 An example query is Qpref (cf. Example 4.8). While in DB4.1, Qpref

contains the result µ0 (r 7→ Robert, p 7→ P3, s 7→ P1), there is no such match in DB4.2. �

A class of queries syntactically excluding non-monotonicity is well-designed Sparql [113,
14], denoted Swd. In a well-designed query Q, for every syntactic occurrence of an optional
pattern Q1 OPTQ2 in Q and every variable v ∈ vars(Q2) \ vars(Q1) (i. e., a variable solely
belonging to the optional clause of Q1 OPTQ2), it holds that v does not occur outside of
Q1 OPTQ2. Formally, a query P ∈ S is a subpattern of query Q ∈ S i� Q = P or

� Q = Q1 θ Q2 (θ ∈ {AND, OPT, UNION}) implies P is a subpattern of Q1 or Q2, or

� Q = Q1 FILTERR implies P is a subpattern of Q1.

Example 4.13 All queries so far, except for Qpref , are well-designed queries. The sub-
patterns of Qpref are indicated in Example 4.8 as M,O1, O2. Qpref is not well-designed
because s ∈ vars(O1) \ vars(M) but s also belongs to vars(O2). �

Well-designed Sparql includes union-free Sparql queries [113]. Although built-in �lter
conditions may be integrated [113, 72], they are not needed as part of well-designed Sparql
throughout the rest of this thesis. The following de�nition summarizes the characteristics
mentioned above of well-designed Sparql.

De�nition 4.14 (Well-Designed Sparql)
The language Swd of well-designed Sparql includes all queries Q ∈ SAO with the property
that for every subpattern P = P1 OPT P2 of Q and all variables v ∈ vars(P2) \ vars(P1),
every subpattern P ′ of Q with v ∈ vars(P ′) is a subpattern of P2. N

Proposition 4.15 (Theorem 4.3 [14]) Every well-designed query Q ∈ Swd is weakly
monotone.

Beyond well-designed queries, we can also syntactically rule out unions. Therefore, recall
that AND is distributive over UNION from Proposition 4.10.

Example 4.16 Reconsider query

Qd = (p, author, r) AND ((p, cite, s) UNION (s, citedBy, p))

from Example 4.5. Exploiting Proposition 4.10 yields the equivalent query

Q̂d = ((p, author, r) AND (p, cite, s)) UNION ((p, author, r) AND (s, citedBy, p)) .

Note that the �nal query is a union of union-free subpatterns. �

Pérez et al. collected similar rules for the other operators of Sparql, culminating in the
following normal form.
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Proposition 4.17 ([113]) Let Q ∈ S. Then there is a query Q̂ = Q1 UNION Q2 UNION

. . . UNION Qk, where each Qi (1 ≤ i ≤ k) is union-free, i. e., Qi ∈ SAOF, and JQKSDB =

JQ̂KSDB for every graph database DB .

The construction of query Q̂ is reminiscent of the one aiming for the disjunctive normal
form of Boolean logic [124]. Thus, compared to the input query Q, Q̂ quite easily is
of exponential size in the length of Q. The resulting query may, however, be used to
parallelize query evaluation. Since all of the k query parts, Q1 to Qk, are independent,
they may be evaluated independently.

4.1.2 Complexity of Sparql

For Sparql, i. e., the query language (S, J·KS_), the domain of matches D (cf. beginning of
this chapter) is the set of all partial functions µ : V ↪→U . A reduction from the problem
of satis�ability of quanti�ed Boolean formulas attests Sparql an intractable evaluation
problem.

Proposition 4.18 ([113, 121]) Evaluation(Swd, J·KS_) is conp-complete. For all X with

{O} ⊆ X ⊆ {A,O,U,F}, Evaluation(SX, J·KS_) is Pspace-complete.

Thus, verifying candidate matches of optional patterns or queries containing optional pat-
terns is as hard as deciding inclusion of regular languages [124]. Evaluation remains in-
tractable, even if we restrict our queries to the well-designed case. Veri�cation of candi-
dates for basic graph patterns (including built-in �lter conditions) may be done in Ptime.
Sparql fragments containing the UNION operator but no optional patterns still have an
np-complete evaluation problem. For instance, speci�c queries in SAUF may be used to let
a query processor solve the satis�ability problem of Boolean formulas [113].

Proposition 4.19 ([113, 121]) Evaluation(SAF, J·KS_) is in Ptime. For all X with

{U} ⊆ X ⊆ {A,U,F}, Evaluation(SX, J·KS_) is np-complete.

Although Proposition 4.17 allows us to get rid of the union operator for query evaluation,
the price for the necessary construction re�ects on the np-completeness of Sparql queries
with UNION (cf. end of last section).

At least w. r. t. the evaluation problem we consider SAO an interesting fragment of
Sparql since its evaluation problem is already Pspace-complete. Furthermore, Swd is
de�ned in terms of SAO (cf. De�nition 4.14), a focus on this Sparql fragment will make our
results comparable. During the rest of this chapter, we primarily concentrate on SAO and
postpone unions and built-in �lter conditions to Chapter 5 (in particular, Section 5.3.3),
where we implement a dual simulation method for full Sparql.

Due to the interpretation of basic graph patterns Q ∈ SA and the matches of Q in
Proposition 4.11, we directly obtain np-completeness of the non-emptiness problem due to
np-completeness of the subgraph homomorphism problem [68].

Proposition 4.20 NonEmpty(SA, J·KS_) is np-complete.

Proof: Let DB be a graph database and G ∈ SA. By Proposition 4.11, matches µ ∈
JGKSDB are essentially homomorphisms, by µ �vars(G), between G(G) and DB . Thus,

JGKSDB 6= ∅ i� there is a homomorphism between G(G) and DB . The problem of non-
emptiness of homomorphisms between two graphs is np-complete [68]. q. e. d.

Thus, non-emptiness of the full query language of Sparql is at least np-complete. We
conjecture that the problem has an even worse complexity in case of SO for the following
reason: We would use an oracle guessing a candidate µ and then compute in Pspace
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(cf. Proposition 4.18) whether µ is an actual match. By Savitch's Theorem [120], non-
deterministic Pspace is equal to deterministic Pspace. Thus, the non-emptiness problem
of Sparql has a Pspace upper bound. A lower bound needs to be established.

4.2 The Dual Simulation Semantics of Sparql

We conclude that (SAO, J·KS_) is intractable (cf. Propositions 4.18 and 4.20). At least
w. r. t. the non-emptiness problem of basic graph patterns we have mentioned a tractable
alternative multiple times, namely dual simulations. We subsequently apply dual simula-
tions (cf. De�nition 2.23) to Sparql queries and analyze how they interact with Sparql's
compatibility notion in Sections 4.2.1 and 4.2.2. We obtain two results from this study.
First, we justify and formally de�ne the notion of correctness of an alternative semantics
for Sparql. Second, we conclude that the dual simulation semantics for SAO is incorrect.
In particular, matches, according to Sparql's semantics, get lost under dual simulation.
However, restricted to well-designed Sparql, the dual simulation semantics is correct and
tractable (Section 4.3). A correct and tractable resolution for full Sparql is developed
and evaluated in Section 4.4.

4.2.1 Basic Graph Patterns

As we have seen in Proposition 4.11, every basic graph pattern G describes a graph pattern
G(G) and matches up to J·KSDB essentially are graph homomorphisms between G(G) and
DB . The dual simulation semantics of Sparql, J·KDS

DB , shall take a query Q ∈ SA and
return the set of all dual simulations between Q and DB . Thus, canonically applying
the principles of De�nition 2.23 yields a dual simulation interpretation of basic graph
patterns. Dual simulation candidates and matches will follow the generalized shape of
Sparql's candidates, i. e., S ⊆ V × U . Therefore, function dom naturally extends to dual
simulation candidates by dom(S) := {v ∈ V | (v, o) ∈ S}.

De�nition 4.21 (Dual Simulations of BGPs)
Let DB = (ODB ,Σ, EDB ) be a graph database. A dual simulation between a triple pattern
t = (x, a, y) and DB is a relation S ⊆ V × U , such that dom(S) = {x, y} and

(1) for all (x, o1) ∈ S exists an o2 ∈ ODB with o1 E
a
DB o2 and (y, o2) ∈ S, and

(2) for all (y, o1) ∈ S exists an o2 ∈ ODB with o2 E
a
DB o1 and (x, o2) ∈ S.

The set of all dual simulations between t and DB is denoted by JtKDS
DB .

A dual simulation between G ∈ SA and DB is a relation S ⊆ V×U , such that dom(S) =
vars(G) and for every t ∈ G, S ∩ (vars(t) × U) ∈ JtKDS

DB . The set of all dual simulations
between G and DB is denoted by JGKDS

DB . N

Dual simulations between triple/basic graph patterns and graph databases are called dual
simulation matches. By de�nition, dual simulation matches are non-empty. Furthermore,
the dual simulation semantics of BGPs inherits every characteristic of dual simulations we
addressed for graph patterns in Chapters 2 and 3. In fact, an equally tight connection
between dual simulation matches for basic graph patterns and dual simulations for graph
patterns as between Sparql matches and graph homomorphisms (cf. Proposition 4.11)
exists.

Proposition 4.22 Let DB be a graph database and G a basic graph pattern. S ∈ JGKDS
DB

i� S is a non-empty dual simulation between G(G) and DB .
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Proof: Let DB = (ODB ,Σ, EDB ) and G(G) = (V,Σ, E). A dual simulation match
S ∈ JGKDS

DB is non-empty by De�nition 4.21 and S�vars(t)∈ JtKDS
DB for every t ∈ G. We need

to show that for every edge (v, a, w) ∈ E and every pair (v, o) ∈ S, it holds that there is
an o′ ∈ ODB with o EaDB o′ and (w, o′) ∈ S. Recall that E = G, i. e., (v, a, w) is a triple
pattern t of G. As S�vars(t)∈ JtKDS

DB , (v, o) ∈ S implies an o2 ∈ ODB with o EaDB o2 and
(w, o2) ∈ S by De�nition 4.21. Hence, if we set o′ to such an o2, we complete the proof for
this case The case (u, a, v) ∈ E and (v, o) ∈ S uses (2) of De�nition 4.21, but otherwise,
exactly the same arguments. Thus, S is in fact a non-empty dual simulation between G(G)
and DB .

The converse direction is shown analogously. Here, we use the fact that any triple
pattern (x, a, y) ∈ G is an edge of G(G) by construction. Thus, when considering (x, a, y) ∈
G and (x, o1) ∈ S, the existence of an o2 ∈ ODB with o1 E

a
DB o2 and (y, o2) ∈ S follows

from the fact that S is a dual simulation between G(G) and DB . The same arguments
hold for the case of (y, o1) ∈ S. q. e. d.

Example 4.23 We reconsider DB4.1 from Figure 4.1. For triple pattern t = (p, cite, s),
all the Sparql matches for t are dual simulation matches, e. g., S1 = {(p, P3), (s, P2)}
or S2 = {(p, P3), (s, P4)}, but also unions thereof, e. g., S1 ∪ S2. In general, we �nd for
triple patterns and basic graph patterns that unions of dual simulation matches constitute
matches up to dual simulation.

Next, consider the BGP G = {(p, cite, p), (p, author, r)}. While the Sparql semantics
has only a single match in DB4.1, namely µ (p 7→ P1, r 7→ John), dual simulations may
expand onto the self-loop including

S = {(p, P4), (p, P2), (r, Kristin), (r, John)}

as a dual simulation match for G. There is no dual simulation match S′ with (p, P3) ∈ S′
since there is no cite-labeled edge to P3 in DB4.1, required for dual simulating triple pattern
(p, cite, p). �

Although (SA, J·KDS
_ ) clearly changes the matching quality, due to the bounded cycle problem

(cf. Section 3.1.4), it is a conservative alternative w. r. t. J·KS_.

Lemma 4.24 For BGP G ∈ SA and graph database DB , JGKSDB ⊆ JGKDS
DB .

Proof: This result is a direct consequence of Proposition 4.11 and Theorem 3.24. Never-
theless, we give a direct proof since basic graph patterns (and Sparql queries in general)
allow for a more syntactic proof strategy.

Let µ ∈ JGKSDB and t ∈ G. It holds that t = (x, a, y) (x, y ∈ V and a ∈ P). We need to
show that ν = µ�{x,y} (µ∩ ({x, y}×U), resp.) is a dual simulation match of t in DB . Since

µ ∈ JGKSDB , (µ(x), a, µ(y)) ∈ EDB . It follows that (ν(x), a, ν(y)) ∈ EDB . Consider now
the pair (x, ν(x)) ∈ ν. According to t we need to give some o, such that (ν(x), a, o) and
(y, o) ∈ ν. o = ν(y) provides this property. The case (y, ν(y)) ∈ ν is analogous. Since we
did not further restrict the choice of the triple pattern t, the argument may be repeated
for all triple patterns in G. Hence, µ ∈ JGKDS

DB . q. e. d.

Based on the existing Ptime algorithms that solve the non-emptiness problem of dual
simulation between graphs, which we explain in detail in Chapter 5, we arrive at the
conclusion that (SA, J·KDS

_ ) is a tractable query language.

Lemma 4.25 Evaluation(SA, J·KDS
_ ) and NonEmpty(SA, J·KDS

_ ) are both in Ptime.
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The proof of this lemma is postponed to Section 5.3.1. Note that the improvement upon
Sparql is found in the non-emptiness problem. Evaluation of basic graph patterns under
Sparql's semantics has already been in Ptime (cf. Proposition 4.19).

Analogously to dual simulations between graphs (cf. De�nition 2.30), the notion of the
maximal dual simulation between a basic graph pattern Q ∈ SA and a graph database DB
is well-de�ned. Once again, this is because the union of two dual simulation matches is
again a dual simulation match.

Lemma 4.26 Let DB = (ODB ,Σ, EDB ) be a graph database, G ∈ SA, and S1, S2 ∈ JGKDS
DB .

Then S1 ∪ S2 ∈ JGKDS
DB .

Proof: Let (v, o) ∈ (S1 ∪ S2) and (v, a,w) a triple pattern in G. Then (v, o) ∈ S1 or
(v, o) ∈ S2, and since S1 (S2, resp.) is a dual simulation match for G in DB , there is an o′

with (o, a, o′) ∈ EDB and (w, o′) ∈ S1 ((w, o′) ∈ S2, resp.). Hence, (w, o′) ∈ (S1 ∪ S2). The
case of a triple pattern (u, a, v) ∈ G is completely analogous. q. e. d.

Proposition 4.27 The maximal dual simulation match between basic graph pattern G ∈
SA and graph database DB is unique and determined by Ŝ =

⋃
S∈JGKDS

DB
S.

Proof: Suppose there is another maximal dual simulation match Ŝ′ ∈ JGKDS
DB , i. e., for

all S ∈ G, Ŝ′ ⊆ S implies Ŝ′ = S. By Lemma 4.26, Ŝ′ ∪ Ŝ ∈ JGKDS
DB . By construction

Ŝ′ ⊆ Ŝ′∪ Ŝ, which implies Ŝ′ = Ŝ′∪ Ŝ. As Ŝ is maximal, Ŝ ⊆ Ŝ′∪ Ŝ implies Ŝ = Ŝ′∪ Ŝ and
Ŝ = Ŝ′. Hence, there is only a single maximal dual simulation match for G in DB .q. e. d.

Besides its uniqueness, we compute the maximal dual simulation match in polynomial
time. In fact, every published algorithm for computer dual simulations between graphs
�rst computes the maximal dual simulation [69, 86, 93].

Lemma 4.28 Computing the maximal dual simulation match of basic graph pattern G ∈
SA and graph database DB is in Ptime.

Once again, we postpone the proof of this lemma to Section 5.3.1.

4.2.2 Complex Patterns and Compatibility

Replacing homomorphisms by dual simulations yields a tractable alternative to the Sparql
semantics for basic graph patterns. Here, we study the interactions between dual simula-
tions and the join operators (AND and OPT) to see whether the success for BGPs can be
expanded to more complex Sparql queries. Therefore, we canonically extend the notion
of compatibility to dual simulations and study the consequences for the resulting semantics
of SAO. Unfortunately, as we will demonstrate in a few examples, this new semantics does
not ful�ll the requirement of correctness, whose formal de�nition will also be given in the
course of this section. Dual simulations, exhibiting unbounded cycles, harmfully interact
with optional clauses.

Compatibility of dual simulation candidates S1, S2 ⊆ V × U is conservatively de�ned
as follows: S1 � S2 i� for all v ∈ dom(S1) ∩ dom(S2), vS1 = vS2. This notion of
compatibility allows us to directly de�ne the dual simulation semantics of conjunctions as
well as optional patterns.

De�nition 4.29 (Sparql's Dual Simulation Semantics)
Let DB = (ODB ,Σ, EDB ) be a graph database. The dual simulation semantics of a query
Q ∈ SAO w. r. t. DB is de�ned inductively over the structure of Q: If Q is a triple pattern
t, then JtKDS

DB is de�ned according to De�nition 4.21. For Q1,Q2 ∈ SAO,

JQ1 ANDQ2KDS
DB := {S1 ∪ S2 | S1 ∈ JQ1KDS

DB ∧ S2 ∈ JQ2KDS
DB ∧ S1 � S2}

JQ1 OPTQ2KDS
DB := JQ1 ANDQ2KDS

DB ∪ {S1 ∈ JQ1KDS
DB | ∀S2 ∈ JQ2KDS

DB : S1 ��� S2}
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A dual simulation S ∈ JQKDS
DB is called a dual simulation match for Q in DB . N

Subsequently, we give characteristic examples for the interactions of dual simulations and
SAO-queries. If not stated otherwise, they all refer to the graph database DB4.1 from
Figure 4.1.

Example 4.30 The query

Q1 = (p, cite, p) AND (p, author, r)

is the unfolded version of the basic graph pattern G discussed in Example 4.23. While
Sparql's only match is µ (p 7→ P1, r 7→ John), our dual simulation semantics additionally
yields the dual simulation S from Example 4.23. The base dual simulations to the left and
the right triple pattern are

S1 = {(p, P1), (p, P2), (p, P4)} and
S2 = S1 ∪ {(r, John), (r, Kristin)}.

S1 � S2 because dom(S1) ∩ dom(S2) = {p} and pS1 = {P1, P2, P4} = pS2.
Such extensions of cycles may easily lead to more informative results than possibly

returned under Sparql's original semantics. Let us therefore consider the query

Q2 = (p, cite, s) OPT (s, cite, s)

being structurally quite similar to Q1. Only this time, we use OPT instead of AND. The
Sparql semantics exhibits one match for the conjunctive part4 in DB4.1, namely µ1 (p 7→
P1, s 7→ P1). Note that there are four more matches to be found in JQKSDB4.1

, only matching
the left-hand side of Q2. Under the dual simulation semantics,

S3 = {(p, P3), (s, P2), (s, P4)}

is a dual simulation between (p, cite, s) and DB4.1. Furthermore,

S4 = {(s, P2), (s, P4)}

is a dual simulation match for (s, cite, s) in DB4.1. S3 and S4 are compatible, meaning that
S3 ∪ S4 is a dual simulation match for Q2. Hence, although P3 does not occur as a match
for the conjunctive part of Q2 under Sparql's semantics, it does so in the dual simulation
interpretation. �

This example is not yet harmful to the correctness of the resulting semantics. However, it
already shows that not all Sparql matches are preserved by the dual simulation semantics
since there is a query Q (e. g., Q2 from Example 4.30) and a graph database DB (e. g.,
DB4.1) for which JQKSDB * JQKDS

DB . Therefore, the degree of correctness still achievable
must be weaker. As with monotonicity, we bypass the strong requirement enforced by ⊆
through subsumption (v), i. e., every match µ ∈ JQKSDB must be included in some match
S ∈ JQKDS

DB . Although correctness of a semantics J·K_ for Sparql queries clearly is a
relative notion to some other semantics for Sparql, we pursue it only w. r. t. Sparql's
well-accepted semantics J·KS_.

De�nition 4.31 (Correctness of (L, J·K_))

Let L ⊆ S. A semantics J·K_ is correct for L i� for all queries Q ∈ L and all graph

databases, JQKSDB v JQKDB . A query language (L, J·K_) is correct i� J·K_ is correct for L.N
4Since the evaluation of Q1 OPTQ2 includes all matches to the conjunction Q1 ANDQ2, these matches

belong to the conjunctive part of Q1 OPTQ2.
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As an application of the notion and as a consequence of Lemma 4.24, we obtain the
following result about BGPs and their dual simulation interpretation.

Theorem 4.32 (SA, J·KDS
_ ) is correct.

Proof: Let µ ∈ JQKSDB . Then there is an S ∈ JQKDS
DB , namely S = µ by Lemma 4.24,

with µ ⊆ S. q. e. d.

The subsequent example provides a counterexample disproving correctness of the dual sim-
ulation semantics for SAO. The reason is that, due to unbounded cycles, dual simulations
may match expanded cycles in optional clauses where Sparql does not �nd a respective
match.

Example 4.33 Consider DB4.3 (a) (Figure 4.3 (a)), which extends DB4.1 by node P0. Node
P0, like P1, participates in a citedBy-relationship with P3 and exhibits a cite-self-loop.
Reconsider Qpref from Examples 4.4 and 4.8, i. e.,

(p, author, r)︸ ︷︷ ︸
M

OPT ((p, cite, s) AND (s, cite, s))︸ ︷︷ ︸
O1

OPT ((s, citedBy, p) AND (s, cite, s))︸ ︷︷ ︸
O2

.

The �rst match of interest is

µ (p 7→ P3, r 7→ Robert, s 7→ P1),

being the result of the conjunction of M and O2. There is no match for O1 compatible
to µ1 (p 7→ P3, r 7→ Robert) under the original semantics of Sparql. Under dual simu-
lations, however, µ1 (easily interpreted as a dual simulation between M and DB4.3 (a) by
Theorem 4.32) may be compatibly extended by a match for O1, namely

S2 = {(p, P3), (s, P2), (s, P4)}.

It holds that µ1 � S2 since pµ1 = {µ1(p)} = {P3} = pS2. Thus, µ1 ∪ S2 ∈ JQprefKDS
DB4.3 (a)

,
letting incompatibility of µ1 to all matches of O1 disappear. Only circumstantially, the
dual simulation semantics preserves µ by the dual simulation match S ∈ JQprefKDS

DB with

S = {(r, Robert), (p, P3), (r, John), (p, P1)} ∪ {(p, P1), (s, P1), (p, P3), (s, P2), (s, P4)}.

The counterexample Sparql match

µ′ (p 7→ P3, r 7→ Robert, s 7→ P0)

once more stems from a conjunction ofM and O2. This time, however, µ′ does not reappear
in any dual simulation match for Qpref . �

Proposition 4.34 For some Q ∈ SAO and graph database DB , JQKDS
DB��vJQKSDB . Thus,

(SAO, J·KDS
_ ) is not correct.

Proof: By query Qpref and graph database DB4.3 (a), we already have witnesses for the
claim. In order to reduce this proof's complexity, we simplify the counterexample.
Consider

Q = (x, a, y)︸ ︷︷ ︸
M

OPT ((y, b, z) AND (z, c, z))︸ ︷︷ ︸
O1

OPT
(
(z, b′, y) AND (z, c, z)

)︸ ︷︷ ︸
O2
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Figure 4.3: (a) Another Adaptation of the Network in Figure 4.1 (b) A Simpli�ed Version
of Figure 4.3 (a)
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as the counterexample query and DB4.3 (b) depicted in Figure 4.3 (b). JMKDS
DB4.3 (b)

= {Sm},
JO1KDS

DB4.3 (b)
= {S1}, and JO2KDS

DB4.3 (b)
= {S2} with

Sm = {(x, 1), (y, 3)},
S1 = {(y, 3), (z, 4), (z, 5)}, and
S2 = {(y, 3), (z, 2)}.

Since Sm � S1, Sm ∪ S1 ∈ JM OPT O1KDS
DB4.3 (b)

. (Sm ∪ S1) ��� S2 because z ∈ dom(Sm ∪
S1)∩dom(S2) but z(Sm∪S1) = zS1 = {4, 5} 6= {2} = zS2. Thus, JQKDS

DB4.3 (b)
= {Sm∪S1}.

JQKSDB4.3 (b)
also contains a single match, namely µ = {(x, 1), (y, 3), (z, 2)}. But µ *

Sm ∪ S1 which implies that JQKSDB4.3 (b)
v JQKDS

DB4.3 (b)
does not hold. q. e. d.

Thus, (SAO, J·KDS
_ ) cannot be shown correct as not all matches due to the original semantics

of Sparql are preserved for every Sparql query.
Before going on to the rescue of J·KDS

_ , at least for a fragment of SAO, we provide two
more technical results about the semantics. They are going to be useful in subsequent
proofs. The �rst one is concerned with pairwise compatible dual simulation candidates.
For every three dual simulation candidates, that are pairwise compatible, the union of
every two of them is compatible with the third.

Proposition 4.35 Let Si ⊆ V × U (i = 1, 2, 3) be dual simulation candidates. If Si � Sj
for all i, j ∈ {1, 2, 3}, then for l,m, n ∈ {1, 2, 3} with {l,m, n} = {1, 2, 3}, Sl ∪ Sm � Sn.

Proof: We need to show that for all v ∈ dom(Sl ∪ Sm) ∩ dom(Sn), v(Sl ∪ Sm) = vSn.
Let v ∈ dom(Sl ∪ Sm) ∩ dom(Sn). Then either (i) v ∈ dom(Sl) \ dom(Sm), (ii) v ∈
dom(Sm) \ dom(Sl), or (iii) v ∈ dom(Sl) ∩ dom(Sm). In case (i), v(Sl ∪ Sm) = vSl. Since
Sl � Sn and v ∈ dom(Sn), vSl = vSn. Thus, v(Sl ∪ Sm) = vSn. The case (ii) is entirely
analogous. In case (iii), v(Sl ∪ Sm) = vSl = vSm because Sl � Sm. Since Sl � Sn and
v ∈ dom(Sn), v(Sl ∪ Sm) = vSn. q. e. d.

As a �rst application of Proposition 4.35, we subsequently prove that AND is commutative
and associative for the dual simulation semantics. Since matches are no longer partial func-
tions, the proof requires a slightly di�erent argument than necessary for Proposition 4.10.

Proposition 4.36 Let DB be a graph database and Qi ∈ S (i = 1, 2, 3). It holds that
(I) JQ1 ANDQ2KDS

DB = JQ2 ANDQ1KDS
DB and (II) J(Q1 ANDQ2) ANDQ3KDS

DB = JQ1 AND (Q2 AND

Q3)KDS
DB .

Proof: Let S, S′ ⊆ V ×U . Then S � S′ i� S′ � S, i. e., � is a symmetric relation. The
reason is that dom(S)∩dom(S′) = dom(S′)∩dom(S) and for every v ∈ dom(S)∩dom(S′),
vS = vS′ i� vS′ = vS because equality (=) is symmetric for sets. We may now proceed
with the proof.

(I) First, let S ∈ JQ1 ANDQ2KDS
DB . Then there are Si ∈ JQiKDS

DB (i = 1, 2) with S1 � S2.
Since � is symmetric, it holds that S2 � S1. Thus, S2 ∪ S1 = S ∈ JQ2 ANDQ1KDS

DB .
The other direction follows the same line of arguments, only backwards.

(II) Let S ∈ J(Q1 AND Q2) AND Q3KDS
DB . Then there are Si ∈ JQiKDS

DB (i = 1, 2, 3) with
S1 � S2 and S1∪S2 � S3. We need to show that (i) S2 � S3 and (ii) S1 � (S2∪S3).
Towards (i), let v ∈ dom(S2) ∩ dom(S3). If v /∈ dom(S1), vS2 = vS3 because
S1 ∪ S2 � S3. If v ∈ dom(S1), vS2 = vS3 because S1 � S2 and S1 ∪ S2 � S3.

The same arguments apply for showing that S1 � S3. Then (ii) follows from
Proposition 4.35. q. e. d.
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4.3 Dual Simulations for Well-Designed Sparql

We showed that replacing Sparql's homomorphisms by dual simulations entails an incor-
rect querying semantics (cf. Proposition 4.34). The counterexample we used is a Sparql
query that is not monotone. Although we did not explicitly extend the database, the shift
from J·KS_ to J·KDS

_ poses an implicit database extension. As we have learned by Propo-
sition 4.15, well-designed Sparql solely contains weakly monotone queries and in fact,
(Swd, J·KDS

_ ) is a correct query language. To prove correctness, we give an even stronger

result, certifying a strong relation between the matches up to J·KS_ and those produced by

J·KDS
_ through the notion of compatibility.

Theorem 4.37 For all Q ∈ Swd, databases DB , and matches µ ∈ JQKSDB , there is a dual
simulation match S ∈ JQKDS

DB with µ ⊆ S and µ� S.

Proof: The proof proceeds by induction on the structure of Q.

Base: If Q is a triple pattern, JQKSDB ⊆ JQKDS
DB by Lemma 4.24. Therefore, for every

µ ∈ JQKSDB , µ ∈ JQKDS
DB holds and, trivially, µ ⊆ µ and µ� µ.

Hypothesis: For Q1,Q2 ∈ Swd and every µi ∈ JQiKSDB (i = 1, 2), there are Si ∈ JQiKDS
DB

with µi ⊆ Si and µi � Si.

Step: It remains to be shown that the claim holds for queries

(i) Q = Q1 ANDQ2 and (ii) Q = Q1 OPTQ2.

(i) If µ ∈ JQ1 ANDQ2KSDB , then there are µi ∈ JQiKSDB (i = 1, 2) with µ = µ1 ∪ µ2

and µ1 � µ2. By induction hypothesis, there are Si ∈ JQiKDS
DB (i = 1, 2)

with µi ⊆ Si and µi � Si. Note that µ1 ∪ µ2 ⊆ S1 ∪ S2. We will show that
(a) S1 � S2 and (b) (µ1 ∪ µ2)� (S1 ∪ S2). By (a), S1 ∪ S2 ∈ JQ1 ANDQ2KDS

DB .

(a) Let v ∈ dom(S1) ∩ dom(S2). Thus, v ∈ vars(Q1) ∩ vars(Q2). We will
prove that v ∈ dom(µ1) ∩ dom(µ2), such that vS1 = vS2 follows from
vS1 = vµ1 = vµ2 = vS2.
Towards a contradiction, assume v /∈ dom(µ1) ∩ dom(µ2). Then for some
i ∈ {1, 2}, v /∈ dom(µi). Hence, v can only occur in an optional clause
in Qi. More precisely, Qi contains an optional pattern P1 OPT P2 with
v ∈ vars(P2) \ vars(P1). As v ∈ dom(Sj) (j = 1, 2, j 6= i) implies that
v ∈ vars(Qj), Q is not a well-designed query, contradicting the theorem's
assumption. Hence, the assumption v /∈ dom(µ1) ∩ dom(µ2) is false.

(b) For v ∈ dom(µ1 ∪ µ2) ∩ dom(S1 ∪ S2), we need to show that v(µ1 ∪ µ2) =
v(S1 ∪ S2). If v ∈ dom(µ1), then v ∈ dom(S1) or v ∈ dom(S2). Whenever
the former case holds, vµ1 = vS1 by induction hypothesis and as µ1 � µ2

and S1 � S2 (cf. (a)), v(µ1∪µ2) = v(S1∪S2). Regarding the latter case, it
remains to be shown that the claim holds, even if v ∈ dom(S2)\dom(S1). If
v ∈ dom(µ2), the claim holds since µ1 � µ2 and µ2 � S2. If v /∈ dom(µ2),
there is an optional pattern P1OPTP2 in Q2 with v ∈ vars(P2)\vars(P1). In
that case v ∈ dom(µ1) contradicts the assumption that Q is a well-designed
query (cf. (a)). The case of v ∈ dom(µ2) is completely analogous.

Thus, S1 ∪ S2 ∈ JQKDS
DB , µ = µ1 ∪ µ2 ⊆ S1 ∪ S2, and µ� S1 ∪ S2.

(ii) If µ ∈ JQ1 OPTQ2KSDB , then (a) µ ∈ JQ1KSDB and there is no µ′ ∈ JQ2KSDB with
µ� µ′ or (b) µ ∈ JQ1 ANDQ2KSDB . Case (b) follows the same arguments as we
described for case (i). In case (a), we have some S ∈ JQ1KDS

DB with µ ⊆ S and
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µ � S by induction hypothesis. Either there is an S′ ∈ JQ2KDS
DB with S � S′

or there is no such S′. In both cases, µ is a subset of the resulting match, either
S ∈ JQKDS

DB or S ∪ S′ ∈ JQKDS
DB . µ � S ∪ S′ follows from the fact that µ ⊆ S

and S � S′. q. e. d.

Corollary 4.38 (Swd, J·KDS
_ ) is correct.

The rest of this section is devoted to proving tractability of the dual simulation semantics
for well-designed Sparql. First, we consider the non-emptiness problem that has a neat
Ptime solution due to a normal form obtained for well-designed Sparql. This normal
form is later also exploited for giving a Ptime upper bound for the evaluation problem of
(Swd, J·KDS

_ ).

4.3.1 Tractability of Non-Emptiness

Let us consider any query Q ∈ Swd. By de�nition, Q ∈ SAO. In the base case, Q is
a basic graph pattern, i. e., Lemma 4.25 provides polynomial-time non-emptiness of Q.
Deciding non-emptiness of optional patterns Q = Q1 OPTQ2 in DB boils down to deciding
non-emptiness of Q1 in DB . Whether there is a compatible match for Q2 in DB or not
is negligible information. Non-emptiness of conjunctions Q = Q1 AND Q2 in DB , on the
other hand, requires us to not only derive non-emptiness of both, Q1 and Q2 but also
to �nd out whether there is a pair of compatible matches from the respective result sets.
As this problem quickly degenerates into a combinatorial problem, we have to take up on
a more structured solution. Fortunately, we may transform every well-designed query Q
into an equivalent well-designed query that is an optional pattern. Informally, two queries
Q1,Q2 ∈ S are equivalent i� for all graph databases, they return the same matches.

Proposition 4.39 (Proposition 4.10 [113]) Let Q ∈ Swd and consider the following
two rewriting rules,

((P1 OPT P2) AND P3) −→ ((P1 AND P3) OPT P2) (4.2)

and

(P1 AND (P2 OPT P3)) −→ ((P1 AND P2) OPT P3). (4.3)

Every application of (4.2) or (4.3) to query Q5 yields a query Q̂ ∈ Swd with the property
that JQKSDB = JQ̂KSDB for all graph databases DB .

Thus, applications of (4.2) and (4.3) yield equivalent queries in (Swd, J·KS_). The idea of
the rewriting rules, and the proof of Proposition 4.39, is to exhibit well-designedness of
Q. Intuitively, pushing P3 to the mandatory side of the optional pattern (cf. (4.2)) does
not change the overall matches of the pattern because well-designedness ensures P3 not to
interfere with partial matches for P2. If we iteratively apply the rules (4.2) and (4.3) to
well-designed Sparql queries until they cannot be applied anymore, we obtain a normal
form, the so-called OPT normal form [113]. As Proposition 4.39 has only been established
for the original query language (Swd, J·KS_), we can exploit this normal form only after

ensuring the rewriting rules to also yield equivalent results up to J·KDS
_ .

Proposition 4.40 Let Q ∈ Swd. Applying rule (4.2) or (4.3) to Q yields a query Q̂ ∈ Swd
with JQKDS

DB = JQ̂KDS
DB for all graph databases DB .

5An application of a rule to Q means �nding a subpattern of Q that is structurally identical to the
left-hand side of the rule and replace it according to its right-hand side.
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Proof: Let DB be a graph database. We give the proof for (4.2), only, because the case
of (4.3) follows from (4.2) by commutativity of AND (cf. Proposition 4.36). Let Q ∈ Swd
containing ((P1 OPT P2) AND P3) as a subquery. The proof proceeds by induction on the
structure of Q.

Base: Consider Q = (P1 OPT P2) AND P3. We need to show that JQKDS
DB = JQ̂KDS

DB , where
Q̂ = (P1 AND P3) OPT P2.

⊆: Let S ∈ JQKDS
DB with S1 ∈ JP1KDS

DB , S3 ∈ JP3KDS
DB , and S1∪S3 ⊆ S. If any match

in JP2KDS
DB exists that is compatible with S1, then there is such an S2 ∈ JP2KDS

DB

with S = S1 ∪ S2 ∪ S3 (S1 � S2 and S1 ∪ S2 � S3). Otherwise, S = S1 ∪ S3

(S1 � S3) and there is no S2 ∈ JP2KDS
DB with S1 � S2. In either case, we need

to show that S ∈ JQ̂KDS
DB .

If S = S1∪S2∪S3, we need to show that (i) S1 � S3 and (ii) S1∪S3 � S2. From
S1 ∪ S2 � S3 and S1 � S2, it follows that S1 � S3 and S2 � S3: Similarly
to the proof of Proposition 4.36, let v ∈ dom(S1) ∩ dom(S3). If v ∈ dom(S2),
vS1 = vS2 = v(S1 ∪ S2) = vS3. Otherwise, vS2 = ∅ and v(S1 ∪ S2) = vS1.
Thus, vS1 = vS3 is implied by v(S1 ∪ S2) = vS3. Almost analogously, the case
S2 and S3 is proven. Here, a well-designedness argument will be necessary. (ii)
follows from Proposition 4.35.

If S = S1 ∪ S3, we need to show that there is still no S2 ∈ JP2KDS
DB with

S1 ∪ S3 � S2. If there was any S2 ∈ JP2KDS
DB with S1 ∪ S3 � S2, S1 � S3

implies that S1 � S2. But there is no S2 ∈ JP2KDS
DB with S1 � S2 by the choice

of S.

⊇: Let S ∈ JQ̂KDS
DB with S1 ∈ JP1KDS

DB and S3 ∈ JP3KDS
DB with S1 � S3. An

S2 ∈ JP2KDS
DB with S1 ∪ S3 � S2 implies that S1 � S2 and S3 � S2. Thus,

S1 ∪ S2 � S3 by Proposition 4.35. Therefore S1 ∪ S3 ∪ S2 ∈ JQKDS
DB .

It remains to be shown that for S = S1 ∪ S3 (Si ∈ JPiKDS
DB for i = 1, 3) and

there is no S2 ∈ JP2KDS
DB with S1 ∪ S3 � S2, there is no S′2 ∈ JP2KDS

DB with
S1 � S′2. Towards a contradiction, let S′2 ∈ JP2KDS

DB such that S1 � S′2.
Consequently, S1 ∪ S3 ��� S′2 means there is a variable v ∈ dom(S3) \ dom(S1)
with v ∈ dom(S′2) and vS3 6= vS′2. Hence, v ∈ vars(P3) ∩ vars(P2). As Q is
well-designed, v ∈ vars(P1). Since v /∈ dom(S1), there must be an optional
subpattern R1 OPT R2 of P1 with v ∈ dom(R2) \ dom(R1). However, P1 is a
subpattern of Q contradicting the assumption that Q is a well-designed query.
Thus, the assumption that S′2 ∈ JP2KDS

DB with S1 � S′2 is false and S1 ∪ S3 ∈
JQKDS

DB is true.

Hypothesis: Suppose for Q1,Q2 ∈ Swd we have shown that the application of (4.2) to
either of them yields queries Q̂i ∈ Swd (i ∈ {1, 2}) with JQiKDS

DB = JQ̂iKDS
DB .

Step: We need to verify the claim for queries

(i) Q = Q1 ANDQ2 and (ii) Q = Q1 OPTQ2.

(i) W. l. o. g. assume Q̂ = Q̂1 AND Q2. The symmetric case is handled by com-
mutativity of AND (cf. Proposition 4.36). Let S ∈ JQKDS

DB . Then there are
Si ∈ JQiKDS

DB (i = 1, 2) with S1 � S2 and S = S1 ∪ S2. By induction hypoth-

esis, S1 ∈ JQ̂1KDS
DB . Thus, S1 ∪ S2 ∈ JQ̂KDS

DB . The reverse direction holds by
analogous arguments.
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(ii) We distinguish two more cases here, i. e., Q̂ = Q̂1OPTQ2 and Q̂ = Q1OPTQ̂2. In
both cases, we have some S ∈ JQKDS

DB . S = S1∪S2 with compatible Si ∈ JQiKDS
DB

(i = 1, 2) is already handled by (i). If S = S1 ∈ JQ1KDS
DB and there is no

S2 ∈ JQ2KDS
DB with S1 � S2, then the induction hypothesis applies. Thus,

S1 ∈ JQ̂1KDS
DB or there is no S2 ∈ JQ̂2KDS

DB with S1 � S2. In both cases,
S ∈ JQ̂KDS

DB . q. e. d.

If we imagine the syntax tree of a well-designed query Q, every application of (4.2) or (4.3)
pushes a single conjunction deeper in the tree. Hence, pushing all conjunctions down the
tree leaves us with a syntax tree that has basic graph patterns as leaf nodes and only OPT

operators as inner nodes.

Example 4.41 Let Pi ∈ SA (i = 1, 2, 3, 4) such that

Q = (P1 OPT P2) AND (P3 OPT P4)

is a well-designed query. Without formally introducing it, a graphical representation of
the syntax tree of Q may look as follows:

AND

OPT

P1 P2

OPT

P4P3

Rule (4.2) is applicable, altering the query Q to (P1 AND (P3 OPT P4)) OPT P2 with syntax
tree:

OPT

AND

P1

P2

OPT

P4P3

Applying rule (4.3) yields the �nal form, i. e., ((P1 AND P3) OPT P4) OPT P2:

OPT

OPT P2

AND

P1

P4

P3



84 CHAPTER 4. GRAPH QUERIES

Since P1, P3 ∈ SA, P1 ANDP3 is a basic graph pattern. Hence, the resulting syntax tree has
OPT operators as inner nodes and BGPs at its leafs. �

Proposition 4.40 tells us that the OPT normal form for well-designed Sparql is also a
normal form up to J·KDS

_ .

De�nition 4.42 (OPT Normal Form [113])
A well-designed query Q ∈ Swd is in OPT normal form i� (a) Q is a basic graph pattern
or (b) Q = Q1 OPTQ2 and Q1,Q2 are in OPT normal form. Every well-designed query Q
may be turned into OPT normal form in O(|Q|2) applications of rules (4.2) and (4.3) (cf.
Theorem 4.11 [113]). N

We exploit this normal form in the proof showing tractability of the non-emptiness problem
of (Swd, J·KDS

_ ). Since the transformation process of Pérez et al. [113] does not exceed
Ptime, we assume it as a preprocessing step and henceforth work with the language of all
well-designed queries in OPT normal form, denoted SONF

wd .
Let Q ∈ SONF

wd . By De�nition 4.42, we have to distinguish only two cases (instead
of three for Swd), the case of basic graph patterns and the case of optional patterns. If
Q = Q1 OPT Q2, we will iterate through Q by the following equivalence: JQKDS

DB 6= ∅ i�
JQ1KDS

DB 6= ∅. Thus, non-emptiness ofQ shifts to non-emptiness of its mandatory clauseQ1.
Repeating this case distinction eventually yields a basic graph pattern (cf. Example 4.41).
Therefore, non-emptiness of JQKDS

DB eventually reduces to non-emptiness of the left-most
basic graph pattern inQ. As an auxiliary step, we de�ne the function lmp (read as left-most
pattern) for OPT normal form queries Q by

lmp(Q) :=

{
lmp(Q1) if Q = Q1 OPTQ2

Q otherwise.

The result of lmp(Q) is a basic graph pattern, i. e., lmp : SONF
wd → SA.

Lemma 4.43 Let Q ∈ SONF
wd . For all graph databases DB ,

JQKDS
DB 6= ∅ i� Jlmp(Q)KDS

DB 6= ∅.

Proof: Let DB be a graph database. By induction on the structure of Q.

Base: If Q is a BGP, Q = lmp(Q) and, of course, JQKDS
DB 6= ∅ i� Jlmp(Q)KDS

DB 6= ∅.

Hypothesis: Assume for Q1 ∈ SONF
wd that JQ1KDS

DB 6= ∅ i� Jlmp(Q1)KDS
DB 6= ∅.

Step: We need to show that for an optional pattern Q = Q1 OPT Q2, JQKDS
DB 6= ∅ i�

Jlmp(Q)KDS
DB 6= ∅.

⇒: There is at least one match S ∈ JQKDS
DB , i. e., there is a match S1 ∈ JQ1KDS

DB

and, possibly, a match S2 ∈ JQ2KDS
DB , such that S = S1(∪S2) (and S1 � S2).

Hence, JQ1KDS
DB 6= ∅. By induction hypothesis, it holds that Jlmp(Q1)KDS

DB 6= ∅.
As lmp(Q) = lmp(Q1), it follows that Jlmp(Q)KDS

DB 6= ∅.
⇐: lmp(Q) = lmp(Q1) by de�nition of lmp. Furthermore, JQ1KDS

DB 6= ∅ by induction
hypothesis. Thus, there is at least one S1 ∈ JQ1KDS

DB . Independent of an S2 ∈
JQ2KDS

DB with S1 � S2, it follows that there is a match S ∈ JQKDS
DB with S1 ⊆ S.

Thus, JQKDS
DB 6= ∅. q. e. d.

Hence, tractability of non-emptiness of (Swd, J·KDS
_ ) is a consequence of the OPT normal

form and Lemmas 4.25 and 4.43.

Theorem 4.44 NonEmpty(Swd, J·KDS
_ ) is in Ptime.
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Proof: It is su�cient to show that NonEmpty(SONF
wd , J·KDS

_ ) is in Ptime. Let Q ∈
SONF
wd . By Lemma 4.43, JQKDS

DB 6= ∅ i� Jlmp(Q)KDS
DB 6= ∅. Since lmp(Q) is a basic graph

pattern, the decision for non-emptiness of JQKDS
DB can be performed by deciding non-

emptiness of the result set for the basic graph pattern lmp(Q), being performed in Ptime
by Lemma 4.25. q. e. d.

4.3.2 Tractability of Evaluation

An algorithm for the evaluation of (Swd, J·KDS
_ ) also bene�ts from the OPT normal form.

Therefore, we distinguish only two cases for Q ∈ SONF
wd :

1. Q is a basic graph pattern, i. e., Q ∈ SA and

2. Q is an optional pattern, i. e., Q = Q1 OPTQ2 where Q1,Q2 ∈ SONF
wd .

Once again, handling basic graph patterns (case 1) is a task performed in Ptime by
Lemma 4.25. If we get a Ptime result for optional patterns as well, our quest in establishing
tractability of (Swd, J·KDS

_ ) is complete.

Consider such an optional pattern Q = Q1 OPT Q2 with SONF
wd . Furthermore, let DB

be a graph database and S be a dual simulation candidate, i. e., S ⊆ V × U . It holds that
S ∈ JQKDS

DB i� (a) S ∈ JQ1 AND Q2KDS
DB or (b) S ∈ JQ1KDS

DB and there is no S′ ∈ JQ2KDS
DB

with S � S′. In order to show that (a) applies to S, there must be S1, S2 ⊆ S with
S = S1 ∪ S2, such that S1 ∈ JQ1KDS

DB , S2 ∈ JQ2KDS
DB , and S1 � S2. For sure, dom(Si)

(i ∈ {1, 2}) may only include variables that also occur in Qi. Furthermore, for all variables
v ∈ dom(S1) ∩ dom(S2), vS1 = vS2 because of compatibility. Therefore, S1 and S2 may
have an overlap in variables belonging to both subpatterns. We choose S1 (S2, resp.) by
reducing S to only contain those pairs (v, o) ∈ S that are variables of Q1 (Q2, resp.).
Extending the reduction of (partial) functions to dual simulations is a necessary step: For
S ⊆ V × U and V ⊆ V,

S�V := {(v, o) ∈ S | v ∈ V }.

Note that S�V = S ∩ (V × U). Thus, we get S1 = S�vars(Q1) and S2 = S�vars(Q2). As we
are still in case (a), we subsequently prove that S is a match for query Q1 AND Q2 i� S1

and S2 are matches for their respective subpatterns.

Lemma 4.45 Let DB be a graph database, (Q1 ANDQ2) ∈ Swd, and S ⊆ V × U . Further-
more, let Si = S�vars(Qi) (i = 1, 2).

S ∈ JQ1 ANDQ2KDS
DB i� S1 ∈ JQ1KDS

DB and S2 ∈ JQ2KDS
DB .

Proof: Note that S1 � S2 and S = S1 ∪ S2 by construction of S1 and S2.

⇐: As S1 � S2 and Si ∈ JQiKDS
DB (i = 1, 2), S1 ∪ S2 = S ∈ JQ1 ANDQ2KDS

DB .

⇒: Suppose, S1 /∈ JQ1KDS
DB or S2 /∈ JQ2KDS

DB . Thus, there are S′i ∈ JQiKDS
DB (i = 1, 2),

distinct from S1 and S2, with S′1 � S′2 and S = S′1 ∪ S′2. For some i ∈ {1, 2},
S′i ( Si, i. e., for some v ∈ vars(Qi), vS′i = ∅ 6= vSi. By construction of S1 and S2,
v ∈ vars(Q1)∩ vars(Q2) and, therefore, there is an optional subpattern P1 OPTP2 of
Qi with v ∈ vars(P2) \ vars(P1). This subpattern contradicts the assumption that
Q1 ANDQ2 is a well-designed query. Thus, S′i (i = 1, 2) are not any di�erent from the
Si. Hence, Si ∈ JQiKDS

DB (i = 1, 2). q. e. d.

Note that this proof relies on the assumption that Q1 ANDQ2 is a well-designed query. For
general Sparql queries, we cannot assume S1 and S2 to be matches to Q1/Q2 and to
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fully describe S. Q1 and Q2 may again be arbitrary well-designed queries, which is why
we need to do the evaluation recursively.

In case (b), i. e., S ∈ JQ1KDS
DB but there is no S′ ∈ JQ2KDS

DB compatible with S, we need
to show that verifying S1 to be equal to S is su�cient. Analogously to Lemma 4.45, we
prove that at least S1 is actually a match for Q1.

Lemma 4.46 Let Q ∈ Swd with Q = Q1 OPTQ2, DB be a graph database, and S ⊆ V×U .
If S ∈ JQKDS

DB , then S1 ∈ JQ1KDS
DB with S1 = S�vars(Q1).

Proof: For S ∈ JQ1 AND Q2KDS
DB , S1 ∈ JQ1KDS

DB follows from Lemma 4.45. Consider
now S ∈ JQ1KDS

DB (and no S′ ∈ JQ2KDS
DB exists with S � S′). Then S1 = S. Thus,

S1 ∈ JQ1KDS
DB . q. e. d.

We are almost done evaluating S w. r. t. optional pattern Q = Q1 OPT Q2 and graph
database DB . Let us recapitulate how far we get in the evaluation with the so far achieved
results:

� We �rst check whether S1 ∈ JQ1KDS
DB . By Lemma 4.46, a negative answer means that

S /∈ JQKDS
DB .

� Otherwise, we distinguish whether S = S1 holds.

� If S 6= S1 and S2 ∈ JQ2KDS
DB , Lemma 4.45 ensures us S1 ∪ S2 ∈ JQ1 ANDQ2KDS

DB .
Thus, S ∈ JQ1 OPTQ2KDS

DB .

� If S 6= S1 and S2 /∈ JQ2KDS
DB , again by Lemma 4.45, S /∈ JQ1 ANDQ2KDS

DB implies
S /∈ JQ1 OPTQ2KDS

DB .

� The open case is the one where S = S1. Therefore, we are required to verify
the absence of an S′ ∈ JQ2KDS

DB with S � S′.

To obtain a positive answer to the open question, we could �rst check whether there is
any match for Q2, i. e., whether JQ2KDS

DB is empty (cf. Section 4.3.1). If JQ2KDS
DB 6= ∅,

looking through all the matches for Q2 is computationally too expensive. Fortunately,
well-designedness and the OPT normal form of Q allow us to use an approximation. To
disprove S ∈ JQ1OPTQ2KDS

DB it is unnecessary to obtain a concrete S′ ∈ JQ2KDS
DB compatible

with S.
If there is some S′ ∈ JQ2KDS

DB compatible with S, then there is a match for the left-most
pattern of Q2 (lmp(Q2)) which is also compatible with S. The match for the left-most
pattern is a subset of any compatible match S′ ∈ JQ2KDS

DB . The reason why the match for
the subpattern lmp(Q2) is also compatible with S is that Q, and therefore Q2, is well-
designed. The following lemma makes this relationship precise and also shows that if there
is any match for lmp(Q2) in DB , that is compatible with S, then there is a match for
Q2 that is compatible with S. While Lemmas 4.45 and 4.46 could be shown for general
well-designed queries, the proof of the following result builds upon the OPT normal form of
well-designed Sparql.

Lemma 4.47 Let DB be a graph database, Q1,Q2 ∈ SONF
wd , and S1 ∈ JQ1KDS

DB . Further-

more, let Ŝ be the maximal dual simulation between lmp(Q2) and DB . S1 ��� S2 for all
S2 ∈ JQ2KDS

DB i� S1�vars(lmp(Q2))* Ŝ.

Proof: We handle the two directions separately.

⇐: Let S2 ∈ JQ2KDS
DB . We show that S1 ��� S2 by induction on the structure of Q2.
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Base: If Q2 ∈ SA, S2 ⊆ Ŝ by Proposition 4.27. For every v ∈ dom(S1) ∩ dom(S2),
it holds that v ∈ vars(Q2). S1 � S2 means S1�vars(P2)⊆ S2, which contradicts

the assumption that S1�vars(lmp(P2))* Ŝ as S1�vars(lmp(P2))= S1�vars(P2). Thus,
S1 ��� S2.

Hypothesis: Suppose for P1, P2 ∈ SONF
wd , all Ti ∈ JQiKDS

DB (i = 1, 2) are incompatible
with S1.

Step: If Q2 = P1OPTP2, then S2 = T1∪T2 with T1 ∈ JP1KDS
DB and T2 ∈ JP2KDS

DB ∪{∅}.
If T2 = ∅, S1 ��� S2 follows from the induction hypothesis (S1 ��� T1). If T2 6= ∅,
T1 � T2. Let v ∈ dom(S1) ∩ dom(S2). Then (i) v ∈ dom(T1) \ dom(T2),
(ii) v ∈ dom(T2)\dom(T1), or (iii) v ∈ dom(T1)∩dom(T2). In cases (i) and (ii),
vS1 6= vS2 follows from the induction hypothesis. In case (iii), v(T1∪T2) = vT1

(= vT2, resp.). By induction hypothesis vS1 6= v(T1 ∪ T2). Hence, S1 ��� S2.

⇒: Let S2 ∈ JQ2KDS
DB . S1 ��� S2 implies S1�vars(Q2)* S2. We show that S1�vars(lmp(Q2))*

Ŝ by induction on the structure of Q2:

Base: IfQ2 ∈ SA, Ŝ ∈ JP2KDS
DB by Proposition 4.27 and Lemma 4.26. By assumption,

all S2 ∈ JQ2KDS
DB are incompatible with S1. Thus, S1 ��� Ŝ and S1�vars(lmp(Q2))*

Ŝ by vars(lmp(Q2)) = vars(Q2).

Hypothesis: For P1 ∈ SONF
wd , S1�vars(lmp(P1))* Ŝ.

Step: Here, Q2 = P1 OPT P2. Since lmp(Q2) = lmp(P1), S1�vars(lmp(Q2))* Ŝ follows
directly from the induction hypothesis. q. e. d.

Hence, if we have already established that S1 ∈ JQ1KDS
DB and S1 = S, checking for the

absence of any S′ ∈ JQ2KDS
DB with S � S′ may be performed by computing the maximal

dual simulation Ŝ between lmp(Q2) and DB , and by establishing S1�vars(lmp(Q2))* Ŝ. We
describe the full procedure in the following proof of tractability of the evaluation problem
of (Swd, J·KDS

_ ).

Theorem 4.48 Evaluation(Swd, J·KDS
_ ) is in Ptime.

Proof: By Propositions 4.39 and 4.40, it is su�cient to show a Ptime procedure for
Evaluation(SONF

wd , J·KDS
_ ). Let DB = (ODB ,Σ, EDB ) be a graph database, Q ∈ SONF

wd ,
and S ⊆ V × U .

Base: Evaluating Q ∈ SA w. r. t. DB is in Ptime by Lemma 4.25.

Hypothesis: For Q1,Q2 ∈ SONF
wd , checking whether any candidate S′ ⊆ V ×U is a match

for Qi (i ∈ {1, 2}) in DB can be performed in Ptime.

Step: If Q = Q1 OPT Q2, let Si = S �vars(Qi) (i = 1, 2). Computing Si (i = 1, 2) can
be performed in O(|vars(Qi)|2 · |ODB |). If S1 /∈ JQ1KDS

DB (in Ptime by induction
hypothesis), S /∈ JQKDS

DB by Lemma 4.46. Thus, we reject S as a match for Q in
Ptime.

If S2 ∈ JQ2KDS
DB (in Ptime by induction hypothesis), S ∈ JQKDS

DB by Lemma 4.45.
Thus, accepting S as a match for Q, in this case, is again in Ptime.

If S2 /∈ JQ2KDS
DB , we distinguish whether S = S1 (in O((|vars(Q2)| · |ODB |)2)) or not:

1. If S 6= S1, S /∈ JQKDS
DB by Lemma 4.45 and we reject S as a match for Q in

Ptime.
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Figure 4.4: Another Graph Database Example

2. If S = S1, we consider the basic graph pattern P = lmp(Q2) and compute the
maximal dual simulation Ŝ between P and DB (in Ptime by Lemma 4.28). If
S�vars(P )⊆ Ŝ, we reject S as a match for Q since by Lemma 4.47, there is a
match S2 ∈ JQ2KDS

DB with S � S2. Otherwise, we accept S as a match for Q in
DB . q. e. d.

Thus, the dual simulation semantics is correct and tractable for well-designed Sparql.

4.4 Maximal Dual Simulations for Sparql

Throughout the last section, we have studied the semantic function J·KDS
_ w. r. t. di�erent

fragments of Sparql. It primarily shifts Sparql's matching semantics from graph ho-
momorphisms (cf. Proposition 4.11) to dual simulations. For basic graph patterns (i. e.,
SA) and well-designed Sparql (i. e., Swd), the new semantics turned out to be correct and
tractable. As soon as arbitrary nesting of optional patterns was allowed, J·KDS

_ could not
be shown correct anymore (cf. Proposition 4.34).

In this section, we catch up on the properties of dual simulations. More speci�cally,
we are studying union-closedness of dual simulation matches. Recall from Section 2.3.2,
that the maximal dual simulation between two graphs has been unique because of union-
closedness of the set of all dual simulations. As far as basic graph patterns are concerned,
we have already proven the uniqueness of the maximal dual simulation match by Propo-
sition 4.27. The maximal dual simulation match necessarily contains every other dual
simulation match. Thus, from a theoretical point of view, it represents a correct denota-
tion of a basic graph pattern Q ∈ SA w. r. t. a graph database DB .

Corollary 4.49 Let DB be a graph database, Q ∈ SA, and Ŝ the maximal dual simulation
match for Q in DB . For all µ ∈ JQKSDB , µ ⊆ Ŝ.

Proof: First note that Ŝ =
⋃
S∈JQKDS

DB
S by Proposition 4.27. Let µ ∈ JQKSDB . By

Lemma 4.24, µ ∈ JQKDS
DB . Thus, µ ⊆ Ŝ. q. e. d.

Let J·K_ : SA → 2V×U be any semantics for Sparql's basic graph patterns. As soon as the
maximal dual simulation match for Q in DB is contained in JQKDB , J·K_ is automatically
correct. We denote by J·KMDS

_ the semantic function that associates every basic graph
pattern Q ∈ SA and graph database DB with the singleton set containing the maximal
dual simulation match for Q in DB . Of course, (SA, J·KMDS

_ ) is correct by Corollary 4.49.
From a practical point of view, computing only the maximal dual simulation match is
useful as a pruning step for Sparql query processing.

Example 4.50 Consider DB4.4, as depicted in Figure 4.4, and the basic graph pattern

Q = (p, teach, c) AND (p, advise, s) AND (s, take, c),
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where we ask for professors (p) teaching courses (c) and advising students (s), so that
the students s have taken the courses c. There is a single match for Q in DB4.4 under
Sparql's original interpretation, namely

µ (p 7→ Paul, s 7→ Sara, c 7→ DBS).

The maximal dual simulation match Ŝ for Q in DB re�ects on µ since

Ŝ = {(p, Paul), (s, Sara), (c, DBS)}.

Observe that in this particular case µ is even equal to Ŝ. If we concentrate the search
of a Sparql query processor to the subgraph of DB4.4 that is induced by the maximal
dual simulation match, the processor considers a (much) smaller database instance where
still all the matches can be found. In general, the maximal dual simulation match will be
imprecise as soon as cycles are not boundedly matched (cf. Section 3.1.4).

In the best case, the maximal dual simulation match is empty. For instance, query

Q′ = (p, advise, s) AND (s, teach, c)

has an empty maximal dual simulation match w. r. t. DB4.4. Therefore, Corollary 4.49
ensures JQ′KSDB4.4

= ∅. There is no need for any further query processing. �

This section is devoted to studying an extension of J·KMDS
_ to Sparql queries with (at least)

optional patterns, for which correctness is guaranteed. Although we identi�ed a correct
fragment for J·KDS

_ , already a single optional operator renders dual simulation matches not
union-closed. As a consequence, maximal dual simulation matches are not unique anymore.
To overcome this issue, we introduce a weaker notion of compatibility for optional patterns
in Section 4.4.1. Surprisingly, the insights of Section 4.4.1 may be transferred to Sparql
queries with arbitrary nesting of AND and OPT operators. The thus obtained semantics
extends J·KMDS

_ to the full query language of SAO while keeping the overall semantics'

correctness intact. We prove correctness and tractability for J·KMDS
_ . Beyond the formal

results, we evaluate the e�ectiveness of J·KMDS
_ as a pruning mechanism for Sparql query

processing, as sketched in Example 4.50.

4.4.1 Weak Compatibility and Well-Designed Sparql

The following example shows that, in general, the maximal dual simulation match is not
well-de�ned for well-designed Sparql.

Example 4.51 Consider an optional pattern Q = Q1 OPT Q2, where Q1,Q2 ∈ SA with
vars(Q1) ∩ vars(Q2) 6= ∅, i. e., there is at least one variable v shared by Q1 and Q2. Note
that Q is a well-designed query that is in OPT normal form. We consider some graph
database DB , such that there are S1, S

′
1 ∈ JQ1KDS

DB and S2 ∈ JQ2KDS
DB with S1 � S2 but

there is no S′2 ∈ JQ2KDS
DB with S′1 � S′2. The following observations hold for the candidates

S1, S
′
1, S2:

(1) S1 ∪ S2 ∈ JQKDS
DB and S′1 ∈ JQKDS

DB , both by De�nition 4.29.

(2) S1 ∪ S′1 ∈ JQ1KDS
DB by Lemma 4.26.

(3) S′1 ��� S2 by assumption, which implies that (S1 ∪ S′1) ��� S2. This is because Q1 ∈ SA
implies that dom(S1) = dom(S′1) = vars(Q1) and, therefore, for some v ∈ dom(S1 ∪
S′1) ∩ dom(S2), vS2 ( v(S1 ∪ S′1). Thus, the uni�ed match (S1 ∪ S2) ∪ S′1 is not a
match for Q in DB . �
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This means, even in case of well-designed queries Q, JQKDS
DB is not union-closed and gener-

ally has no unique maximal dual simulation match. The reason is that the notion of com-
patibility is too strong to allow partial, such as S′1, and full matches, such as S1 ∪ S2, for
optional patterns to coexist in a dual simulation match. Although match S2 was incompat-
ible with S1∪S′1, we can still observe vS2 ⊆ v(S1∪S′1) for each v ∈ dom(S1∪S′1)∩dom(S2).
A compatibility notion based on this observation resolves the issue of union-closedness. We
call it weak compatibility.

De�nition 4.52 (Weak Compatibility)
Let S1, S2 ⊆ V × U . S1 is weakly compatible with S2, denoted by S1 W S2, i� for all
v ∈ dom(S1) ∩ dom(S2), vS2 ⊆ vS1. N

Weak compatibility is not symmetric and for every two dual simulation candidates Si (i =
1, 2), S1 � S2 implies S1WS2. Furthermore, every dual simulation candidate S is weakly
compatible with the empty dual simulation (∅). We resolve the missing union-closedness
of dual simulation matches for optional patterns by incorporating weak compatibility into
the matching process.

Example 4.53 (Example 4.51 continued) Requiring weak compatibility in the evalu-
ation of Q1 OPTQ2 does not a�ect the match S1 ∪ S2 because compatibility implies weak
compatibility. Furthermore, it does not change the state of S′1 as a dual simulation match
for Q1 (because of Q1 ∈ SA).

Weak compatibility does allow for the uni�ed match, i. e., (S1 ∪ S2) ∪ S′1. The reason
is that S1 ∪ S′1 is a match for Q1 (by Lemma 4.26) and S2 is a match for Q2. Although
(S1 ∪ S′1) and S2 are not compatible in the strong sense, (S1 ∪ S′1)W S2: Since Q1 is a
basic graph pattern, dom(S1) = dom(S′1) = vars(Q1). Let v ∈ dom(S1 ∪ S′1) ∩ dom(S2).
It holds that vS1 6= ∅ and vS′1 6= ∅. Now, (S1∪S′1)WS2 because S1 � S2, i. e., vS1 = vS2.
Thus, vS1 ⊆ v(S1 ∪ S′1) implies vS2 ⊆ v(S1 ∪ S′1). �

The integration of weak compatibility into the dual simulation semantics of well-designed
Sparql yields a new intermediate semantics to achieving the maximal dual simulation
semantics. We call this intermediate semantics dual simulation approximation for well-
designed Sparql, denoted by J·K∀DS

_ . In light of Proposition 4.39, it is de�ned for queries

Q ∈ SONF
wd , only.

De�nition 4.54 (Dual Simulation Approximation Semantics)
Let DB = (ODB ,Σ, EDB ) be a graph database. The dual simulation approximation of
Q ∈ SONF

wd w. r. t. DB is de�ned inductively on the structure of Q:

JGK∀DS
DB := JGKDS

DB

JQ1 OPTQ2K∀DS
DB :=

 S1 ∪ S2

S1 ∈ JQ1K∀DS
DB ∧

S2 ∈ JQ2K∀DS
DB ∪ {∅}∧

S1W S2


An S ∈ JQK∀DS

DB is called an approximate match for Q in DB . N

First note that for optional patterns Q = Q1 OPTQ2, JQ1K∀DS
DB ⊆ JQK∀DS

DB , which does not
hold for J·KS_ or J·KDS

_ . The reason is that every match S1 ∈ JQ1K∀DS
DB is weakly compatible

with the empty dual simulation (∅). Thus, S1 ∈ JQK∀DS
DB even if there is an S2 ∈ JQ2K∀DS

DB

with S1W S2.

Example 4.55 (Example 4.51 continued) Recall that S′1 ∈ JQ1KDS
DB did not have any

compatible S′2 ∈ JQ2KDS
DB . Thus, S

′
1 is a dual simulation match for Q in DB . Although it

is not guaranteed that there is no weakly compatible match S′2 ∈ JQ2KDS
DB , our formulation

of the approximation semantics ensures that S1 ∈ JQK∀DS
DB .
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Since S1 � S2, S1W S2 is implied and S1 ∪ S2 ∈ JQK∀DS
DB . S1 becomes an additional

approximate match for Q because S1W ∅. �

If J·K∀DS
_ is union-closed, then additional matches due to the just observed matching be-

havior dissolve in the maximal dual simulation match.

Proposition 4.56 Let DB be a graph database and Q ∈ SONF
wd . If S, S′ ∈ JQK∀DS

DB , then
S ∪ S′ ∈ JQK∀DS

DB .

Proof: By induction on the structure of Q.

Base: The case of Q being a basic graph pattern follows from Lemma 4.26 because
JQK∀DS

DB = JQKDS
DB .

Hypothesis: For S, S′ ∈ JQiK∀DS
DB (i = 1, 2), S ∪ S′ ∈ JQiK∀DS

DB .

Step: We need to show that matches for Q = Q1 OPT Q2 have the desired property. In
this case, S = S1 ∪ S2 and S′ = S′1 ∪ S′2, where S1, S

′
1 ∈ JQ1K∀DS

DB and S2, S
′
2 ∈

JQ2K∀DS
DB ∪ {∅}. By induction hypothesis, S1 ∪ S′1 ∈ JQ1K∀DS

DB . We distinguish two
cases for S2 and S′2:

(i) If S2 = S′2 = ∅, it holds that S1 ∪ S′1 ∈ JQK∀DS
DB because every dual simulation

candidate is weakly compatible with the empty dual simulation and S1∪S′1∪∅ =
S1 ∪ S′1.

(ii) If S2 6= ∅ or S′2 6= ∅, it holds that S2∪S′2 ∈ JQ2K∀DS
DB by induction hypothesis (if

both are nonempty) or by assumption (if only one of them is empty). We need
to show that S1∪S′1WS2∪S′2 because only then (S1∪S′1)∪(S2∪S′2) (i. e., S∪S′)
is an approximate match for Q. Let v ∈ dom(S1∪S′1)∩dom(S2∪S′2). Towards
a contradiction, suppose v(S2 ∪ S′2) * v(S1 ∪ S′1). Then there is an o ∈ ODB

with (v, o) ∈ S2 (or (v, o) ∈ S′2) and (v, o) /∈ S1∪S′1. As S1WS2, v /∈ dom(S1).
Hence, v ∈ dom(S′1) \ dom(S1). But then there is an optional subpattern
P1OPTP2 inQ1 with v ∈ vars(P2)\vars(P1). As v ∈ dom(S2∪S′2), v ∈ vars(Q2)
which contradicts the assumption that Q is a well-designed query. Thus, the
assumption that v(S2 ∪ S′2) * v(S1 ∪ S′1) is wrong and (S1 ∪ S′1)W (S2 ∪ S′2)
implies (S1 ∪ S′1) ∪ (S2 ∪ S′2) ∈ JQK∀DS

DB . q. e. d.

The union of all approximate dual simulation matches yields a unique greatest element
per query, the maximal dual simulation match.

Theorem 4.57 For every Q ∈ SONF
wd and DB , if JQK∀DS

DB 6= ∅, then there is a unique

greatest element Ŝ ∈ JQK∀DS
DB , i. e., Ŝ ⊆ S implies Ŝ = S for all S ∈ JQK∀DS

DB .

Proof: Suppose there are two distinct greatest elements S1, S2 ∈ JQK∀DS
DB . Then by

Proposition 4.56, S1∪S2 ∈ JQK∀DS
DB . Since S1 ⊆ S1∪S2 and S2 ⊆ S1∪S2, S1 = S1∪S2 = S2.

If S1 and S2 were distinct, they are not the greatest elements of JQK∀DS
DB . Thus, there is

no more than one greatest element. q. e. d.

Theorem 4.57 justi�es the maximal dual simulation semantics for well-designed Sparql.

De�nition 4.58 (Maximal Dual Simulation Semantics)
Let DB be a graph database and Q ∈ SONF

wd . Then the maximal dual simulation semantics

for Q in DB is de�ned by JQKMDS
DB = {

⋃
S∈JQK∀DS

DB
S}. N

Before we can make use of this semantics, we need to prove its correctness. We do this in
two steps. First, we show that J·K∀DS

_ really is an approximation of J·KDS
_ for well-designed

queries. Correctness of J·KMDS
_ is then a mere consequence of the correctness of J·KDS

_ .



92 CHAPTER 4. GRAPH QUERIES

Lemma 4.59 For all Q ∈ SONF
wd and graph databases DB , JQKDS

DB ⊆ JQK∀DS
DB .

Proof: By induction on the structure of Q.

Base: In case of basic graph patterns, Q = G and JGK∀DS
DB = JGKDS

DB by De�nition 4.54.
Thus, JQKDS

DB ⊆ JQK∀DS
DB .

Hypothesis: For Qi ∈ SONF
wd (i = 1, 2), JQiKDS

DB ⊆ JQiK∀DS
DB .

Step: We show for Q = Q1 OPT Q2, JQKDS
DB ⊆ JQK∀DS

DB . For S ∈ JQKDS
DB we distinguish

(i) S ∈ JQ1 AND Q2KDS
DB and (ii) S ∈ JQ1KDS

DB for which no S′ ∈ JQ2KDS
DB exists with

S � S′.

(i) Thus, there are Si ∈ JQiKDS
DB (i = 1, 2) with S1 � S2 and S = S1 ∪ S2. By

induction hypothesis, Si ∈ JQiK∀DS
DB (i = 1, 2). Since S1 � S2, S1 W S2 is

implied and S1 ∪ S2 ∈ JQK∀DS
DB .

(ii) By induction hypothesis, S ∈ JQ1KDS
DB implies S ∈ JQ1K∀DS

DB . As S W ∅ and
S = S ∪ ∅, S ∈ JQK∀DS

DB . q. e. d.

Theorem 4.60 (Swd, J·KMDS
_ ) is correct.

Proof: It is su�cient to show that (SONF
wd , J·KMDS

_ ) is correct. Let DB be a graph database,

Q ∈ SONF
wd , and µ ∈ JQKSDB . By Corollary 4.38, there is a dual simulation match S ∈ JQKDS

DB

with µ ⊆ S. Furthermore, S ∈ JQK∀DS
DB by Lemma 4.59. Since the maximal dual simulation

match Ŝ forQ in DB (i. e., JQKMDS
DB = {Ŝ}) includes all matches S′ ∈ JQK∀DS

DB , µ ⊆ Ŝ follows
from S ⊆ Ŝ. q. e. d.

We have seen that J·K∀DS
_ approximates J·KDS

_ in Lemma 4.59, and so does J·KMDS
_ (cf.

Theorem 4.60). As J·KDS
_ is correct, it approximates itself Sparql's original semantics.

Subsequently, we obtain a maximal dual simulation semantics for SAO-queries beyond the
well-designed case. Therefore, we transfer the approximation principle of this section to
more general queries.

4.4.2 Compatibility and Mandatory Variables

The maximal dual simulation semantics has only been shown correct for well-designed
Sparql queries. A slight change in the compatibility notion successfully established that
single matches from JQK∀DS

DB could be uni�ed to larger matches within JQK∀DS
DB .a For non-

well-designed Sparql queries Q, JQK∀DS
DB is not necessarily union-closed.

Example 4.61 Consider the query

Q = (p, teach, c)︸ ︷︷ ︸
M

OPT (p, advise, s)︸ ︷︷ ︸
O1

OPT (s, take, c)︸ ︷︷ ︸
O2

,

primarily asking for professors (p) and the courses they teach (c). If there is any student
(s), who is advised by the professor (cf. O1), then these students also belong to the match.
Additionally, the query checks whether a student has taken the course (cf. O2). If there
is no student advised by the professor, just those students who attended the course are
returned.

Reconsider the graph database depicted in Figure 4.4, denoted by DB4.4. Although
Q is not well-designed, JQK∀DS

DB4.4
may still be computed based on De�nition 4.54, and

contains the following approximate matches:
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� S = {(p, Paul), (s, Sara), (c, DBS)} and

� S′ = {(p, Paul), (s, Seth), (c, DBS)}.

However, S ∪ S′ /∈ JQK∀DS
DB . In order to realize this statement, consider the approximate

match S as a match for the subpattern M OPTO1 of Q. In order to get the pair (s, Seth)
added to S, we have to consider the approximate match S2 = {(s, Seth), (c, DBS)} ∈
JO2K∀DS

DB . But SWS2 does not hold since {s, c} = dom(S)∩ dom(S2) and sS2 = {Seth} *
{Sara} = sS. �

Hence, what was working so well for well-designed Sparql does not work at all for non-
well-designed queries. Let us take a closer look at what weak compatibility changed for
well-designed optional patterns w. r. t. Example 4.61. Variable s did not only establish the
counterexample but is also the reason for Q being non-well-designed. To see this, note that
s ∈ vars(O1) \ vars(M) but s ∈ vars(O2) as well. Hence, in a well-designed query in the
shape of Q in Example 4.61, vars(O1) ∩ vars(O2) 6= ∅ requires that the variables shared
between O1 and O2 must also occur in M , i. e., the mandatory subpattern of the whole
query. Generalizing this thought about the shared variables of mandatory and optional
subpatterns yields the following result for well-designed queries.

Proposition 4.62 Let DB be a graph database and Q1,Q2 ∈ SONF
wd such that Q1 OPT

Q2 ∈ SONF
wd . For every matches S1 ∈ JQ1K∀DS

DB and S2 ∈ JQ2K∀DS
DB , dom(S1) ∩ dom(S2) ⊆

vars(lmp(Q1)).

Proof: Let v ∈ dom(S1) ∩ dom(S2). Hence, v ∈ vars(Q1) ∩ vars(Q2). We proceed by
induction on the structure of Q1, showing that v ∈ vars(Q1) implies v ∈ vars(lmp(Q1)).

Base: In case of a basic graph pattern Q1, v ∈ vars(lmp(Q1)) follows from lmp(Q1) = Q1.

Hypothesis: Suppose for every P1 ∈ SONF
wd , v ∈ vars(P1) implies that v ∈ vars(lmp(P1)).

Step: Let P2 ∈ SONF
wd . For Q1 = P1 OPT P2, it remains to be shown that v ∈ vars(P1)

because lmp(Q1) = lmp(P1) and v ∈ vars(lmp(P1)) by induction hypothesis. There
are two cases to distinguish: First, v /∈ vars(P2) implies v ∈ vars(P1) since, by
assumption, v ∈ vars(Q1). If v ∈ vars(P2), v ∈ vars(P1) because v ∈ vars(Q2) and
Q is a well-designed query. q. e. d.

Hence, whenever we check for (weak) compatibility between two dual simulation candi-
dates, at least in the case of well-designed Sparql, we essentially compare the values of
the variables occurring in the left-most pattern of the query. This result does not only hold
for matches of the approximate semantics. By Corollary 4.38 and Lemma 4.59, every dual
simulation match, as well as every Sparql match, is included in the dual simulation ap-
proximation of a well-designed query. Because of their general impact on query evaluation,
we call the variables that occur in the left-most pattern of a query mandatory variables.

Example 4.63 In query Q from Example 4.61, we have that s ∈ vars(O2) ∩ vars(O1),
but s is not a mandatory variable of Q because s /∈ vars(M). p as well as c are mandatory
variables of Q. �

Let Q1 OPT Q2 be a well-designed Sparql query and let Si ∈ JQiK∀DS
DB (i = 1, 2) be dual

simulation approximations. Proposition 4.62 tells us that instead of checking for weak
compatibility between S1 and S2, as de�ned by De�nition 4.52, asking for vS2 ⊆ vS1

for all mandatory variables v of Q, that are those v ∈ vars(lmp(Q1)), yields an equivalent
decision. The reason is that for v ∈ vars(lmp(Q1)), either v ∈ dom(S2) or v /∈ dom(S2). In
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the former case, Proposition 4.62 guarantees that v ∈ dom(S1)∩ dom(S2). Since S1WS2,
vS2 ⊆ vS1. In the latter case, vS2 = ∅. Thus, vS2 ⊆ vS1.

Leaving the realm of well-designed queries means leaving OPT normal form queries.
Thus, Proposition 4.62 does not apply anymore. However, if we continue to use mandatory
variables of subqueries while checking for weak compatibility, we obtain a variant of the
approximate matching semantics that does entail the uniqueness of the maximal match.

Example 4.64 (Example 4.61 continued) We could not show that S ∪ S′ was an ap-
proximate match in DB4.4 because we were required to check for weak compatibility
between S = {(p, Paul), (s, Sara), (c, DBS)} and S2 = {(s, Seth), (c, DBS)}. Recall that
S ∈ JM OPTO1K∀DS

DB and S2 ∈ JO2K∀DS
DB . However, S and S2 are compatible in the following

sense: For variable c, cS2 = {DBS} = cS. c is a mandatory variable ofM OPTO1, but so is p.
Let us observe the relationship between pS2 and pS. It holds that pS2 = ∅ ⊆ {Paul} = pS.
Hence, S and S2 are compatible in the weak sense if we only consider the mandatory vari-
ables of the mandatory pattern. �

What we reach by this focus on mandatory variables is a what-if interpretation. Let
Q = M OPTO be any optional pattern. In particular, M can be any SAO-query, e. g., M =
P1 OPTP2. Comparing the matches of O with the matches of M only up to the mandatory
variables of M assumes the matches of M to be only matches to P1. The approximation
is equipped for the case that matches of P1 do not have compatible counterparts of P2. If
we cut o� the weak compatibility criterion in the sense of Example 4.64, we regain union-
closedness of the implied approximation semantics, and in consequence, well-de�nedness
of the maximal element. Once more, additional matches will dissolve in the maximal dual
simulation match.

Since SAO-queries do not enjoy6 the OPT normal form (cf. De�nition 4.42), we have
to reconsider conjunctions Q = Q1 AND Q2. As neither of the subpatterns, Q1 or Q2, is
superior over the other, mandatory variables of Q are the mandatory variables of Q1 and
those of Q2. As they are that central, we give a formal de�nition of mandatory variables.
Note that we are now back at SAO-queries, i. e., triple patterns, conjunctions, and optional
patterns.

De�nition 4.65 (Mandatory Variables)
Let Q ∈ SAO. The set of all mandatory variables of Q, denoted byM(Q), is inductively
de�ned by

M(t) := vars(t)
M(Q1 OPTQ2) := M(Q1)
M(Q1 ANDQ2) := M(Q1) ∪M(Q2)

N

Example 4.64 provided us with a way to incorporate mandatory variables in optional
pattern matching. We do not have a feasible counterpart for conjunctions Q1 AND Q2 so
far. The original compatibility notion is, once again, too strong to cope with partial and
complete matches to optional subpatterns of Q1 or Q2.

Example 4.66 As this example's graph database, take DB4.5 depicted in Figure 4.5. In
DB4.5, Urs teaches the course CCS and advises the student John. Ute took the same course
some years ago and now advises student Kristin. Steve has taken CCS and, afterwards,
also taught it to others. Furthermore, consider the following query Q:

Q = ((p1, teach, c)︸ ︷︷ ︸
M1

OPT (p1, advise, s)︸ ︷︷ ︸
O1

) AND ((p2, take, c)︸ ︷︷ ︸
M2

OPT (p2, advise, s)︸ ︷︷ ︸
O2

)

6;-)
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CCSUrs
teach

John

advise

Ute
take

Kristin

advise

Steve

teach take

Figure 4.5: caption

This query is non-well-designed because, e. g., s ∈ vars(O1) \ vars(M1) but s is also a
variable occurring in O2. We know how to calculate JMi OPT OiK∀DS

DB4.5
(i = 1, 2). If we

provisionally apply the original compatibility notion, we obtain the following two results
as matches of Q:

� S = {(p1, Urs), (c, CCS), (s, John), (p2, Steve)} and

� S′ = {(p1, Steve), (c, CCS), (s, Kristin), (p2, Ute)}.

However, S ∪ S′ cannot be a match of Q in DB4.5. We get S1 ∈ JM1 OPTO1K∀DS
DB4.5

with

S1 = {(p1, Urs), (p2, Steve), (c, CCS), (s, John)}

because Sm1 ∈ JM1K∀DS
DB4.5

and So1 ∈ JO1K∀DS
DB4.5

, with

Sm1 = {(p1, Urs), (p1, Steve), (c, CCS)} and So1 = {(s, John), (p1, Urs)},

are weakly compatible. Analogously, S2 ∈ JM2 OPTO2K∀DS
DB with

S2 = {(p2, Ute), (p2, Steve), (c, CCS), (s, Kristin)}.

S1 and S2 are the only two matches accounting fo S∪S′, but they are incompatible because
s ∈ dom(S1) ∩ dom(S2) and sS1 = {John} 6= {Kristin} = sS2.

Some incorporation of weak compatibility would not help here, either, because sS1 and
sS2 are incomparable. Recall that variable s is the reason for Q being non-well-designed.
Thus, s is not mandatory in Q or its clauses: M(Q) =M(M1 OPTO1)∪M(M2 OPTO2) =
M(M1) ∪M(M2) = {p1, p2, c}. Hence, if we focus on mandatory variables of the clauses,
we should be successful in combining S and S′, as desired. It holds that vS1 ⊆ vS2 for all
v ∈M(M2 OPTO2) and wS2 ⊆ wS1 for all w ∈M(M1 OPTO1). If we allow this weak form
of compatibility for conjunctions, S1 ∪S2 = S ∪S′ is regarded as a match of Q in DB4.5.�

Thus, we need to ingest weak compatibility and the focus on mandatory variables in
conjunctions. Due to the inherent symmetry of conjunctions, we have to ensure weak
compatibility symmetrically. The following lemma shows that the notion of mandatory
variables is justi�ed by Sparql's matching semantics.

Lemma 4.67 Let DB be a graph database, Q ∈ SAO, and µ ∈ JQKSDB . Then M(Q) ⊆
dom(µ).

Proof: By induction on the structure of Q.

Base: Let Q = G ∈ SA. Then M(G) = vars(G) (by De�nition 4.65) and dom(µ) =
vars(G) (by (4.1) on Page 70). Thus, dom(µ) =M(G).

Hypothesis: For Qi ∈ SAO (i = 1, 2) and µi ∈ JQiKSDB ,M(Qi) ⊆ dom(µi).
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Step: We need to show thatM(Q) ⊆ dom(µ) if (i)Q = Q1ANDQ2 and (ii)Q = Q1OPTQ2.

(i) For µ ∈ JQKSDB , there are µ1 ∈ JQ1KSDB and µ2 ∈ JQ2KSDB with µ1 � µ2 and
µ = µ1 ∪ µ2. Thus, dom(µ) = dom(µ1) ∪ dom(µ2). By induction hypothesis,
M(Qi) ⊆ dom(µi) (i = 1, 2). Thus, M(Q1) ∪M(Q2) = M(Q) ⊆ dom(µ) =
dom(µ1) ∪ dom(µ2).

(ii) For µ ∈ JQKSDB , either µ ∈ JQ1KSDB and there is no µ′ ∈ JQ2KSDB with µ �
µ′, or µ ∈ JQ1 AND Q2KSDB . In the latter case, following the arguments of
(i), we get dom(µ) = dom(µ1) ∪ dom(µ2) and M(Q1) ⊆ dom(µ1). Thus,
M(Q) = M(Q1) ⊆ dom(µ1) ∪ dom(µ2) = dom(µ). Furthermore, we have
M(Q) =M(Q1) ⊆ dom(µ1) = dom(µ) in the former case. q. e. d.

In the following de�nitions, it �rst seems as if we were overloading the notions of dual
simulation approximation semantics, approximate matches, and maximal dual simulation
semantics. We will show that all the notions properly extend their counterparts de�ned
in De�nitions 4.54 and 4.58.

De�nition 4.68 (Dual Simulation Approximation Semantics)
Let Q ∈ SAO and DB a graph database. The ∀DS semantics of Q w. r. t. DB is inductively
de�ned by

JtK∀DS
DB := JtKDS

DB

JQ1 ANDQ2K∀DS
DB :=

 S1 ∪ S2

S1 ∈ JQ1K∀DS
DB ∧ S2 ∈ JQ2K∀DS

DB

∀v ∈M(Q1) : vS2 ⊆ vS1∧
∀v ∈M(Q2) : vS1 ⊆ vS2


JQ1 OPTQ2K∀DS

DB :=

{
S1 ∪ S2

S1 ∈ JQ1K∀DS
DB ∧ S2 ∈ JQ2K∀DS

DB ∪ {∅}∧
∀v ∈M(Q1) : vS2 ⊆ vS1

}
N

Although this de�nition is quite di�erent from De�nition 4.54, it is just a conservative
extension w. r. t. SONF

wd .

Proposition 4.69 Let Q ∈ SONF
wd and DB be a graph database. Then the set of all

approximate matches JQK∀DS
DB w. r. t. De�nition 4.54 is equal to the set of all approximate

matches JQK∀DS
DB according to De�nition 4.68.

Proof: We refer to the versions of the dual simulation approximation semantics in Def-
initions 4.54 and 4.68 by J·K4.54_ and J·K4.68_ . Henceforth, we prove JQK4.54DB = JQK4.68DB by
induction on the structure of Q.

Base: If Q is a basic graph pattern, i. e., Q = G ∈ SA or Q = t1 AND t2 AND . . . AND tk
({t1, t2, . . . , tk} = G). As JQK4.54DB = JQKDS

DB , every match S ∈ JQK4.54DB has a sequence
of dual simulation candidates S1, S2, . . . , Sk, such that (i) Si ∈ JQiKDS

DB , (ii) Si �⋃
0<j<i Sj (0 < i ≤ k), and (iii) S = S1∪S2∪ . . .∪Sk. Consider any i ≤ k (i > 0). It

holds thatM(ti) = vars(ti) andM(t1 AND t2 AND . . .AND ti−1) =
⋃

0<j<i vars(tj). For
v ∈ M(ti) ∩M(t1 AND t2 AND . . . AND ti−1), v(

⋃
0<j<i Sj) = vSi because of (ii) (i. e.,

v(
⋃

0<j<i Si) ⊆ vSi and v(
⋃

0<j<i Si) ⊇ vSi). If v ∈M(ti) \M(t1 AND t2 AND . . . AND
ti−1), v(

⋃
0<j<i Sj) = ∅ ⊆ vSi. Conversely, vSi = ∅ ⊆ v(

⋃
0<j<i Sj) if v ∈ M(t1 AND

t2AND . . .ANDti−1)\M(ti). Thus, Si∪
⋃

0<j<i Sj ∈ Jt1ANDt2AND . . .ANDti−1ANDtiK4.68DB .
By choosing i = k, we obtain the desired result.

Hypothesis: Suppose for Q1,Q2 ∈ SONF
wd , JQiK4.54DB = JQiK4.68DB (i = 1, 2).

Step: It remains to be shown that JQK4.54DB = JQK4.68DB whenever Q = Q1 OPT Q2. We
consider the two cases separately.



4.4. MAXIMAL DUAL SIMULATIONS FOR SPARQL 97

⊆: Let S ∈ JQK4.54DB , i. e., there are S1 ∈ JQ1K4.54DB and S2 ∈ JQ2K4.54DB ∪ {∅}, such
that S1 W S2 and S = S1 ∪ S2. By induction hypothesis (and by ∅ = ∅), we
get S1 ∈ JQ1K4.68DB and S2 ∈ JQ2K4.68DB ∪ {∅}. We need to show that vS2 ⊆ vS1

for all v ∈ M(Q1). By S1W S2, v′S2 ⊆ v′S1 for all v′ ∈ dom(S1) ∩ dom(S2).
As dom(S1) ∩ dom(S2) ⊆ lmp(Q1) by Proposition 4.62 and lmp(Q1) =M(Q1)
by De�nition 4.65 (and the fact that Q1 ∈ SONF

wd ), vS2 ⊆ vS1 for all mandatory
variables v ∈ M(Q1) that are jointly de�ned by S1 and S2. For a variable
v ∈M(Q1)\ (dom(S1)∩dom(S2)), we have that vS1 6= ∅ (a direct consequence
of Lemma 4.46), so that vS2 = ∅. Hence, vS2 ⊆ vS1 for all v ∈ M(Q1) and
S1 ∪ S2 = S ∈ JQK4.68DB .

⊇: Let S ∈ JQK4.68DB , i. e., there are S1 ∈ JQ1K4.68DB and S2 ∈ JQ2K4.68DB ∪ {∅}, such
that vS2 ⊆ vS1 for all v ∈ M(Q1) and S = S1 ∪ S2. We need to show that
S1 W S2, i. e., prove that vS2 ⊆ vS1 for all v ∈ dom(S1) ∩ dom(S2). By
Proposition 4.62, dom(S1) ∩ dom(S2) ⊆ lmp(Q1) = M(Q1). Thus, the claim
holds and S1 ∪ S2 = S ∈ JQK4.54DB . q. e. d.

Thus, the purpose of the di�erent style of semantics is found in handling arbitrarily nested
AND and OPT operators in a correct and union-closed way. We �rst show that J·K∀DS

_ is
correct.

Theorem 4.70 Let DB be a graph database and Q ∈ SAO.

JQKSDB ⊆ JQK∀DS
DB

Proof: Let µ ∈ JQKSDB . By induction on Q, we prove that µ ∈ JQK∀DS
DB .

Base: If Q is a triple pattern, then µ ∈ JQK∀DS
DB because, by Lemma 4.24, JQKSDB ⊆ JQKDS

DB

and, by de�nition, JQK∀DS
DB = JQKDS

DB .

Hypothesis: For queries Q1,Q2 ∈ SAO and matches µ ∈ JQiKSDB (i = 1, 2), µ ∈ JQiK∀DS
DB .

Step: If Q = Q1 ANDQ2, there are (compatible) µi ∈ JQiKSDB (i = 1, 2) with µ = µ1 ∪ µ2.
By induction hypothesis, µi ∈ JQiK∀DS

DB (i = 1, 2). As µ1(v) = µ2(v) for all v ∈
dom(µ1) ∩ dom(µ2), vµ1 ⊆ vµ2 and vµ2 ⊆ vµ1. Let v ∈ M(Q1). By Lemma 4.67,
M(Q1) ⊆ dom(µ1). Thus, if v ∈ dom(µ2), vµ2 ⊆ vµ1 follows from compatibility of
µ1 and µ2. If v /∈ dom(µ2), vµ2 = ∅ ⊆ vµ1. Hence, µ1 ∪ µ2 ∈ JQK∀DS

DB .

If Q = Q1 OPT Q2, either (i) µ ∈ JQ1 AND Q2KSDB or (ii) µ ∈ JQ1KSDB . In case (i),
the same argumentation as for Q = Q1 AND Q2 applies. In case (ii), µ ∈ JQ1K∀DS

DB

by induction hypothesis. µ = µ ∪ ∅ and for all v ∈ M(Q1), v∅ = ∅ ⊆ vµ. Thus,
µ ∈ JQK∀DS

DB . q. e. d.

In order to obtain a correct maximal dual simulation semantics, we have to further show
that the approximation semantics is union-closed.

Lemma 4.71 The set JQK∀DS
DB is union-closed for all Q ∈ SAO and graph databases DB .

Proof: Let S, S′ ∈ JQK∀DS
DB and let DB = (ODB ,Σ, EDB ). By induction on the structure

of Q, we show that S ∪ S′ ∈ JQK∀DS
DB .

Base: Since JtK∀DS
DB = JtKDS

DB , S ∪ S′ ∈ JtK∀DS
DB follows from S ∪ S′ ∈ JtKDS

DB by Lemma 4.26.

Hypothesis: For queries Q1,Q2 ∈ SAO, if S, S′ ∈ JQiK∀DS
DB (i = 1, 2), then S ∪ S′ ∈

JQiK∀DS
DB .
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Step: In case Q = Q1 ANDQ2, there are Si, S′i ∈ JQiK∀DS
DB (i = 1, 2), such that S = S1 ∪S2

and S′ = S′1 ∪ S′2. By induction hypothesis, Si ∪ S′i ∈ JQiK∀DS
DB . We need to show

that v(Sj ∪S′j) ⊆ v(Si ∪S′i) (i, j = 1, 2, j 6= i) for all v ∈M(Qi). Let o ∈ v(Sj ∪S′j)
for some v ∈ M(Qi). Then o ∈ vSj or o ∈ vS′j . In the former case, o ∈ vSi since
vSj ⊆ vSi. In the latter case, o ∈ vS′i since vS′j ⊆ vS′i. Thus, o ∈ v(Si ∪ S′i). Thus,
S1 ∪ S2 ∈ JQK∀DS

DB .

In case Q = Q1 OPTQ2, there are S1, S
′
1 ∈ JQ1K∀DS

DB and S2, S
′
2 ∈ JQ2K∀DS

DB ∪ {∅} with
S = S1∪S2 and S′ = S′1∪S′2. As before, by induction hypothesis, S1∪S′1 ∈ JQ1K∀DS

DB

and S2 ∪ S′2 ∈ JQ2K∀DS
DB ∪ {∅}. For v ∈ M(Q1), v(S2 ∪ S′2) ⊆ v(S1 ∪ S′1) because

vS2 ⊆ vS1 and vS′2 ⊆ vS′1 (as in the case of Q1 ANDQ2). Thus, S ∪ S′ ∈ JQK∀DS
DB .

This argument carries over to any two S, S′ ∈ JQK∀DS
DB , making JQK∀DS

DB a union-closed
set. q. e. d.

Thus, the greatest element of JQK∀DS
DB is unique for all queries Q in SAO.

Theorem 4.72 Let Q ∈ SAO and DB a graph database. If JQK∀DS
DB 6= ∅, then a greatest

element (w. r. t. ⊆) Ŝ ∈ JQK∀DS
DB exists. Ŝ is unique and we call it the maximal dual

simulation between Q and DB .

Proof: We need to provide an Ŝ ∈ JQK∀DS
DB such that for all S ∈ JQK∀DS

DB with Ŝ ⊆ S,
S = Ŝ. Pick Ŝ =

⋃
S∈JQK∀DS

DB
S. By Lemma 4.71, Ŝ ∈ JQK∀DS

DB . Suppose there is a greatest

element Ŝ′ ∈ JQK∀DS
DB . Then by Lemma 4.71, Ŝ ∪ Ŝ′ ∈ JQK∀DS

DB and Ŝ ⊆ Ŝ ∪ Ŝ′. As Ŝ is a
greatest element of JQK∀DS

DB , it holds that Ŝ = Ŝ ∪ Ŝ′. Thus, a greatest element Ŝ′ distinct
from Ŝ cannot exist. q. e. d.

This theorem justi�es the following extension of the maximal dual simulation semantics
for well-designed Sparql (cf. De�nition 4.58) to arbitrary SAO-queries.

De�nition 4.73 (Maximal Dual Simulation Semantics)
Let DB be a graph database and Q ∈ SAO. The maximal dual simulation semantics of Q
w. r. t. DB , denoted JQKMDS

DB , is the singleton set containing the maximal dual simulation
between Q and DB . N

By the results we obtained so far for the dual simulation approximation semantics, we
deduce that we �nally obtained a correct dual simulation denotation for arbitrary queries
Q ∈ SAO.

Corollary 4.74 (SAO, J·KMDS
_ ) is correct.

Proof: Let µ ∈ JQKSDB . By Theorem 4.70, µ ∈ JQK∀DS
DB . The maximal dual simulation Ŝ

of JQK∀DS
DB includes all elements of JQK∀DS

DB . Thus, µ ⊆ Ŝ. q. e. d.

This result establishes half of our goals we formulated for query languages employing a
semantic function whose foundation is established by dual simulations. The remaining
goal is tractability of (a) the evaluation problem and (b) the non-emptiness problem.
Regarding (b), the answer is unsatisfyingly positive: For every query Q ∈ SAO and every
graph database DB , JQKMDS

DB 6= ∅. If JQK∀DS
DB = ∅,

⋃
S∈JQK∀DS

DB
S = ∅ implies JQKMDS

DB = {∅}.
Hence, we may simply answer the non-emptiness problem by yes for every query Q and
database DB (in O(1)). The more interesting question is whether the maximal dual
simulation match is empty. Therefore, this match must be computed and then checked for
emptiness. The maximal dual simulation match can be computed in Ptime.
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Theorem 4.75 Computing the maximal dual simulation match for a query Q ∈ SAO
w. r. t. graph database DB is in Ptime.

The proof is postponed to Section 5.3.2.
Also for (a), the evaluation problem of (SAO, J·KMDS

_ ), Theorem 4.75 delivers tractability.

Let S be a candidate match. Checking, whether S ∈ JQKMDS
DB is equivalent to the question

whether S = Ŝ where {Ŝ} = JQKMDS
DB . Therefore, we compute Ŝ and compare it to S

(for sure, in polynomial time). Thus, (SAO, J·KMDS
_ ) has all the desired properties, from

correctness up to tractability. In the following section, we identify and quantify the error
due to the approximation of a query's result set. Therefore, we discuss and evaluate the
e�ectiveness of J·KMDS

_ as a pruning technique for J·KS_.

4.4.3 E�ectiveness

Before diving into experiments about the quality of the maximal dual simulation semantics,
let us �rst elaborate on the error we introduce when using it. The �rst error is due to
cycles in the query (cf. Section 3.1.4). However, there are more because of the compatibility
notion employed in dual simulation approximations.

Example 4.76 First, reconsider from Example 4.61 the query

Q1 = (p, teach, c)︸ ︷︷ ︸
M

OPT (p, advise, s)︸ ︷︷ ︸
O1

OPT (s, take, c)︸ ︷︷ ︸
O2

.

If we switch O1 with O2 in Q1, we obtain a di�erent query Q2, i. e.,

Q2 = (p, teach, c)︸ ︷︷ ︸
M

OPT (s, take, c)︸ ︷︷ ︸
O2

OPT (p, advise, s)︸ ︷︷ ︸
O1

.

Q1 and Q2 are not equivalent up to Sparql's semantics, e. g., JQ1KSDB4.4
6= JQ2KSDB4.4

(DB4.4 is depicted in Figure 4.4). µ ∈ JQ2KSDB4.4
with µ = {(p, Paul), (c, DBS), (s, Seth)},

but µ /∈ JQ1KSDB4.4
. Aiming for the most e�ective pruning, Q1 and Q2 generally need di�er-

ent ones. However, Q1 and Q2 are equivalent up to the maximal dual simulation semantics,
i. e., JQ1KMDS

DB = JQ2KMDS
DB for all graph databases DB . In order to show equivalence, we

prove the approximation denotations equivalent.

Proposition 4.77 For all graph databases DB , JQ1K∀DS
DB = JQ2K∀DS

DB .

Proof: We show the two directions, separately.

⊆: Let S ∈ JQ1K∀DS
DB , i. e., there are S0, S1, S2 ⊆ V × U with S0 ∈ JMK∀DS

DB , S1 ∈
JO1K∀DS

DB ∪ {∅}, S2 ∈ JO2K∀DS
DB ∪ {∅}, and S = S0 ∪ S1 ∪ S2. Furthermore,M(Q1) =

M(M OPT O1) = M(M) = {p, c}, pS1 ⊆ pS0 (i. e., S0 ∪ S1 ∈ JM OPT O1K∀DS
DB ),

and pS2 ⊆ p(S0 ∪ S1). Since M(Q2) = M(M OPT O2) = M(M), we need to show
that (i) pS2 ⊆ pS0 (i. e., that S0 ∪ S2 ∈ JM OPT O2K∀DS

DB ) and (ii) pS1 ⊆ p(S0 ∪ S2).
From (i) and (ii) it follows that S ∈ JQ2K∀DS

DB . (i) itself follows from the fact that
pS2 ⊆ p(S0 ∪ S1). (ii) follows from pS1 ⊆ pS0. Thus, S ∈ JQ2K∀DS

DB .

⊇: This direction follows the exact same steps as before, only backwards. q. e. d.

Hence, although Q1 and Q2 are di�erent up to the Sparql semantics, they have the same
maximal dual simulation match. A quite similar argument can be found for the query pair
Q3,Q4:

Q3 = ((p, teach, c)︸ ︷︷ ︸
M1

OPT (p, advise, s)︸ ︷︷ ︸
O

) AND (s, take, c)︸ ︷︷ ︸
M2

Q4 = ((p, teach, c)︸ ︷︷ ︸
M1

AND (s, take, c)︸ ︷︷ ︸
M2

) OPT (p, advise, s)︸ ︷︷ ︸
O
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Transforming Q3 into Q4 is exactly what we did for well-designed queries to obtain the
OPT normal form. This transformation does only work for well-designed queries. Hence,
the queries are not equivalent up to Sparql's semantics. Once more, our maximal dual
simulation semantics does not distinguish them.

Proposition 4.78 For all graph databases DB , JQ3K∀DS
DB = JQ4K∀DS

DB .

Proof: We show the two directions, separately.

⊆: Let S ∈ JQ3K∀DS
DB , i. e., there are S0, S1, S2 ⊆ V × U with S1 ∈ JM1K∀DS

DB , S0 ∈
JOK∀DS

DB ∪ {∅}, S2 ∈ JM2K∀DS
DB , and S = S0 ∪ S1 ∪ S2. Furthermore, M(Q1) =

M(M1OPTO)∪M(M2) =M(M1)∪M(M2) =M(M1ANDM2) =M(Q2) = {p, c, s},
so that

(i) pS0 ⊆ pS1 and cS0 ⊆ cS1, and

(ii) p(S1 ∪ S0) = pS2 and c(S1 ∪ S0) = cS2.

From (i) and (ii), we get that pS1 = pS2 and cS1 = pS2, i. e., S1 ∪ S2 ∈ JM1 AND

M2K∀DS
DB . Moreover, pS0 ⊆ p(S1∪S2) and cS0 ⊆ c(S1∪S2) by (i). Hence, S ∈ JQ4K∀DS

DB .

⊇: This direction follows the same steps as before, only backward. q. e. d.

Hence, some queries should be distinguished, but they are not by maximal dual simulations.
The approximations introduced in De�nition 4.68 are the reason for this. �

Thus, experiments on real-world and synthetic datasets must be performed, so that the
actual error, introduced by maximal dual simulations, may be observed. Phrased di�er-
ently, how close are we to a hypothetical, optimal pruning technique? How do the instance
size and the number of optional patterns in�uence the prunings' quality?

Our tool sparqlSim7 implements the maximal dual simulation semantics for Sparql.
Besides the computation of the maximal dual simulation match, the tool returns two
numbers relevant for assessing the e�ectiveness of the procedure:

(1) The number of edges in the database that are covered by the maximal dual simulation
match. An edge (o, a, o′) of a give database DB is covered by the maximal dual simu-
lation match Ŝ of a query Q in DB i� Q contains a triple pattern (x, a, y), such that
o ∈ xŜ and o′ ∈ yŜ. This is the number of edges (or triples) a (graph) query processor
still has to consider after the maximal dual simulation match has been computed.

(2) The number of edges in DB with the labels occurring in Q. A label a ∈ P occurs in Q
i� Q has a triple pattern (x, a, y). This is the number of edges a graph query processor
considers if no other (external) pruning mechanism applies.

We consider (2) as a naïve baseline. sparqlSim computed these numbers for all our
queries (cf. Appendix A.3) on their respective datasets (cf. Appendix A.2). Since this is
no performance evaluation, it is irrelevant on which machine these numbers were obtained.
The results are identical on is68 and is69 (cf. Appendix A.1). We compiled the numbers
in Appendix A.4. In the respective tables, (2) is represented by �Base�-columns while the
values for (1) obtained the title �sparqlSim�. For LUBM and DBpedia, we additionally
collected the number of matches (�Result No.�), as produced by Virtuoso or RDFox (cf.
Appendix A.1), and

(3) the number of edges (or triples, resp.) required for producing the result set.

7available at GitHub: https://github.com/ifis-tu-bs/sparqlSim
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We titled the columns representing (3) by �Gold� since they refer to the theoretically best
pruning approach. The four di�erent LDBC datasets of di�erent sizes allow us to re�ect
on the e�ectiveness of sparqlSim depending on di�erent sizes of schematically similar
instances. By the experiments on Wikidata, we observe the in�uence of di�erent numbers
of optional operators in the queries w. r. t. the baseline, additionally to the observations
made on DBpedia and LUBM.

Because the gold standard is available for DBpedia and LUBM queries, we �rst discuss
the results on these datasets (cf. Table A.4). The e�ectiveness of the maximal dual simula-
tions (sparqlSim) on LUBM ranges from above 80% up to almost 100% (cf. L4, L5, L6).
The baseline has an average e�ectiveness of 52%. On DBpedia our average e�ectiveness
if is 99.999%, but the baseline also performs quite well with 95% e�ectiveness on average.
The baseline's e�ectiveness values vary drastically between LUBM and DBpedia because
only 18 predicates share more than 1 billion triples for LUBM, while less than 1 Billion
triples are distributed over 65,000 predicates. In many cases, we still prune 10% more
triples than the baseline approach on DBpedia, paired with a decent runtime to produce
the pruning (cf. Section 5.3.4). Summarizing, the maximal dual simulation semantics has
the potential to get a close-gold-standard pruning.

For the remaining datasets, we have only the baseline values and the sparqlSim values
to compare. We declare our maximal dual simulation pruning having a bad quality if we
are close to the baseline pruning. On Wikidata (cf. Table A.6), we �rst observe that the
baseline/sparqlSim ratio is worse than we had on DBpedia: maximal dual simulations
reached 12% of the baseline pruning on DBpedia and only 50% on Wikidata. One reason
is that our DBpedia queries are prevalently basic graph patterns while only 12 out of 61
Wikidata queries have no optional operator. Therefore, the �rst type of error (cycles)
paired with the second type of error (optional nesting) may apply, so that the overall
pruning size of maximal dual simulations is generally closer to the baseline pruning. In
contrast, only six out of twelve queries with more than two optional patterns show almost
baseline qualities. Our extreme case is query W9 with 15 triple patterns and ten optional
operators. Maximal dual simulations account for only six triple patterns in the pruning
while the baseline approach di�ers by six orders of magnitude. Thus, the results regarding
the in�uences of optional patterns do not allow for a �nal conclusion.

The pruning behavior on the di�erently sized LDBC datasets is rather interesting. The
larger the dataset, the closer the maximal dual simulation pruning gets to the baseline.
Note, the LDBC queries have no optional operators (cf. Appendix A.3). It seems that the
number of cycles increases with the dataset size.

4.5 Summary

In this chapter, we have analyzed the impact of Sparql's operator structure upon dual sim-
ulations. We re�ected on two issues, namely correctness and tractability. While Sparql's
evaluation and non-emptiness problems are generally intractable, we aimed for tractable
alternatives based on dual simulations. The results of this chapter are summarized for all
non-intermediary query languages in Table 4.1.

Correctness was a notion we had to pin down to a variant of completeness employing
subsumption of result sets. With regard to Sparql queries, any new semantics produc-
ing a result set for them must contain matches re�ecting on Sparql's original semantics.
Of course, the �rst three lines of Table 4.1 contain query languages that are correct by
de�nition because the Sparql semantics is correct w. r. t. itself. The �rst pure dual
simulation-based semantics we obtained for SAO was, unfortunately, shown to be incor-
rect. As a remedy, the employed semantic function was shown correct for the Sparql
fragment of well-designed queries (Swd) and tractability is also entailed. Both problems,
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Table 4.1: Result Summary of Chapter 4

Language Correctness Evaluation NonEmpty

(S, J·KS_)
yes Pspace-complete at least np-complete

De�nition 4.9 Proposition 4.18 Proposition 4.20

(SA, J·KS_)
yes Ptime np-complete

De�nition 4.9 Proposition 4.19 Proposition 4.20

(Swd, J·KS_)
yes conp-complete at least np-complete

De�nition 4.9 Proposition 4.18 Proposition 4.20

(SAO, J·KDS
_ )

no
� �

Proposition 4.34

(Swd, J·KDS
_ )

yes Ptime Ptime

Corollary 4.38 Theorem 4.48 Theorem 4.44

(Swd, J·KMDS
_ )

yes Ptime (O(1))
Theorem 4.60 Theorem 4.75 De�nition 4.58

(SAO, J·KMDS
_ )

yes Ptime (O(1))
Corollary 4.74 Theorem 4.75 De�nition 4.73

the evaluation problem and the non-emptiness problem of (Swd, J·KDS
_ ), are solvable in

Ptime. The structural feature we built upon was the so-called OPT normal form, which
exists for all queries and is virtually e�ortless to obtain.

Guided by the principles of Swd that allow for correct dual simulation denotations of
queries, we studied the property of union-closedness of dual simulations for Sparql queries.
A correct Sparql semantics that is union-closed entails a pruning technique for Sparql
query processing because the maximal match, guaranteed to exist by union-closedness,
would contain all the matches of Sparql's original interpretation. Regrettably, the dual
simulation semantics (J·KDS

_ ) is not union-closed, even for well-designed Sparql. Therefore,

we introduced an intermediary approximation semantics of J·KDS
_ that is union-closed. The

key to union-closedness of the approximation is a new notion of compatibility for optional
patterns. The weak compatibility principle could also be applied to non-well-designed
queries, from which we obtain a correct and tractable semantics for SAO, that uses dual
simulations.

Concerning our goals, we succeeded in �nding dual simulation-based semantic interpre-
tations of Sparql queries ful�lling both our requirements. Although the naïve incorpora-
tion of dual simulations in Sparql introduces an inevitable error, its approximation pre-
serves all Sparql matches and can be used as a Sparql query pre-processing mechanism.
In our experiments, we saw that the maximal dual simulations semantics' e�ectiveness
often removes more than 90% of the irrelevant triples and often improves upon the naïve
baseline (sum of all predicate table entries) by 10%.

In recent years, the class of weakly well-designed patterns, which is a generalization of
well-designed Sparql, has been studied [71, 72, 73]. Unfortunately, our negative results
are not a�ected by this normal form because our counterexample showing incorrectness of
the dual simulation semantics (cf. 4.34) is weakly well-designed.



CHAPTER 5
Graph Processing

The previous chapters were involved with applying di�erent simulation notions as a method
for various graph database management tasks, from object classi�cation according to a
graph schema, over graph pattern matching, up to graph query evaluation. Thereby, we
always pointed to the tractable nature of simulations without actually explaining how to
compute them. In this chapter, we introduce the basic algorithmic principles behind solving
the special dual simulation problem. Therefore, two graphs, Q = (VQ,Σ, EQ) and G =
(V,Σ, E), as well as a candidate relation S0 ⊆ VQ×V , called the dual simulation candidate,
are given as input. As in Chapter 3, Q is called the pattern graph while G is referred to as
the data graph. An algorithm solving the problem returns the greatest dual simulation S
included in S0. Recall that dual simulations are union-closed (Theorem 2.29 (1)), making
the output of dual simulation procedures unique.

Problem (DualSim)

Input: Labeled graphs Q = (VQ,Σ, EQ) and G = (V,Σ, E); dual simulation candidate
S0 ⊆ VQ × V .
Output: The greatest dual simulation S ⊆ S0 between Q and G.

We use the notation DualSim(Q,G, S0) to denote the output of the DualSim problem for
instance Q,G, S0. In the (dual) simulation literature, e. g., [69, 22], we �nd solutions to a
slightly di�erent problem, which we call the maximal (dual) simulation problem, for which
the candidate S0 is not part of the input. Instead, a dedicated initialization step takes
place, setting S0 to VQ×V , which is the greatest possible (dual) simulation expecting every
pattern node to be dual simulated by every data node. The major source of complexity
remains with solving DualSim based on S0 = VQ × V .

Problem (DualSimMax)

Input: Labeled graphs Q = (VQ,Σ, EQ) and G = (V,Σ, E).

Output: The maximal dual simulation Ŝ between Q and G.

Continuing the notation above, we have DualSimMax(Q,G) = DualSim(Q,G, VQ×V ).
Recall that maximal dual simulations are needed for obtaining object classi�cations, in-
duced by a graph schema S onto a graph database DB (cf. De�nition 2.27 on Page 23).
The desired object classi�cation is, thus, computed by `DB

S = DualSimMax(DB , S). Ob-
ject classi�cation requires DB to be an instance of S. If DB is not an instance of S, the
result of DualSimMax(DB , S) is the empty dual simulation R∅ = ∅. This way, a solu-
tion to DualSimMax provides us with a solution to the non-emptiness problem of dual
simulations.

103
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Problem (DualSimNonEmpty)

Input: Labeled graphs Q = (VQ,Σ, EQ) and G = (V,Σ, E).
Output: True if Q vDsim G. False, otherwise.

Corollary 2.32 justi�es our decision procedure leveraging DualSimMax. Even the eval-
uation problem of dual simulations bene�ts from procedures for DualSim. Thus, any
solution to the special dual simulation problem is a versatile tool.

Problem (DualSimEvaluation)

Input: Labeled graphs Q = (VQ,Σ, EQ) and G = (V,Σ, E); a simulation candidate
S ⊆ VQ × V .
Output: True i� S is a dual simulation between Q and G.

As for the query evaluation problem, we ask whether a candidate (here a potential dual
simulation S ⊆ VQ × V ) actually is a dual simulation between the given graphs. Solving
this problem may again utilize any DualSim procedure because DualSimEval(Q,G, S)
evaluates to True i� DualSim(Q,G, S) = S, i. e., the greatest dual simulation between
Q and G, included in S, is S itself.

Every one of the problems above is reducible to DualSim. Therefore, we concentrate
on the solutions to that problem.

Contribution. Algorithms for solving DualSim are based on well-studied solutions to
the simulation problem [86]. Therefore, we extend1 and analyze existing solutions to the
simulation problem in terms of runtime complexity. We include HHK [69], the most promi-
nent similarity algorithm, based on its reception in the literature [69, 117, 29, 26, 50, 51, 85,
48, 53, 64, 56, 135]. Somewhat surprisingly, virtually all existing algorithms scale equally
well with the size of the data graph G, including HHK (cf. Section 5.1.2). However, they
are in�exible in how they compute (dual) simulations, making them neither extensible for,
nor applicable to our Sparql semantics based on dual simulations (Sections 4.2 to 4.4).
We propose and evaluate a new solution that we base on a system of inequalities rep-
resentation of the dual simulation problem (cf. Section 5.2). The inequalities' view on
DualSim allows us to naturally cope with Sparql's operator structure, implementing the
maximal dual simulation semantics of Sparql (cf. Section 4.4). There, we also evaluate
the e�ciency of the maximal dual simulation semantics as a Sparql pruning approach.
The system of inequalities has been published in the proceedings of the 35th IEEE Inter-
national Conference on Data Engineering (ICDE 2019) [93]. Compared to our previous
work [93, 92], we provide more in-depth material on existing simulation algorithms, allow-
ing for a �ne-grained comparison to our solution. Furthermore, we give a formal translation
function mapping Sparql queries into systems of inequalities. We also sketch how unions
and built-in �lter conditions can be included.

Outline. Section 5.1 adapts and analyzes existing algorithms from the literature for
solving the simulation problem. In Section 5.2, we present our algorithm, that regards
dual simulations as solutions of a system of inequalities. We integrate Sparql's operator
structure into the system of inequalities in Section 5.3. Thereby, we obtain an e�ective
and e�cient pruning procedure for Sparql queries through the maximal dual simulation
semantics from Section 4.4. Finally, we summarize this chapter's �ndings in Section 5.4.

5.1 Simulation Algorithms

To the best of our knowledge, published algorithms for solving (dual) simulation prob-
lems [22, 69, 128, 60, 117, 132, 86] work all on the principle of coinduction, which is

1Simulation algorithms usually presume unlabeled directed graphs.
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Algorithm 1: Naïve Coinductive Procedure
Input : Q = (VQ,Σ, EQ), G = (V,Σ, E), and S0 ⊆ VQ × V .
Output: Greatest simulation S ⊆ S0 between Q and G.

1 S ← S0;
2 while there are nodes v, w ∈ VQ and u ∈ vS, such that v EaQ w and uEa ∩ wS = ∅

do
3 S ← S \ {(v, u)};
4 end

implied by the coinductive nature of the de�nition itself (cf. De�nition 2.16). Starting
with the largest possible relation (often S0 = VQ× V ) between the two node sets, or some
representation thereof, the algorithms incrementally disqualify pairs of nodes violating the
requirements of (dual) simulations. The procedures terminate as soon as they can no
longer disqualify any pair of nodes. The algorithms presented in Sections 5.1.1 and 5.1.2
follow this basic principle. Space-e�cient solutions, which we sketch in Section 5.1.3, only
indirectly use this approach in favor of reduced memory consumption. In this section, we
discuss solutions to the special simulation problem, instead of its dual simulation counter-
part.

Problem (Sim)

Input: Labeled graphs Q = (VQ,Σ, EQ) and G = (V,Σ, E); a simulation candidate
S0 ⊆ VQ × V .
Output: The greatest simulation S ⊆ S0 between Q and G.

Focusing on the simulation problem makes the presentation of the algorithms more com-
pact, especially in case of HHK covered in Section 5.1.2. The respective dual simulation
procedures would copy the body of the algorithms to account for backward edges. The
overall complexity is not a�ected.

5.1.1 Naïve Coinduction

The easiest way to achieve a solution is to implement the sketched procedure above directly.
Henzinger et al. describe it as schematic similarity [69]. Algorithm 1 is a variant of the
solution given by Henzinger et al. [69], extended to cope with edge labels and the distinction
between pattern Q and data graph G. Furthermore, we do not intend to establish similarity
(i. e., vsim ∩ v−1

sim) between Q and G, but only �nd a simulation between Q and G that
is included in S0. Algorithm 1 iteratively checks whether the current relation S, initially
S = S0 (Line 1), ful�lls the simulation properties of De�nition 2.16. If not, Line 3 updates
S, removing the false simulation candidate u for v. In the worst case, S0 = VQ × V (as in
DualSimMax) so that Line 3 is passed |VQ| · |V | times.

Example 5.1 Let us assume Q to be an a-loop, as given in Figure 5.1(a), and G a
�nite a-sequence, as in Figure 5.1(b), where k is some �xed positive integer. Initially,

v

a

(a)

1 2a 3a
· · ·

a ka

(b)

Figure 5.1: (a) An a-Loop Pattern and (b) A Finite a-Sequence
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v

w

b

a

(a)

1

0

b

2a 3a
· · ·

a ka

(b)

Figure 5.2: Figure 5.1 Prepended by b-labeled Edges

S0 = {(v, 1), (v, 2), . . . , (v, k)} and S = S0 is set in Line 1. G does not simulate Q. In
every iteration, Algorithm 1 checks for edge (v, a, v) ∈ EQ, whether there is some node
u ∈ V with (v, u) ∈ S and uEa ∩ vS = ∅. In the �rst iteration, we remove pair (v, k) from
S. Next, (v, k − 1) is removed, and so on until S = ∅. The �nal simulation is the empty
simulation, verifying that G does not simulate Q. The number of iterations is k and, in
fact, this is the minimal number of iterations every simulation algorithm must take for this
particular example. �

In every iteration, we check each edge (v, a, w) ∈ EQ and u ∈ V with (v, u) ∈ S (i. e., at
most |EQ| · |V | many) whether there is an edge (u, a, u′) ∈ E with (w, u′) ∈ S. For one u,
there are at most |V | many u′ with (u, a, u′) ∈ E. Thus, there are at most |EQ| · |V | · |V |
many checks of (w, u′) ∈ S to perform in a single iteration. In a naïve implementation,
checking uEa ∩wS = ∅ amounts to looking through all simulation candidates of w, which
contributes time O(|V |) [69]. Algorithm 1 may thus be performed in O(|VQ| · |EQ| · |V |4).
In a less naïve implementation, we may get rid of a factor of |V | by assuming sets uEa and
wS to be sorted. Thus, while checking for every u′ ∈ uEa, whether u′ ∈ wS, the set wS
is traversed at most once. This brings the algorithmic complexity of Algorithm 1 down to
O(|VQ| · |EQ| · |V |3).

As mentioned at the beginning of Chapter 4, Vardi calls the complexity we estimated
above combined complexity [134] as both, pattern (or query) Q and data graph G, are part
of the input. Regarding data complexity, graph pattern Q contributes only constant factors
to the overall worst-case complexity. Algorithm 1 is, thus, in O(|V |3) when regarding data
complexity. Henzinger et al. add two algorithmic tweaks to the naïve approach, of which
one of them directly tackles data complexity, promising an O(|V |2) procedure. However,
as we will argue, this optimization is infeasible in our setting. Thus, the data complexity
of HHK remains in cubic-time.

5.1.2 The HHK Algorithm

The name of the algorithm, HHK, stems from the initials of the authors' last names,
proposed as E�cientSimilarity by Henzinger, Henzinger, and Kopke [69]. The original
algorithm contained a bug, pointed out and �xed by Ranzato [117]. Here, we refer to the
�xed version of HHK.

As the name E�cientSimilarity suggests, HHK computes similarity classes. We adapt
their algorithm to solve the simulation problem between labeled graphs Q and G with
simulation candidate S0. Any binary relation, R ⊆ A × B, has a characteristic function
χR : A → 2B with χR(a) := {b ∈ B | (a, b) ∈ R}. For (dual) simulations S ⊆ VQ × V
between graph pattern Q and data graph G, χS associates with each node v ∈ VQ a set
of (dual) simulating nodes χS(v) ⊆ V . Updating χS(v) (v ∈ VQ) means updating S, e. g.,
χS(v) \ {w} translates to S \ {(v, w)}.
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One problem of Algorithm 1, tackled by HHK, is that it always iterates over all edges
of Q, no matter whether it is necessary or not.

Example 5.2 Consider the extension of Example 5.1 by a single b-labeled edge, as de-
picted in Figure 5.2. Q is the pattern depicted in Figure 5.2(a) and G the graph in
Figure 5.2(b). Let us further assume S0 = {(w, 0), (v, 1), (v, 2), . . . , (v, k)}, already an op-
timization upon VQ×V . As before, the �rst iteration removes (v, k), the second (v, k−1),
and so forth. After k − 1 iterations, S contains (w, 0) and (v, 1). We already know that
(v, 1) is removed, but only then also (w, 0) can be removed from S, leaving us with the
empty simulation after at most k + 1 iterations.

To complete a single iteration, Algorithm 1 checks for edges (v, a, v) ∈ EQ as well as
(w, b, v) ∈ EQ. The former edge leads to the necessary removals. However, consideration of
the latter edge does not in�uence the computation at all, unless (v, 1) is removed. Hence,
in up to k iterations, edge (w, b, v) ∈ EQ is traversed unnecessarily. �

To overcome such unnecessary traversals, Henzinger et al. introduce so-called remove sets.
In our setting, there is a remove set for every label a ∈ Σ. Removea(v) stores all nodes
u′ ∈ V that cannot reach any simulating node of v, i. e., ∀u′ ∈ Removea(v), there is no
v′ ∈ χS(v) with u′ Ea v′. Thus, an edge w EaQ v is only considered if Removea(v) 6= ∅, i. e.,
if there is a potential to update the simulation candidates of w.

Example 5.3 Reconsider Q, G, and S0 as in Example 5.2. The remove sets are initialized
to Removea(v) = {0, k}, Removeb(v) = {1, 2, . . . , k}, and Removea(w) = Removeb(w) = ∅.
The set Removea(v) collects all the nodes of G that cannot reach χS0(v). In this particular
case, it is the set of all nodes that do not have an outgoing a-labeled edge.

In the �rst iteration of HHK, (w, b, v) ∈ EQ is considered because Removeb(v) 6= ∅. By
processing (w, b, v), we reduce χS(w) by all the nodes in Removeb(v). In this case, χS(w) is
not updated, but after processing Removeb(v), there is no need for remembering the nodes
we just removed. Thus, we set Removeb(v) to ∅. Furthermore, we process (v, a, v) ∈ EQ
which removes the pair (v, k) from S. HHK now recomputes Removea(v) to {k − 1}. We
explain the details of this update below.

It is important to notice that in the next iteration, Removea(v) = {k − 1} and
Removeb(v) = ∅. Thus, edge (w, b, v) ∈ EQ is not considered and will not be reconsidered
until (v, 1) has been removed from S. �

Correctly maintaining the remove sets is the key for improved combined complexity of
HHK, depicted in Algorithm 2. The integration of remove sets reduces combined com-
plexity of Algorithm 1 to O(|VQ| · |V |3) [69]. Additionally to initializing the working
relation S in Line 1, the remove sets are initialized in Lines 2 to 4 as explained in Exam-
ple 5.3. The algorithm proceeds by picking nodes v ∈ VQ with non-empty remove sets, i. e.,
Removea(v) 6= ∅ (a ∈ Σ), and considers every edge u EaQ v for an update of χS(u). Recall
that Removea(v) contains all nodes from the database that cannot reach a node by an
a-labeled edge, simulating v. These nodes must be removed from χS(u) (Line 10). Upon
removal of a node w ∈ Removea(v) from χS(u), w is not a candidate for simulating u any-
more. This information must be propagated to all predecessors of u. Therefore, for every
node w′ that reaches w by some edge but no other node in χS(u), the respective remove
set of u must include w′ (cf. Line 13) as it represents a potential to update predecessor
nodes of u.

Example 5.4 (Example 5.3 continued) Recall that, initially, Removea(v) = {0, k}
and Removeb(v) = {1, 2, . . . , k}. Let us �rst process Removeb(v). As there is only a
single edge to consider, every element of Removeb(v) is tested whether it is an element
of χS(w) in Line 9. The tests will all be negative, Removeb(v) = ∅ afterwards, and we
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Algorithm 2: The HHK Algorithm
Input : Q = (VQ,Σ, EQ), G = (V,Σ, E), and S0 ⊆ VQ × V .
Output: Greatest simulation S ⊆ S0 between Q and G.

1 S ← S0;
2 forall v ∈ VQ, a ∈ Σ do
3 Removea(v)← V \

⋃
w∈χS(v)E

aw;

4 end
5 while there are v ∈ VQ and a ∈ Σ with Removea(v) 6= ∅ do
6 Remove← Removea(v);
7 Removea(v)← ∅;
8 forall w ∈ Remove and u ∈ EaQv do
9 if w ∈ χS(u) then
10 χS(u)← χS(u) \ {w};
11 forall b ∈ Σ and w′ ∈ Ebw do
12 if w′Eb ∩ χS(u) = ∅ then
13 Removeb(u)← Removeb(u) ∪ {w′};
14 end

15 end

16 end

17 end

18 end

proceed with Removea(v) and edge (v, a, v) ∈ EQ. Since 0 /∈ χS(v) but k ∈ χS(v), k is
removed from χS(v) (in Line 10). Now every predecessor of k in G, here only k − 1, is
checked whether there is some a-labeled edge from k − 1 to some node in χS(v) (which
has just been updated). If not, k − 1 is added to Removea(v). Hence, after this iteration,
Removea(v) = {k − 1} and all other remove sets are empty. Next, k − 1 will be removed
from χS(v) and Removea(v) is updated to {k − 2}.

This procedure repeats until node 1 is removed from χS(v), i. e., eventually χS(v) = ∅.
Node 1 has a b-predecessor, namely node 0, and it cannot reach any node in χS(v) after
1 has been removed. Thus, Removeb(v) must be updated to {0}. Next, this remove set
together with the edge (w, b, v) ∈ EQ is considered and χS(w) is updated to ∅.

The resulting relation is S = ∅, verifying that G does not simulate Q. �

Note that Lines 6 and 7 pick a remove set and mark it as processed. The reason for storing
the current remove set in a local variable is that in a self-loop, u = v and the nodes that
were just removed are not to be mixed up with the nodes that must be removed after the
iteration. Example 5.4 exempli�es this algorithmic behavior for node v and its remove set
Removea(v).

The �rst key to the complexity of HHK is the observation, that if we pick Removea(v) in
iteration i, then in any later iteration, Removea(v) is disjoint from its version in i [69]. Thus,
for every node v ∈ VQ we have to consider at most |V | many disjoint sets of Removea(v),
that are |Σ(Q)| · |V | many in total2. Furthermore, each combination w ∈ Remove and
u EaQ v occurs at most once and the test w ∈ χS(u) evaluates to true at most once
because w is removed from χS(u) (Line 10) after Line 9 has been passed. There are at
most |V | many a-predecessors of w (Line 11). Thus, the inner for-loop amounts to at
most |Σ(Q)| · |V | iterations. In each of these iterations, the test in Line 12 is performed in
O(|V |), once again assuming that w′Ea and χS(u) are stored in sorted order.

2Σ(Q) = {a | (v, a, w) ∈ EQ}
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Thus, the overall combined complexity of HHK (Algorithm 2) is O(|VQ| · |Σ(Q)|2 · |V |3).
Compared to the result of Henzinger et al. [69], we get the factor of |Σ(Q)|2 as our setting
incorporates edge labels. Translated back to their setting, i. e., no edge labels and Q = G,
we get a �nal complexity of O(|V |4) or O(|E| · |V |2). Henzinger et al., however, conclude
their algorithm to be in O(|E| · |V |) because they make use of an additional data structure
to perform Line 12 in O(1).

Consider a single label a ∈ Σ. Then counta : V × VQ → N is a two-dimensional array
of positive integers maintained to preserve (5.1).

counta(w
′, u) = |w′Ea ∩ χS(u)| (5.1)

Upon removing w from χS(u), counta(w
′, u) is decremented by 1 for every a-predecessor

w′ of w. The test in Line 12 is then reduced to checking whether counta(w
′, u) = 0.

On one hand, counta is bene�cial as it makes the factor of Line 12 constant. However,
employing these matrices is quite memory-consuming as their entries are positive integer
values. For every node v ∈ VQ and every label a ∈ Σ(Q), counta(v) stores O(|V |) many
integer values to enable for the constant-time check in Line 12. Observing the current
trend of the node set sizes in knowledge graphs, like Wikidata [87], lets the count structures
appear infeasible. Furthermore, creating this auxiliary structure is quite time-consuming.
They regain their bene�ts if query and data graph have similar extents, e. g., as for the
original setting of similarity checking: comparing two (enormous) state spaces with each
other. Hence, we conclude that HHK delivers a solution to the simulation problem in
O(|V |2) with count-arrays and O(|V |3) without count data complexity.

5.1.3 On Space-E�cient Algorithms

HHK is the best known algorithm for computing simulations regarding time complexity. It
has been designed for computing the maximal simulation relation within a single graph.
Therefore, S0 = V ×V is constructed before Algorithm 2 is performed. Hence, HHK needs
O(|V |2) space, which is considered ine�cient in environments where the main memory
constitutes the principal bottleneck [132]. The algorithms, presented in [60, 117], fall in the
class of space-e�cient simulation algorithms. Their primary goal is to compute simulation
equivalence classes, an important minimization technique for checking similarity between
massive graphs. The simulation preorder is only a byproduct of their procedures. In our
setting, since simulations are kept reasonably small by the size of the pattern graph Q, we
will not cover these algorithms in-depth, but only note that their basic principle is founded
on partition re�nement [105].

Given a graph G = (V,Σ, E) and let us assume the maximal simulation between G
and G is R̂ ⊆ V × V . A similarity block is a subset of nodes, B ⊆ V , such that for
every two nodes vi, vj ∈ B, (vi, vj) ∈ R̂ and (vj , vi) ∈ R̂, i. e., vj simulates vi and vice
versa3. Thus, computing the coarsest partition of nodes, B = {B1, B2, . . . , Bk}, where
every Bi (i = 1, 2, . . . , k) is a similarity block, is one of the algorithmic tasks followed by
[60, 132, 117]. Computing simulations between blocks, instead of individual nodes, i. e.,
R ⊆ B×B, reduces the overall memory-consumption of these algorithms. The computation
time is not reduced but split up into the computation of the coarsest similarity partition
and the simulation between the blocks. These algorithms require O(|B|2) space, which, in
the worst case, is the same as using |V |2 memory. The worst case here occurs if every data
node describes a similarity block by its own, i. e., if B = {{v} | v ∈ V }.

3R̂ is only used to de�ne the notion of similarity block, but is not given as an input to the algorithms.
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5.2 A System of Inequalities Approach

In this section, we develop a new solution to DualSim, based on a reformulation of the
problem as a system of inequalities. Although the worst-case complexity of our algorithm
remains unaltered, as compared to the others (cf. Section 5.2.4), we gain a degree of
freedom allowing for a systematic reduction of iterations to eventually reach the �nal dual
simulation. As we show in Section 5.2.6, the new procedure exhibits low computation
times, a solid basis for query (pre-)processing. We engineer our solution in three steps.
First, we de�ne a set of inequalities, whose solutions are equivalent to the coinductive
de�nition of dual simulation in De�nition 2.23. We further show how to derive a fast
implementation based on bit-vectors and bit-matrices in Section 5.2.3. Last, we provide
a discussion on optimizations (Section 5.2.5) realized in our software prototype, called
sparqlSim4. Before, we mention some assumptions regarding the data structures we use.

5.2.1 Preliminary Considerations

While the algorithms, presented in Section 5.1, are more or less independently formulated
from the data structures in use, we base our solution on speci�c representations of the input
parameters, especially that of the data graph G and that of the dual simulation (candidate)
S. A concrete representation of the pattern graph is developed in Sections 5.2.2 and 5.2.3.
This representation is, by no means, algorithm-guided but instead guided by the extents
we get as input data.

First, recall from Section 5.1.2 that (dual) simulations S ⊆ VQ × V are representable
by functions χS : VQ → 2V . From an implementational point of view, χS(v) is a |V |-
dimensional row bit-vector. To obtain a vector representation, formally, we assume a
�xed total order <V on the elements of V to induce an index over N. Node v ∈ V
has index k ∈ N if there are k − 1 distinct nodes v1, v2, . . . , vk−1 ∈ V , such that v =
min<V (V \ {v1, v2, . . . , vk−1}). To access the node of G with index k, we use the notation
V (k). If |V | = n, then its node set may, thus, be represented by {V (1), V (2), . . . , V (n)}
or {v1, v2, . . . , vn}. If VQ is indexed by the same method as described for V , χS may be
represented as a |VQ| × |V | bit-matrix.

In the course of our computations, we will check whether for some pair of nodes v ∈ VQ
and w ∈ V , w ∈ χS(v). As V 's elements are indexed, there is an index j for w, i. e., V (j) =
w. Hence, checking w ∈ χS(v) boils down to testing whether the jth bit is set in the bit-
vector representation of χS(v). Although explicit storage of the vectors promises constant-
time access to its elements, the size of V determines the actual size of the bit-vectors.
Employing gap encodings5 drastically decreases memory consumption, while leaving the
overall access time logarithmic in |V |, which is a feasible trade-o�. Jumping from one entry
to the next may be performed in constant time because, due to gap encodings, the next
entry's index is accessible by a constant overhead from the current position in memory.
Once the �rst entry in χS(v) has been found, iterating through all the elements of the set
is in O(|χS(v)|).

A labeled graph G = (V,Σ, E) is completely characterized by its set of nodes V and a
set of adjacency (forward) maps {FaG : V → 2V | a ∈ Σ} with FaG(v) = vEa. For a single
node, forward maps associate a set of successors w. r. t. the edges with the associated
label. Using backward maps Ba

G (a ∈ Σ), with Ba
G(v) = Eav, instead of forward maps

yields an equivalent characterization. Backward maps consider sets of all predecessors.
Let A be an adjacency map of G, no matter whether it is a forward or a backward map.
For v ∈ V , A(v) denotes the row of v in A. Using this intuition jointly with an index on
V , we represent A as a |V | × |V | bit-matrix. Recall that the elements of V are indexed

4available at GitHub https://github.com/ifis-tu-bs/sparqlSim
5The library we use is called BitMagic http://bitmagic.io/index.html.
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Figure 5.3: A Graph Structure

over {1, 2, . . . , |V |}. An entry A(i, j) = 1 means that nodes vi = V (i) and vj = V (j)
(0 < i, j ≤ |V |) are adjacent by the edge expressed in A. If viEavj , then FaG(i, j) = 1 and
Ba
G(j, i) = 1. Consequently, forward and backward matrices of the same label are related

by transposition, i. e., FaG = Ba
G
T and Ba

G = FaG
T, being the reason why either the forward

maps or the backward maps characterize G's edge relation.

Example 5.5 Consider the example graph in Figure 5.3, which is a slightly altered version
of the one we used throughout Section 4.4. For label take, this graph provides the two

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 1
0 0 0 0 0 0


(a) Ftake

5.3



0 0 0 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0


(b) Btake

5.3

Figure 5.4: Two Bit-Matrix Representations of Adjacency Maps

adjacency matrices in Figure 5.4, where we assume the set of nodes to be lexicographically
ordered by their names, i. e., v1 = DBS, v2 = Page, v3 = Paul, v4 = Sara, v5 = Seth, and
v6 = TCS. �

In our implementation, we use an extended CRS (Compressed Row Storage) format [129,
27]. In the CRS format, we store matrices row-wise, and for each row, only non-zero values
are considered. As graph matrices are usually sparse, it is bene�cial to separate non-edges
from edges, also called implicit and explicit values [39]. Our CRS version relies on the
assumption that not only a graph's adjacency matrix is sparse, but also the majority of rows
in a matrix A contains no bits at all. We are dealing with labeled graphs G = (V,Σ, E),
entailing that the overall edge relation E is split up into |Σ| adjacency maps.

Let G = (V,Σ, E) with |V | = n (n > 0) and A some adjacency matrix of G with m
non-zero entries, i. e., |{(i, j) | A(i, j) = 1}| = m, and l rows with at least one non-zero
entry, i. e., |{i | ∃j : A(i, j) = 1}| = l. We represent A by three integer vectors, r, i, and
c. The row vector r is a list of row indices with at least one non-zero value, i. e., if row 42
contains some bit, then there is some k (1 ≤ k ≤ l) with r(k) = 42. As there are n nodes
and l non-zero rows in A, r ∈ {1, 2, . . . , n}l. The interval vector i is an (l+ 1)-dimensional
integer vector storing pointers to the positions in the column index vector c, which itself
is an m-dimensional integer vector. If A(42, 73) = 1, then there is a k (as before) with
r(k) = 42 and between positions b1 = i(k) and b2 = i(k + 1) in vector c, value 73 will be
found. Formally,

A(i, j) = 1⇔ ∃k ≤ l : r(k) = i ∧ ∃v : i(k) ≤ v < i(k + 1) ∧ c(v) = j. (5.2)
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Note that variables k and v are positive integers in (5.2). Furthermore, the last position
in i points to the size of c, i. e., i(l + 1) = m. Compared to the original CRS format, we
added the row vector r to account for compression of rows in A with no bits set.

In our implementation, we guarantee the vector r to be in sorted order, i. e., if r(k) = i,
then for all k′ < k, r(k′) < i. Vector c is interval-sorted, i. e., the values between i(k) and
i(k + 1) in c are sorted. Thereby, we guarantee access to A(i, j) in log2(l), assuming that
l� i(k + 1)− i(k) for 0 < k ≤ l.

Example 5.6 (Example 5.5 continued) Let us work out the (r, i, c) representation of
Ftake

5.3 . There are two non-zero rows, namely 4 and 5. Thus,

r = (4, 5).

Row 4 contains one bit in column 1 and row 5 two bits, one in column 1 and one in 6, i. e.,

c = (1, 1, 6)

with interval vector
i = (1, 2, 4).

Note that the di�erence between consecutive components in i describes the number of bits
in the respective row. �

Our algorithm for computing dual simulations will often perform a bit-row vector-matrix
multiplication,

v · A :=
∨

i:v(i)=1

A(i), (5.3)

where v is an n-dimensional bit-vector and A an n×n bit-matrix. In other words, v ·A = w
where w(j) = 1 i� there is an i such that v(i) = 1 and A(i, j) = 1. In our setting, v
represents a set of nodes Vv = {vi ∈ V | v(i) = 1} ⊆ V of a graph G = (V,Σ, E) and A an
adjacency matrix of G. Then v · A describes the subset of nodes reachable from Vv by an
edge described by A.

Example 5.7 Reconsider our example graph in Figure 5.3 and its adjacency matrices as
exempli�ed in Figure 5.4. If we want to know which of the nodes are reachable by an edge
traversal using take-forward edges and teach-backward edges, we begin with the bit-vector
representation of V (cf. Example 5.5), i. e., v = (1, 1, 1, 1, 1, 1). Then v · Ftake

5.3 describes
the set of nodes reachable by a take-labeled edge, i. e., v · Ftake

5.3 = w = (1, 0, 0, 0, 0, 1). By
using Bteach

5.3 , we get to the desired result, w ·Bteach
5.3 = (0, 1, 1, 0, 0, 0). �

Combined with the (r, i, c) representation of matrices, computing v · A is in O(n · log2(l) ·
max{i(k + 1)− i(k) | 0 ≤ k < l}). The last factor represents the maximal number of bits
set in a row of A. The estimation is already aware of the sparse matrices setting and may
even be reduced to O(n) because in graph databases, as we use them in our experiments,
l� n and i(k + 1)− i(k)� l (cf. Appendix A.2).

5.2.2 Characterizing Dual Simulations

Let Q = (VQ,Σ, EQ) and G = (V,Σ, E) be labeled graphs, and S ⊆ VQ × V a dual
simulation between Q and G. Consider an edge (v, a, w) ∈ EQ and a node v′ ∈ χS(v).
Since S is a dual simulation, we derive for χS from De�nition 2.23 that

∃w′ ∈ V : (v′, a, w′) ∈ E and w′ ∈ χS(w). (5.4)

The problem with (5.4) is that there may be many w′ qualifying for (v′, a, w′) ∈ E but
w′ /∈ χS(w). We pursue having a single operation which allows us to quickly verify the
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existence of w′ with the required property. Therefore, we exploit the forward adjacency
map FaG (a ∈ Σ) and prove the existence of a w′ in (5.4) by intersecting the row of v′ in
FaG and the nodes simulating w, i. e.,

FaG2
(v′) ∩ χS(w) 6= ∅. (5.5)

(5.5) is equivalent to (5.4). Unfortunately, (5.5) still only checks for one pair of nodes
(v, v′) ∈ S. Combining this equation for all v′ ∈ χS(v) yields∧

v′∈χS(v) FaG2
(v′) ∩ χS(w) 6= ∅. (5.6)

The same arguments apply to the second requirement of De�nition 2.23, using the back-
ward map in ∧

w′∈χS(w) Ba
G2

(w′) ∩ χS(v) 6= ∅. (5.7)

The combination of both, (5.6) and (5.7), yields two inequalities equivalent to De�ni-
tion 2.23 and is the key aspect contributing to the e�cient implementation we are going
to obtain.

Lemma 5.8 Let Q = (VQ,Σ, EQ) and G = (V,Σ, E) be labeled graphs with (v, a, w) ∈ EQ.
For a binary relation S ⊆ VQ × V , satisfying (5.6) and (5.7),

(i) χS(w) ⊆
⋃
v′∈χS(v) F

a
G2

(v′) and

(ii) χS(v) ⊆
⋃
w′∈χS(w) B

a
G2

(w′)
(5.8)

are satis�ed.

Proof: Towards a contradiction of (i), assume χS(w) 6⊆
⋃
v′∈χS(v) F

a
G(v′). Hence, there

is a w′ ∈ χS(w) such that for each v′ ∈ χS(v), w′ /∈ FaG(v′), i. e., (v′, a, w′) /∈ E. As
a consequence, χS(v) and Ba

G(w′) are disjoint for each v′ ∈ χS(v), contradicting our
assumption that (5.7) holds. Therefore, such a w′ cannot exist, allowing to conclude that
χS(w) ⊆

⋃
v′∈χS(v) F

a
G(v′). Inequality (ii) is completely analogous using (5.6). q. e. d.

Phrased di�erently, dual simulations S satisfy (5.8) for every edge (v, a, w) of the pattern
graph Q. Conversely, every solution to (5.8) (for all pattern edges) is a dual simulation.

Theorem 5.9 Let Q = (VQ,Σ, EQ) and G = (V,Σ, E) be labeled graphs. S ⊆ VQ × V is
a dual simulation between Q and G i� for every edge (v, a, w) ∈ EQ, S satis�es (5.8).

Proof: Showing the implication, i. e., a dual simulation S between Q and G satis�es (5.8),
is analogous to the proof of Lemma 5.8. Assume that one of the inequalities, say (ii), is
not satis�ed for edge (v, a, w) ∈ EQ. Then there is a v′ ∈ χS(v) for which no w′ ∈ χS(w)
exists with v′ ∈ Ba

G(w′). Hence, (v, v′) ∈ S with no w′ ∈ V , such that (v′, a, w′) ∈ E and
(w,w′) ∈ S. But this contradicts the assumption that S is a dual simulation between Q
and G. Case (i), analogously.

Conversely, assume we have S ⊆ VQ×V such that (5.8) holds for every (v, a, w) ∈ EQ.
We prove that S is a dual simulation. Let (v, v′) ∈ S, i. e., v′ ∈ χS(v), and (v, a, w) ∈ EQ.
We need to show that there is a w′ ∈ V such that (v′, a, w′) ∈ E and (w,w′) ∈ S. From
(5.8)(ii) we get that for some w′ ∈ χS(w) we have that v′ ∈ Ba

G(w′). This w′ completes
the proof because v′ ∈ Ba

G(w′) implies (v′, a, w′) ∈ E and from w′ ∈ χS(w) we get that
(w,w′) ∈ S. Case (u, a, v) ∈ EQ is completely analogous. q. e. d.

Hence, (5.8) for all edges of the pattern graph characterizes dual simulations. We can
use it as a basic �xpoint solution to DualSim as follows. Let Si (i ≥ 0) be the current
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simulation candidate. For each edge of Q, check whether (5.8) is satis�ed by Si. If (5.8)(i)
fails for edge e = (v, a, w), then update Si to Si+1 by computing

χSi+1(u) :=

{
χSi(u) ∩

⋃
v′∈χSi

(v) F
a
G(v′) if u = w

χSi(u) otherwise.

If (5.8)(ii) fails for e, compute Si+1 by

χSi+1(u) :=

{
χSi(u) ∩

⋃
w′∈χSi

(w) B
a
G(w′) if u = v

χSi(u) otherwise.

A single edge traversal removes all non-simulating nodes of w (v, resp.) relative to Si.
This procedure is repeated until we reach an Sk satisfying (5.8) for every edge of Q. As
we will later show, Sk is the greatest dual simulation included in S0.

Even though we maintain the Ptime nature of the other algorithms in Section 5.1,
we still miss a way to quickly compute the union

⋃
v′∈χS(v) F

a
G(v′) and access χS(v)

(
⋃
w′∈χS(w) B

a
G(w′) and χS(w), resp.). Therefore, the forthcoming implementation works

with bit-representations of χS(v) and FaG (Ba
G, resp.), paving the way for optimization in

time and space consumption. In that setting, we derive a system of inequalities (SOI) from
Theorem 5.9, for which dual simulations are the solutions.

5.2.3 Implementing Inequalities

We compute DualSim by a system of inequalities according to (5.8) from the last section.
The challenge is to �nd a way to compute the unions quickly⋃

v′∈χS(v) F
a
G2

(v′) and
⋃
w′∈χS(w) B

a
G2

(w′). (5.9)

Combinations of vectors and matrices, especially when encoding information only bit-wise,
promise fast computations (cf. Section 5.2.1). Hence, we use the adjacency maps of G
as adjacency bit-matrices. Computing the bit-representation of the set of all successors
(predecessors, resp.) of a set of nodes, which is also represented by a bit-vector, amounts
to computing the vector-matrix product. Thus, we implement (5.9) by

χS(v) · FaG2
and χS(w) ·Ba

G2
. (5.10)

The results of the multiplications are used to check whether (5.8) (cf. Lemma 5.8) holds.

Example 5.10 Let us reconsider our example graph of Figure 5.3 and its adjacency ma-
trices. Assume, we want to �nd all the nodes v and w connected by an advise-labeled edge,
i. e., we check for dual simulations between the pattern Q = ({v, w},Σ, {(v, advise, w)})
and the graph in Figure 5.3. According to Theorem 5.9, we need to check (5.8).

Consider �rst S = VQ × V , i. e., χS(v) = χS(w) = (1, 1, 1, 1, 1, 1). Then

χS(v) · Fadvise
5.3 = (0, 0, 0, 1, 1, 0) = w. (5.11)

Of course, χS(w) = (1, 1, 1, 1, 1, 1) � w which tells us S is not a dual simulation. If we
begin with S′ such that χS′(v) = (1, 1, 1, 1, 1, 1) and χS′(w) = w, we obtain the desired
property that χS′(v) · Fadvise

5.3 = w, i. e., χS′(w) ⊆
⋃
v′∈χS′ (v) F

advise
5.3 (v′). However, S′ is not

a dual simulation because χS′(w) ·Badvise
5.3 = (0, 1, 1, 0, 0, 0) but χS′(v) = (1, 1, 1, 1, 1, 1) is

a superset of the computed product. �
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As χS(w) (χS(v), resp.) are also represented as bit-vectors, the inequalities in (5.8) may
be reformulated as

χS(w) ≤ χS(v) · FaG and
χS(v) ≤ χS(w) ·Ba

G

(5.12)

for each edge (v, a, w) ∈ EQ. Comparing two n-dimensional row bit-vectors v and w by ≤ is
interpreted as the component-wise comparison of v and w by ≤, i. e., v ≤ w i� v(i) ≤ w(i)
for all i ∈ {1, 2, . . . , n}. v,w represent sets and v ≤ w indeed implements set inclusion.
Hence, (5.12) are exact bit-vector/matrix representations of (5.8), which enables us to give
a representation of DualSim as a system of inequalities, to be developed throughout the
rest of this section.

A system of inequalities has a set of variables Var and a set of inequalities NEq, each of
which is �nite. We restrict the possible inequalities to the ones we will need for computing
dual simulations between pattern graphs Q and data graphs G. Additionally, we include
inequality types that are going to be used to encode Sparql queriesQ ∈ SAO in Section 5.3.

De�nition 5.11 (System of Inequalities)
Let Q = (VQ,Σ, EQ) and G = (V,Σ, E) be labeled graphs. A pair E = (Var,NEq) is a
system of inequalities (SOI) over Q and G i� its set of variables Var ⊇ VQ and its set of
inequalities NEq contains inequalities of the shape

(1) w ≤ v · A, (2) w ≤ v, or (3) w ≤ v,

where w, v ∈ Var, A is an adjacency matrix of G, and v is a |V |-dimensional bit-vector. N

Inequalities range over by φ, ε, ε1, ε2, . . .. The encoding of (5.12) will only use inequalities
of shape (1). Shape (2) will be essential when we integrate optional patterns of Sparql
queries into the systems of inequalities in Section 5.3. (3) is useful, e. g., for optimizations
to be discussed in Section 5.2.5.

Let E = (Var,NEq) be a SOI over graph pattern Q = (VQ,Σ, EQ) and data graph
G = (V,Σ, E). Assignments to the variables of E are relations S ⊆ Var× V . As Var ⊇ VQ
by De�nition 5.11, assignments S may be dual simulations or candidates thereof. S is a
solution of E if it is valid for all inequalities NEq, i. e., when substituting every variable
v ∈ Var by χS(v), the resulting inequalities shall hold.

De�nition 5.12 (Valid Assignment, Solution)
Let Q = (VQ,Σ, EQ) and G = (V,Σ, E) be labeled graphs, and E = (Var,NEq) an SOI over
Q and G. A relation S ⊆ Var × V is called an assignment for E . S is a valid assignment
for inequality ε ∈ NEq i�

(1) ε = w ≤ v · A implies χS(w) ≤ χS(v) · A,

(2) ε = w ≤ v implies that χS(w) ≤ χS(v), and

(3) ε = w ≤ v implies that χS(w) ≤ v.

Otherwise, S is invalid for ε. Valid assignments for all inequalities ε ∈ NEq are called
solutions of E . N

Example 5.13 (Example 5.10 continued) S is invalid for w ≤ v · Fadvise
5.3 because

χS(w) = (1, 1, 1, 1, 1, 1) � (0, 0, 0, 1, 1, 0) = χS(v) · Fadvise
5.3 .

S′, on the other hand, is a valid assignment for w ≤ v · Fadvise
5.3 . Consider now S′′ with

χS′′(v) = (0, 1, 0, 0, 0, 0) and χS′′(w) = χS′(w). S′′ is valid for v ≤ w ·Badvise
5.3 because

χS′′(v) = (0, 1, 0, 0, 0, 0) ≤ (0, 1, 1, 0, 0, 0) = χS′′(w) ·Badvise
5.3 ,

which indicates that S′′ is in fact a dual simulation between Q (Example 5.10) and the
graph in Figure 5.3. �
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Prof

Class

teach

Stud
advise

take

Figure 5.5: A Pattern Graph

Based on Equation (5.12), we de�ne a SOI over Q and G for which every solution is a dual
simulation between Q and G, and vice versa.

De�nition 5.14 (Dual Simulation SOI)
Let Q = (VQ,Σ, EQ) and G be labeled graphs. E(Q,G) = (Var,NEq) is the dual simulation
SOI of Q and G if Var = VQ and NEq contains for each pattern edge (v, a, w) ∈ EQ the
following equations:

w ≤ v · FaG and v ≤ w ·Ba
G. (5.13)

There are no other inequalities in NEq. N

Example 5.15 Subsequently, we give all six inequalities of the dual simulation SOI of
pattern Q, depicted in Figure 5.5, and data graph G in Figure 5.3.

ε1 : Stud ≤ Prof · Fadvise
5.3 ε2 : Prof ≤ Stud ·Badvise

5.3

ε3 : Class ≤ Prof · Fteach
5.3 ε4 : Prof ≤ Class ·Bteach

5.3

ε5 : Class ≤ Stud · Ftake
5.3 ε6 : Stud ≤ Class ·Btake

5.3

(5.14)

�

The following result is a direct consequence of De�nition 5.14 and Theorem 5.9.

Proposition 5.16 Let Q and G be graphs and E(Q,G) the dual simulation SOI of Q and
G. S is a solution of E(Q,G) i� it is a dual simulation between Q and G.

Proof: Let S be a solution of E(Q,G) = (Var,NEq). Then S is valid for w ≤ v · FaG and
v ≤ w ·Ba

G for all (v, a, w) ∈ EQ. Thus, (5.8) holds for all (v, a, w) ∈ EQ. By Theorem 5.9,
S is a dual simulation between Q and G.

Conversely, let S be a dual simulation between Q and G. Then by Theorem 5.9, S
satis�es (5.8) for all (v, a, w) ∈ EQ. Hence, S is valid for all w ≤ v · FaG and v ≤ w ·Ba

G

((v, a, w) ∈ EQ), making S a solution of E(Q,G). q. e. d.

We may now �nalize the new algorithm computing DualSim as a �xpoint iteration over
E(Q,G) with initial assignment S0. The complete �xpoint iteration is given as Algorithm 3.
Relation S is the current simulation candidate, initialized in Line 1. In set Unstable, we
store all inequalities from NEq, which we still need to process. Initially Unstable = NEq.
In every iteration (from Lines 3 to 10), we �rst pick an unstable inequality ε = w ≤ v · A
in Lines 3 and 4. We then compute χS(v) ·A and store it in row vector w. The condition
in Line 6 evaluates positively if S is invalid for ε, i. e., if χS(w) contains nodes that cannot
be reached by the edge described by A from any node in χS(v). In this case, relation S
is updated by Line 7 according to inequality ε. Afterwards, Line 8 adds to set Unstable
all inequalities φ ∈ NEq for which the state of validity of S could have changed due to the
update in Line 7.

Example 5.17 (Example 5.10 continued) Let us compute the greatest dual simula-
tion Ŝ between the the graph pattern Q = (VQ,Σ, EQ) depicted in Figure 5.5 and the
graph G = (V,Σ, E) depicted in Figure 5.3. Therefore, we follow the steps of Algorithm 3
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Algorithm 3: SOI Iteration to Solve DualSim for Q, G, and S0

input : E(Q,G) = (Var,NEq) and assignment S0.
output: Greatest solution S ⊆ S0 of E(Q,G).

1 S ← S0;
2 Unstable← NEq;
3 while there is an inequality ε ∈ Unstable do
4 Unstable← Unstable \ {ε}; /* ε = w ≤ v · A */

5 w← χS(v) · A;
6 if χS(w) � w then
7 χS(w)← χS(w) ∧w; /* update wS */

8 Unstable← Unstable ∪ {φ ∈ NEq | φ = u ≤ w · C};
9 end

10 end

with the dual simulation SOI (5.14) from Example 5.15 as input. Furthermore, we start
with the largest imaginable dual simulation candidate, namely S0 = VQ × V , implying
χS0(Prof) = χS0(Stud) = χS0(Class) = (1, 1, 1, 1, 1, 1).

After Line 2 has been passed, S = S0 and Unstable = {ε1, ε2, . . . , ε6}.

Iteration 1: Let us simply pick unstable inequalities by their indices, i. e., ε1 = Stud ≤
Prof · Fadvise

5.5 �rst.

χS(Prof) · Fadvise
5.5 = (1, 1, 1, 1, 1, 1) ·



0 0 0 0 0 0
0 0 0 1 1 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


= (0, 0, 0, 1, 1, 0) � (1, 1, 1, 1, 1, 1) = χS(Stud)

(5.15)

Thus, the test in Line 6 is positive and we update χS(Stud) according to the result,
i. e., χS(Stud) = (1, 1, 1, 1, 1, 1) ∧ (0, 0, 0, 1, 1, 0) = (0, 0, 0, 1, 1, 0). At last, we have
to declare all inequalities unstable, having something to do with Stud, i. e., ε2 and
ε5. However, they are already in Unstable.

Proceeding with ε2 = Prof ≤ Stud · Badvise
5.5 , we get a similar update of χS(Prof)

to (0, 1, 1, 0, 0, 0). Once the update is performed, ε1 returns to the set of unstable
inequalities. At the end of this �rst iteration, we have χS(Stud) = (0, 0, 0, 1, 1, 0),
χS(Prof) = (0, 1, 1, 0, 0, 0), and χS(Class) = (1, 0, 0, 0, 0, 1). Furthermore, Unstable
is set to {ε1} because only ε2 changes the state of χS(Prof) for a potential update.
ε3 changes χS(Class) directly and no other inequality changes it. Furthermore,
χS(Prof) and χS(Stud) are not changed by any other inequality.

Iteration 2: Thus, we pick ε1 one last time from set Unstable. This time we get

χS(Prof) · Fadvise
5.5 = (0, 1, 1, 0, 0, 0) ·



0 0 0 0 0 0
0 0 0 1 1 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


= (0, 0, 0, 1, 1, 0) ≥ (0, 0, 0, 1, 1, 0) = χS(Stud)

(5.16)

Thus, S is valid for ε1.
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Since there is no more unstable inequality, the algorithm terminates after two iterations
with the greatest solution, i. e., the greatest dual simulation between Q and G. �

Algorithm 3 computes solutions of a given dual simulation SOI of graphs Q and G.

Theorem 5.18 Let E(Q,G) be a dual simulation SOI and S0 an assignment for it. (I)
Algorithm 3 terminates for inputs E(Q,G) and S0, and (II) its �nal result S is the greatest
solution of E(Q,G) with S ⊆ S0.

Proof: Every assignment for E(Q,G), including S0, is �nite. Due to Line 7, assignments
after an update are guaranteed to be smaller than before the update. This is because
Line 7 is only reached if χS(w) � w (in Line 6), i. e., there is a component i, such that
χS(w)(i) = 1 and w(i) = 0. Hence, after updating χS(w) by intersecting it with w, the
resulting assignment has the property χS(w) = 0. Update steps due to Line 7 occur �nitely
often because once S = ∅, the condition in Line 6 cannot be satis�ed anymore. Hence, no
inequality is added to set Unstable and �nitely many executions of Line 4 will eventually
empty the set because the set of inequalities of E(Q,G) is �nite. Thus, the only possibility
for non-termination occurs if some inequalities are added to Unstable in�nitely often. But
it is only Line 8 that adds inequalities to Unstable. In every such iteration, also Line 7
must be passed, so that S shrinks. Eventually, one of two conditions hold, (i) S 6= ∅ but
the set Unstable is empty or (ii) S = ∅. As argued, the algorithm terminates in both cases,
proving (I).

Next, we show that S is a solution of E(Q,G) after Algorithm 3 has terminated. If
termination condition (ii) applies, S is a (trivial) solution of E(Q,G): Let ε = w ≤ v · A
an inequality of the SOI. Then χS(w) = (0, 0, . . . , 0) ≤ χS(v) · A because the 0-vector is
smaller or equal than any other vector. In fact, χS(v) = (0, 0, . . . , 0) even implies that
χS(v) · A = (0, 0, . . . , 0). In case (i), i. e., S 6= ∅ and Unstable = ∅, we need to show that
S is a solution, i. e., S is a valid assignment for every inequality ε of E(Q,G). We denote
the �nal S as Sf . Let ε = w ≤ v · A and consider the state of S after the last update of v
(denoted Sv). If v has never been updated, χSv(v) = χS0(v) = χSf

(v) and ε is considered
once (because of the initialization of Unstable in Line 2). Otherwise, χSv(v) < χS0(v). The
update of χS(v), performed in Line 7, is followed by an update of Unstable which then
contains at least ε. Hence, ε is considered at least once/one last time. If w is computed and
the test in Line 6 fails, this means χSv(w) ≤ χSv(v) ·A. As we considered the last update
of v, ε does never occur again in Unstable. Furthermore, it holds that χSf

(v) = χSv(v) and
χSf

(w) ≤ χSv(w), which implies that Sf is valid for ε. If w passes the test in Line 6, χSv(w)
is updated by w. The updated assignment is valid for ε, i. e., χSv(w) ∧ w ≤ χSv(v) · A.
This is especially true if v = w because we assumed Sv to be the assignment after the last
update of v. Furthermore, χSf

(w) ≤ χSv(w) ∧w because every other update of w further
reduces its value (w. r. t. ≤). Hence, χSf

(w) ≤ χSv(w) ∧ w ≤ χSf
(v) · A, rendering Sf

valid for ε. This argument may be repeated for all inequalities of E(Q,G).
It remains to be shown that S is the greatest solution with S ⊆ S0. Since Algorithm 3

had S0 as input, it holds that S ⊆ S0. By Theorem 5.9 and Lemma 4.26, the greatest
solution Ŝ ⊆ S0 is unique. Thus, Ŝ ⊆ S implies Ŝ = S. It remains to exclude that
S ( Ŝ. In order to reach S, every iteration of the while-loop of Algorithm 3 removes pairs
(w, o) ∈ S0 \ Ŝ or (w, o) ∈ Ŝ \S. Towards a contradiction, assume we have reached S with
Ŝ ⊆ S and the next update of S yields S′ with Ŝ ( S′ . Thus, there is (w, o) ∈ Ŝ, i. e.,
o ∈ χ

Ŝ
(w), and an inequality ε ∈ NEq with ε = w ≤ v ·A for which S is invalid. W. l. o. g.,

let A = FaDB for some a ∈ Σ. The case of A = Ba
DB is completely analogous. Since S is

invalid, χS (w) � w and, because o is removed from χS (w), there is no o′ ∈ ODB with

o′ EaDB o and o′ ∈ χS (v). But this contradicts the assumption that Ŝ is a solution of

E(Q,G): As a solution, Ŝ is a valid assignment for ε. Thus, χ
Ŝ

(w) ≤ χ
Ŝ

(v) · FaDB , which
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implies the existence of an o′′ ∈ ODB with o′′ ∈ χ
Ŝ

(v) and o′′ EaDB o by Theorem 5.9

and Proposition 5.16. Because Ŝ ⊆ S , that o′′ is an element of χS (v). Thus, S′ ⊆ Ŝ, in
contrast to the assumption.

Therefore, executing Algorithm 3 with input S0 necessarily computes Ŝ, i. e., S = Ŝ is
the greatest solution of E(Q,G) included in S0, which �nalizes the proof for (II). q. e. d.

Thus, by Proposition 5.16 and Theorem 5.18, Algorithm 3 computes the greatest dual
simulation included in S0.

5.2.4 Complexity Discussion

We assume the assignments in Lines 1, 2 and 4 to represent minor in�uences of the overall
complexity. The signi�cant in�uences to Algorithm 3 are estimated by if and how often the
multiplication in Line 5 is performed. Each execution of Line 5 takes time |χS(v)| · O(|V |)
as for each element of χS(v) ⊆ V , row A(v) ⊆ V must be added to w. Thus, Line 5
is bounded by O(|V |2). When considering our matrix representation and the sparsity
assumption, as explained in Section 5.2.1, Line 5 boils down to O(|V |). As before (cf.
Sections 5.1.1 and 5.1.2), the value of a single variable may be subject to reduction at
most |V | times. Thus, a single inequality ε is subject to Lines 5 and 7 O(|V |) times.

Example 5.19 Let us assume Figure 5.1(a) to be Q and Figure 5.1(b) to be G, as in
Example 5.1. The dual simulation SOI of Q and G is the following,

E(Q,G) =

(
{v} ,

{
v ≤ v · FaG,
v ≤ v ·Ba

G

})
.

Let us further assume S0 = {(v, 1), (v, 2), . . . , (v, k−1), (v, k)}. Picking the �rst inequality,
i. e., ε1 = v ≤ v · FaG, yields a product of w = (0, 1, . . . , 1) in Line 5. Thus, χS(v) =
(1, 1, . . . , 1) � w and we update S to χS(v) = χS(v) ∧ w = (0, 1, . . . , 1). Next, we may
pick ε1 again or ε2 = v ≤ v ·Ba

G. In both cases, χS(v) is reduced by at most one node of
G per inequality. �

The worst case of updating iterations, a single inequality ε ∈ NEq goes through Lines 5
to 8, is O(|V |). However, a single inequality ε ∈ NEq may become unstable due to other
inequalities, although the reached assignment S remains valid for ε (cf. Example 5.2).

Example 5.20 Take Figure 5.2(a) as Q and Figure 5.2(b) as G, as in Example 5.2. The
respective dual simulation SOI is

E(Q,G) =

(
{v, w} ,

{
v ≤ v · FaG, v ≤ w · FbG,
v ≤ v ·Ba

G, w ≤ v ·Bb
G

})
.

Let us assume, inequalities ε1 = w ≤ v ·Bb
G and ε2 = v ≤ v ·Ba

G are picked in Lines 3
and 4 alternatingly until they are both stable, i. e., ε1, ε2 /∈ Unstable. While ε1 has no e�ect
upon ε2, an update of S due to ε2 renders ε1 unstable. In every such alternating iteration,
the value of χS(w) is left unchanged and the value of χS(v) is reduced by one node per
iteration, i. e., �rst k, then k− 1, . . . , up until 2, and 1. Only if 1 is removed from the set
χS(v), ε1 issues an update of χS(w). �

Combining Examples 5.19 and 5.20, we end up with an overall number of times, a single
inequality may be seen in set Unstable, is in O(|V | + |NEq| · |V |). These considerations
leave us with an overall data complexity of Algorithm 3 of O(|V |3) and O(|NEq| · (|V | +
|NEq| · |V |) · |V |2) in combined complexity.

Theorem 5.21 The special dual simulation problem (DualSim) is in Ptime.
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5.2.5 Optimizations

Optimal Initialization. An immediate optimization is given by altering the initial re-
lation S0, syntactically exploiting that for a variable/node v in VQ, candidate nodes are
only those supporting incident edges of v.

Example 5.22 In earlier examples, but especially in Example 5.17, we started with an
unnecessarily large initial candidate, e. g., S0 = VQ×V . Particularly, we had χS0(Prof) =
(1, 1, 1, 1, 1, 1) although we could have observed that only two of the six graph nodes are
possible values for node Prof, namely Paul and Page. These are the only two nodes with
an outgoing advise-labeled, as well as a teach-labeled edge. The pattern node Prof requires
both edges. Hence, we could have just started with S′0 where χS′

0
(Prof) = (0, 1, 1, 0, 0, 0)

in which case the two iterations we needed in Example 5.17 boil down to a single one. �

Hence, only those nodes exhibiting the given pattern's structure qualify as candidates.
Therefore, let us denote by faG the bit-vector that summarizes the rows of FaG in that
faG(i) = 1 i� there is a j with FaG(i, j) = 1, and faG(i) = 0 otherwise. In the same lines, baG
is de�ned as the summary of Ba

G. Then for each variable/node v in Var/VQ, we compute
the e�ect of inequality

v ≤
∧

(v,a,w)∈EQ
faG ∧

∧
(u,a,v)∈EQ

baG (5.17)

before considering any other inequality. Note that (5.17) follows shape (3) of De�ni-
tion 5.11. Thus, when facing S0 as input, the �rst step is to reduce χS0(v) by those nodes
that cannot (dual) simulate v because they are syntactically dissimilar to v.

Leaf Node Optimization. The second optimization is concerned with the leaf nodes
of the pattern graph Q = (VQ,Σ, EQ), which are all the nodes v ∈ VQ with a degree of at
most 1, denoted as degQ(v) ≤ 1. The degree of a node re�ects on the number of incoming
and outgoing edges in which the node participates. Formally for G = (V,Σ, E) and v ∈ V ,

degG(v) :=
∑
a∈Σ

(|vEa|+ |Eav|). (5.18)

Note that the degree also counts self-loops. A node exhibiting a self-loop will subsequently
be excluded from the set of leaf nodes. The reason is that the optimization we pursue does
not work correctly in case of self-loops.

The notion of degree may be naturally expanded to dual simulation SOIs E(Q,G) =
(Var,NEq). As for each edge of Q, NEq contains two inequalities, the degree of a variable
v ∈ Var is de�ned by

degE(Q,G)(v) := |{ε ∈ NEq | ε = v ≤ w · A}|. (5.19)

Thus, v is a leaf variable i� degE(Q,G)(v) ≤ 1. An inequality ε = v ≤ w ·A is a leaf inequality
i� v is a leaf variable. Note how the de�nition of degree excludes self-loops, e. g., for an
edge (v, a, v) we would get v ≤ v · FaG and v ≤ v ·Ba

G. Thus, the degree of v is at least 2.
Leaf variables (or nodes, resp.) must be updated at most once due to their leaf in-

equalities.

Example 5.23 Consider the graph depicted in Figure 5.6, denoted as G5.6. Furthermore,
we append two edges to the pattern, depicted in Figure 5.5, asking for the e-mail addresses
of Prof and Stud. Instead of another drawing of graph patterns, we simply extend the
dual simulation SOI in Equation (5.14) (cf. Example 5.15) by the following inequalities:

ε7 : Mail1 ≤ Prof · Femail
5.6 ε8 : Prof ≤ Mail1 ·Bemail

5.6

ε9 : Mail2 ≤ Stud · Femail
5.6 ε10 : Prof ≤ Mail2 ·Bemail

5.6
(5.20)
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Figure 5.6: A Graph Structure

In the course of Algorithm 3, inequalities ε7 to ε10 are going to reoccur in the set Unstable.
Suppose we have reached some state of S, say S1, and are going to update χS1(Mail1) due
to a change of the variable assignment to Prof. If the �nal state of S, denoted by Sf , has
the property that χS1(Prof) = χSf

(Prof), the update of χS1(Mail1) is also �nal because
ε7 will not reappear as an unstable inequality. If χS1(Prof) is not �nal, ε7 would issue
potential changes to the assignment of Mail1 over and over again. But this is unnecessary
because after updating Mail1, the validity of ε8 is still guaranteed. Hence, the update has
no impact on the computation at this stage. �

Picking leaf inequalities only after all the other non-leaf inequalities are stable may save
a lot of unnecessary updates. Atre [15] reports on a similar technique borrowed from
relational query optimization [130]. Note that after an update of a leaf variable, the status
of its inequalities remains unchanged. If the variables are the same (i. e., self-loop), updates
to one variable may have an impact on the other inequality (e. g., Examples 5.19 and 5.20).

Order Heuristics. Our SOI characterization of dual simulation and its implementation
open up for dynamic evaluation strategies. The order in which the equations are evaluated
has an impact on the overall runtime. For our experiments, we have chosen a �xed order
that aims at shrinking the assignments as early as possible, e. g., by preferring inequalities
with matrix components having more empty columns, an indicator for the sparsity of the
resulting product. The strategy of one iteration may be adapted to a more e�cient one in
another iteration.

5.2.6 Comparison to State-of-the-Art

The (combined) complexity bound we gave for Algorithm 3 is polynomial in the size of
(Q and) G. Every other algorithm, e. g., the ones we discussed throughout Section 5.1,
would allow for the same conclusion, namely that the special dual simulation problem is in
Ptime. Therefore, we want to know which of the presented algorithm is the fastest. We
let them run on synthetic and real-world datasets. Thereby, we additionally see whether
our assumptions and characterizations are, in fact, bene�cial. We have implemented dual
simulation versions of the naïve algorithm (cf. Section 5.1.1), HHK (cf. Section 5.1.2),
and the SOI approach within our tool sparqlSim. All three implementations made use
of our assumptions regarding the matrix data structures (cf. Section 5.2.1). We evaluate
the total running times of the dual simulation procedures for computing the maximal dual
simulations between all our queries and datasets (cf. Appendices A.2 and A.3). Since the
competitor algorithms only consider graph pattern matching tasks, we used our queries in
their BGP interpretation (cf. Appendix A.3). We solely measured the running times of
the algorithms described in this chapter, leaving out the times for compiling the queries
and initializing the candidate simulation (which, in our implementation, is part of the
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Table 5.1: Five Runs of HHK with count-Structures

Q Tcount T�xpoint T∑
Lv1 2247.3300 1463.0800 3710.4100
Lv2 5491.2200 2714.8700 8206.0900
Lv3 6272.3500 401.6100 6673.9600
Lv4 2876.3700 123.2500 2999.6200
Lv6 4428.6500 743.9700 5172.6200

compilation time). We ran each query eleven times on is68 (cf. Appendix A.1). We
considered the median runtime (in general, the running times for a single query did not
di�er signi�cantly for a particular algorithm). The results are presented in Table A.7 in
Appendix A.4. Running times of the naïve algorithm are captioned by Naive, of HHK by
HHK, and of the SOI algorithm by sparqlSim.

First of all, the performance of our SOI implementation almost always outperforms
its competitors. Only in three cases, the naïve algorithm performs beats sparqlSim by
approximately 0.0015 seconds. The HHK always performs worse than the naïve algorithm,
which is puzzling at �rst. Intuitively speaking, it can be much more bene�cial to start
computing than pre-collecting a query-speci�c database statistics that reduces the overall
�xpoint computation by a factor of |ODB | (or |V |, resp.):

� We have �rst tried to run HHK with its count-optimization. In these runs, after ini-
tializing the remove structures, count needs to be initialized. After having observed
a �rst query set on the LUBM dataset, namely Lv1�Lv6, we deserted from count-
optimizations. In Table 5.1, we splitted the count initialization time (Tcount) from
the computation time of the �xpoint (T�xpoint). Due to the enormous sizes of graph
database instances, exhibiting the count-structure exceeds the computation time of
the naïve algorithm. Once the structures have been computed, the �xpoint iteration
time if comparable if not even better than the naïve algorithm.

� After an intensive code review, we decided to work with the cubic-time version of
the HHK that recomputes remove sets without constant-time lookups. This way, we
obtained results for all our DBpedia queries. For the LUBM queries, we have set a
timeout function: After at most 10,000 seconds, the computation of the simulation
would stop. Not a single LUBM query �nished the computation of the �xpoint before
the timeout was reached.

� The reason is that the LUBM dataset is not as sparse as any of the other datasets,
especially as DBpedia. Hence, when computing neighborhoods node-wise, as in the
precomputation of count or the iterated computation of remove sets to be updated,
HHK has to check many neighbors, possibly for many nodes.

Column T�xpoint of Table 5.1 reveals the actual �xpoint computation to be reasonably fast,
i. e., at least comparable to what the naïve algorithm needed. However, the construction
of the count arrays (cf. Section 5.1.2) is the bottleneck of the overall computation. Only in
extreme cases, precomputing these arrays is bene�cial to the overall computation. As our
complexity estimation shows, HHK is a worst-case-optimal algorithm. This can be evalu-
ated with the pattern graph in Figure 5.2 (a) and the graph database template depicted in
Figure 5.7. For such graphs (for large k > 10,000), HHK produces the maximal dual sim-
ulation match (which is an empty dual simulation) much faster than the naïve algorithm
and sparqlSim. In graph querying settings, HHK does not deliver a viable algorithm.
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Figure 5.7: A Corner Case Data Graph for Dual Simulation Procedures

Concluding, our implementation shows indeed better runtime behavior than its com-
petitors. Whenever sparqlSim is slower than the naïve algorithm, the computation times
are extremely low for both implementations. Furthermore, our algorithm-independent
characterization of dual simulations allows us to incorporate Sparql's matching seman-
tics, as we will show during the next section.

5.3 Pruning for Sparql Queries

Having clari�ed the foundational and algorithmic aspects of dual simulations, we may
now approach the realization of our maximal dual simulation semantics for Sparql of
Section 4.4. Our goal was to provide a correct and tractable pruning approach based on
dual simulation principles. Section 4.4 already provides us with the fundamental result of
correctness (cf. Theorem 4.72). Thus, by computing the maximal dual simulation match
of Q in DB , we may obtain a subgraph of DB , which preserves all the Sparql matches of
Q in DB . We subsequently discuss systems of inequalities for queries Q ∈ SAO. Beyond
the material presented in Section 4.4, we also integrate the union operator and discuss
built-in �lter conditions. For each query language feature, we obtain a soundness result
guaranteeing that the solutions of the constructed SOIs preserve Sparql matches in the
sense of correctness.

5.3.1 Triple and Basic Graph Patterns

Proposition 4.11 allows for the interpretation of basic graph patterns as graph structures
with all their triple patterns constituting the edge relation. Thus, we derive an SOI
representation of basic graph patterns (or single triple patterns, resp.) by the notion of
dual simulation SOIs, now instantiated for a basic graph pattern G and a graph database
DB .

De�nition 5.24 (Dual Simulation SOI of BGPs)
Let G ∈ SA and DB be a graph database. E(G,DB) = (Var,NEq) is the dual simulation
SOI of G and DB if Var = vars(G) and

NEq = {y ≤ x · FaDB , x ≤ y ·Ba
DB | (x, a, y) ∈ G}. N

We use the dual simulation SOI of basic graph pattern G and graph database DB to
represent the constraints identifying dual simulation matches of G in DB . Therefore,
solutions of E(G,DB) are matches S ∈ JGKDS

DB (cf. De�nition 4.21). Analogously to the
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case of graph patterns (cf. Proposition 5.16), we show that solutions to the dual simulation
SOI of basic graph pattern G and graph database DB are dual simulation matches.

Lemma 5.25 Let G ∈ SA and DB be a graph database, such that E(G,DB) = (Var,NEq)
is their dual simulation SOI. S ∈ JGKDS

DB i� S is a solution of E(Q,DB)

Proof: By Proposition 4.22, S ∈ JGKDS
DB is a dual simulation between G(G) and DB .

Furthermore, every dual simulation S between G(G) and DB is a dual simulation match
S ∈ JGKDS

DB . To prove the theorem, it su�ces to show that S is a dual simulation between
G(G) and DB i� S is a solution of E(G,DB). Note that the dual simulation SOIs E(G,DB)
and E(G(G),DB) are exactly the same. The reason is that both sets of inequalities are
built from the set G. Hence, the claim directly follows from Proposition 5.16. q. e. d.

This means, we compute the maximal dual simulation match (cf. Proposition 4.27) by
Algorithm 3 with E(Q,DB) and vars(Q)×ODB as candidate assignment.

Proposition 5.26 Algorithm 3 returns the maximal dual simulation match for a basic
graph pattern G in DB by the input of E(G,DB) and S0 = vars(G)×ODB .

Proof: Let Ŝ ∈ JGKDS
DB be the maximal dual simulation match of G in DB . Ŝ is a solution

of E(G,DB) by Lemma 5.25. Note that every solution S′ of E(G,DB) is a subset of S0, i. e.,
S′ ⊆ vars(G)×ODB . Algorithm 3 returns the greatest such solution S by Theorem 5.18.
As Ŝ is the maximal dual simulation, S = Ŝ because

(i) S ( Ŝ contradicts S being the greatest solution included in S0 (cf. Theorem 5.18);

(ii) Ŝ ( S contradicts the assumption that Ŝ is the maximal dual simulation match since
S would be a larger one;

(iii) incomparability of S and Ŝ (up to ⊆) contradicts the fact that the maximal dual
simulation is unique (cf. Proposition 4.27). q. e. d.

As the maximal dual simulation match between G and DB contains every Sparql match
of G in DB by Corollary 4.49, its computation by Algorithm 3 with the dual simulation
SOI E(G,DB) and candidate assignment S0 = vars(G) × ODB is a sound algorithmic
solution to computing the maximal dual simulation semantics of basic graph patterns. As
the soundness of the result of Algorithm 3 highly depends on the construction of the system
of inequalities, we transfer it to the system of inequalities E itself.

De�nition 5.27 (Soundness of SOIs)
Let DB be a graph database, Q a Sparql query, and E = (Var,NEq) any SOI of Q and
DB (cf. De�nition 5.11). E is sound w. r. t. Q i� the greatest solution S of E is the
maximal dual simulation match of Q in DB , i. e., JQKMDS

DB = {S}. N

As a direct consequence of Lemma 5.25 and Proposition 4.27, the dual simulation SOI of
Q ∈ SA and DB is sound.

Corollary 5.28 Let DB be a graph database and Q ∈ SA. Then the dual simulation SOI
E(Q,DB) is sound.

We have now reached a state of understanding of the complexity and implementation
details to catch up on open proof obligations from Chapter 4. In particular, we subse-
quently prove that evaluation as well as non-emptiness of (SA, J·KDS

_ ) are in Ptime (cf.
Lemma 4.25). Furthermore, we show the Ptime computation of the maximal dual simu-
lation match (cf. Lemma 4.28).
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Proof of Lemma 4.25

Let Q ∈ SA and DB = (ODB ,Σ, EDB ) be a graph database. It holds that JQKDS
DB 6= ∅ i�

the maximal dual simulation match of Q in DB is non-empty because, by Proposition 4.27,
the maximal dual simulation match is the union of all dual simulation matches of Q in
DB . Hence, if it is non-empty, there is a dual simulation match included. Otherwise, there
is no dual simulation match of Q in DB . Consequently, we compute the maximal dual
simulation match in Ptime (by Lemma 4.28) and check if it is non-empty.

Regarding evaluation, let S0 ⊆ vars(Q) × ODB . Algorithm 3 computes the greatest
solution S ⊆ S0 of E(Q,DB) by Theorem 5.18. If S = S0, then S0 is a dual simulation
match by Lemma 5.25. Otherwise, S0 is not a solution, i. e., it is not a dual simulation
match of Q. By Theorem 5.21, the evaluation of S0 is in Ptime. q. e. d.

Proof of Lemma 4.28

By Proposition 5.26, Algorithm 3 returns the maximal dual simulation match of Q ∈
SA and graph database DB by the input of E(Q,DB) and S0 = vars(Q) × ODB . The
computation takes Ptime by Theorem 5.21. q. e. d.

5.3.2 Join Operators

When it comes to Sparql's join operators, that are inner (conjunction) and left-outer
joins (optional patterns), we have to be careful with the naming of variables in our SOI
representation. Recall that we need to distinguish mandatory variable occurrences from
optional occurrences (cf. De�nition 4.73). The following example queries explain this
requirement on hypothetical SOI representations.

Example 5.29 Let DB be any graph database, for which we subsequently create SOI
representations of Sparql queries. We begin with a conjunction that is a basic graph
pattern representation of the pattern graph in Figure 5.5:

Q0 = (p, teach, c) AND (p, advise, s) AND (s, take, c).

Adopting the dual simulation SOI for basic graph patterns of the last section, we have to
introduce two inequalities per triple pattern:

ε1 : c ≤ p · Fteach
DB ε2 : p ≤ c ·Bteach

DB

ε3 : s ≤ p · Fadvise
DB ε4 : p ≤ s ·Badvise

DB

ε5 : c ≤ s · Ftake
DB ε6 : s ≤ c ·Btake

DB

(5.21)

We take the inequalities in (5.21) as our base inequalities for the subsequent examples.
Next, recall query Q1 from Example 4.76,

Q1 = (p, teach, c) OPT (p, advise, s) OPT (s, take, c),

having the same triple patterns as Q0. Only the operator structure is di�erent. This is why
(5.21) is not the SOI representation of Q1 since, otherwise, our representation considered
Q0 and Q1 to be equivalent. The maximal dual simulation semantics now requires that the
assignments to p in ε3/ε4 form a subset of the assignments to p in ε1/ε2 (cf. De�nition 4.73).
Hence, p in ε3/ε4 is di�erent from p in ε1/ε2. The same argumentation holds for c in ε5/ε6
and c in ε1/ε2.

ε1 : c ≤ p · Fteach
DB ε2 : p ≤ c ·Bteach

DB

ε′3 : s ≤ p′ · Fadvise
DB ε′4 : p′ ≤ s ·Badvise

DB

ε′5 : c′ ≤ s · Ftake
DB ε′6 : s ≤ c′ ·Btake

DB

(5.22)
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For now, we simply rename the respective SOI variables from (5.21) to obtain (5.22). Later,
we will have introduced a formal translation process that guides these constructions. The
requirements of optional patterns, here that p' must not exceed p and c' must not exceed
c, is realized by two inequalities of shape (2) (cf. De�nition 5.11):

ε7 : p′ ≤ p ε8 : c′ ≤ c (5.23)

(5.22) and (5.23) together form a dual simulation SOI, but not for Q1 because variable s
occurs in both optional clauses and is not distinguished in the SOI representation. The
independent occurrences of s must also be independent in the SOI characterization. There-
fore, another renaming of variable s takes place, e. g., yielding

ε1 : c ≤ p · Fteach
DB ε2 : p ≤ c ·Bteach

DB

ε′3 : s ≤ p′ · Fadvise
DB ε′4 : p′ ≤ s ·Badvise

DB

ε′′5 : c′ ≤ s′ · Ftake
DB ε′′6 : s′ ≤ c′ ·Btake

DB

ε7 : p′ ≤ p ε8 : c′ ≤ c

(5.24)

The additional variables p′, c′, s′ have nothing to do with the original Sparql variables.
Therefore, the �nal solution must be interpreted by following the lines of the construction
of (5.24). This means, a solution S ⊆ Var × ODB of (5.24) is transferred back to a dual
simulation match Ŝ of Q1 by pŜ := pS ∪ p′S, sŜ := sS ∪ s′S, and cŜ := cS ∪ c′S. Since
S is valid for ε7 and ε8, cŜ = cS and pŜ = pS. Note that (5.22) would be the SOI
representation of

Q′1 = (p, teach, c) OPT ((p, advise, s) AND (s, take, c)),

where both occurrences of s are co-dependent.
The translation process is formalized, subsequently to this example. Before, we are

considering another query from Example 4.76, namely

Q3 = ((p, teach, c) OPT (p, advise, s)) AND (s, take, c).

We begin, once more, with our base inequalities (5.21). Furthermore, we get an optional
dependency between the occurrences of variable p, so that ε3/ε4 are replaced by ε′3/ε

′
4

of (5.22) and we add ε7 from (5.23). At last, we take care of variable s, which occurs
as a mandatory variable of the right-hand side clause and as an optional variable of the
left-hand side. Thus, De�nition 4.73 requires that assignments to the optional occurrence
must not exceed the ones to the mandatory occurrence. Therefore, we obtain the following
�nal SOI representation of Q3:

ε1 : c ≤ p · Fteach
DB ε2 : p ≤ c ·Bteach

DB

ε′′3 : s′ ≤ p′ · Fadvise
DB ε′′4 : p′ ≤ s′ ·Badvise

DB

ε′5 : c ≤ s · Ftake
DB ε′6 : s ≤ c ·Btake

DB

ε7 : p′ ≤ p ε9 : s′ ≤ s

(5.25)

A literal translation of the maximal dual simulation semantics would require to distin-
guish between both occurrences of c as well. Hence, we would get c and c′ together with
inequalities

c ≤ c′ c′ ≤ c. (5.26)

Every valid assignment S for (5.26) satis�es cS = c′S. Thus, the representation of Q3 we
chose in (5.25) is complete. �

We have learned that di�erent variable occurrences in a query require distinct variables
in the query's SOI representation. Therefore, we introduce an intermediary SOI that uses
abstract variables in Var but binds them to actual query variables by a binding function
β. Furthermore, every intermediary SOI lists a set of mandatory variables, which will be
necessary when we encode conjunctions and optional patterns.
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De�nition 5.30 (Intermediary SOI)
Let Q be a Sparql query and DB be a graph database. An intermediary SOI of Q and
DB is a quadruple (Var,M, β,NEq), where Var is a set of variables, M ⊆ Var is a set
of mandatory variables, β : Var → vars(Q) is a binding function, and NEq is a set of
inequalities over Var and DB6. N

Example 5.31 How should the intermediary SOI of Q3 from Example 5.29 and some
graph database DB be constructed? We will consider variable names like p, p′, p0, p1, . . .
instead of their Sparql variable counterparts. The binding function will associate these
abstract variables with their Sparql meaning. Therefore, we provide a di�erent SOI
variable for each occurrence of a query variable, i. e., Var = {p1, p2, c1, c2, s1, s2}. NEq
contains all the inequalities of (5.27).

φ1 : c1 ≤ p1 · Fteach
DB φ2 : p1 ≤ c1 ·Bteach

DB

φ3 : s2 ≤ p2 · Fadvise
DB φ4 : p2 ≤ s2 ·Badvise

DB

φ5 : c2 ≤ s1 · Ftake
DB φ6 : s1 ≤ c2 ·Btake

DB

φ7 : p2 ≤ p1 φ8 : s2 ≤ s1

φ9 : c1 ≤ c2 φ10 : c2 ≤ c1

(5.27)

Furthermore, β binds all the abstract variables in Var to actual query variables in vars
(Q3), i. e.,

β(x) :=


p if x ∈ {p1, p2}
c if x ∈ {c1, c2}
s if x ∈ {s1, s2}

The set of mandatory variables M of the set of inequalities shall re�ect on the mandatory
variables of the query, i. e., the mandatory occurrence of p in Q3 is re�ected by SOI variable
p1. Both occurrences of c are mandatory. Thus, we get M = {p1, s1, c1, c2}. �

As already sketched, solutions of the intermediary SOI representations must be projected
according to β. Otherwise, we will not be able to assess the soundness of the construction
we are about to de�ne. Assignments map the variables of the intermediary SOI to the
universe of all objects U .

De�nition 5.32 (Assignment/Solution of Intermediary SOI)
Let I = (Var,M, β,NEq) be an intermediary SOI. A relation S ⊆ Var × U is called an
intermediary assignment for I. An intermediary assignment S is valid for an inequality
ε ∈ NEq i�

(1) ε = w ≤ v · A implies χS(w) ≤ χS(v) · A,

(2) ε = w ≤ v implies χS(w) ≤ χS(v), and

(3) ε = w ≤ v implies χS(w) ≤ v.

S is a solution for I i� S is valid for all ε ∈ NEq. If S is a solution for I, then β(S) is the
projected solution with

β(S) := {(β(v), o) | (v, o) ∈ S}. N

Validity and solutions are formulated independently of a concrete database instance as the
instances are expected to be encoded into the matrices A used in shape (1) inequalities.
As soon as we consider projected solutions, the actual names of the variables of an inter-
mediary SOI are irrelevant. This observation is vital for the compositional construction

6The shapes follow those de�ned for general SOIs (cf. De�nition 5.11). The matrices for shape (1)
inequalities solely stem from DB .
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of the intermediary SOI representation of Sparql queries Q, i. e., Q ∈ SAO. When im-
plementing the compatibility notion used in the maximal dual simulation semantics (cf.
De�nition 4.73), we will have to assume disjoint variable sets of the SOI components.

For basic graph patterns G (or triple patterns, resp.), we already know how to obtain
a sound dual simulation SOI E(G,DB) = (Var,NEq) (cf. De�nition 5.24). From this, we
may derive a canonical intermediary SOI representation I(G,DB) by (Var,Var, idVar,NEq).
By an inductive argument, suppose we have intermediary SOIs I1 = (Var1,M1, β1,NEq1)
and I2 = (Var2,M2, β2,NEq2) for queries Q1 and Q2. As the projected solutions are
independent of the actual identities of the variables (cf. De�nition 5.32), we may assume
Var1 and Var2 to be disjoint7. To obtain the intermediary SOI for Q = Q1 OPT Q2, we
make use of the intermediary SOIs of the components by

I1 OPT I2 := (Var1∪̇Var2, β1 ∪ β2,M1,NEq1 ∪ NEq2 ∪ NEq1
2), (5.28)

where NEq1
2 = {z2 ≤ z1 | z1 ∈ M1 ∧ z2 ∈ Var2 ∧ β1(z1) = β2(z2)}. Recall that M(Q) =

M(Q1). By only carrying M1 in I1 OPT I2, we correctly implement M(Q). The new
inequalities, due to NEq1

2, implement the dependencies between the mandatory variables
of Q1 and the variables of Q2.

Example 5.33 Let DB be some graph database. Once more, consider query Q1 from
Example 4.76,

Q1 = (p, teach, c) OPT (p, advise, s) OPT (s, take, c).

To outline the construction process of the intermediary SOI representation of Q1, we
perform the translation in two steps. First, we consider the translation of

Qz = (p, teach, c)︸ ︷︷ ︸
t1

OPT (p, advise, s)︸ ︷︷ ︸
t2

.

Therefore, we get two intermediary SOIs, one for t1 (I(t1)) and one for t2 (I(t2)), as
follows

� I(t1) = ({p1, c1}, {p1, c1}︸ ︷︷ ︸
M1

, {(p1, p), (c1, c)}, {p1 ≤ c1 ·Bteach
DB︸ ︷︷ ︸

φ2

, c1 ≤ p1 · Fteach
DB︸ ︷︷ ︸

φ1

}) and

� I(t2) = ({p2, s2}, {p2, s2}︸ ︷︷ ︸
M2

, {(p2, p), (s2, s)}, {p2 ≤ s2 ·Badvise
DB︸ ︷︷ ︸

φ4

, s2 ≤ p2 · Fadvise
DB︸ ︷︷ ︸

φ3

}).

We already ensured the variable sets to be disjoint. Thus, we may now apply (5.28) to
obtain the intermediary SOI representation of Qz by

I(Qz) =

({
p1, c1,
p2, s2

}
,M1,

{
(c1, c), (s2, s),
(p1, p), (p2, p)

}
,

{
φ1, φ2, φ3, φ4,
p2 ≤ p1

})
.

To obtain I(Q1), we use I(Qz) and have to combine it with the intermediary SOI of
t3 = (s, take, c):

� I(t3) = ({s1, c2}, {s1, c2}︸ ︷︷ ︸
M3

, {(s1, s), (c2, c)}, {s1 ≤ c2 ·Btake
DB︸ ︷︷ ︸

φ6

, c2 ≤ s1 · Ftake
DB︸ ︷︷ ︸

φ5

}).

Hence,

I(Q1) =


p1, c1,
p2, s2,
s1, c2

 ,M1,


(c1, c), (s2, s),
(p1, p), (p2, p),
(s1, s), (c2, c)

 ,

{
φ1, φ2, φ3, φ4, φ5, φ6,
p2 ≤ p1, c2 ≤ c1

} ,

being the �nal intermediary SOI representation of Q1 (cf. (5.24) in Example 5.29). �

7This will be re�ected by the disjoint union operator (∪̇).
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For conjunctions Q = Q1 AND Q2, recall that M(Q) = M(Q1) ∪ M(Q2) (cf. De�ni-
tion 4.65). Thus, the mandatory variables of I1 AND I2 will be M1 ∪ M2. Further-
more, De�nition 4.73 requires us to connect the mandatory variables of Q1 with cor-
responding variables of Q2, and the mandatory variables of Q2 with the correspond-
ing ones of Q1. Thus, we are going to add inequality sets NEq1

2 (as in (5.28)) and
NEq2

1 := {z1 ≤ z2 | z2 ∈ M2 ∧ z1 ∈ Var1 ∧ β2(z2) = β1(z1)}. These thoughts culmi-
nate in

I1 AND I2 := (Var1∪̇Var2, β1 ∪ β2,M1 ∪M2,NEq1 ∪ NEq2 ∪ NEq1
2 ∪ NEq2

1). (5.29)

Example 5.34 Reconsider

Q3 = ((p, teach, c) OPT (p, advise, s)) AND (s, take, c).

The �rst part of the query, being Qz, has already been covered by Example 5.33. This
time, we have to combine I(Qz) and I(t3) conjunctively as de�ned by (5.29):

I(Q3) =


p1, c1,
p2, s2,
s1, c2

 ,M1 ∪M3,


(c1, c), (s2, s),
(p1, p), (p2, p),
(s1, s), (c2, c)

 ,


φ1, φ2, φ3, φ4, φ5, φ6,
p2 ≤ p1, s2 ≤ s1,
c2 ≤ c1, c1 ≤ c2


 .

Note, s2 ≤ s1 is an inequality because s1 ∈M3, s1 ∈ Var1 ∪Var2, and β2(s2) = β3(s1) = s.
Similarly, c2 ≤ c1 and c1 ≤ c2. �

Thus, while the variable bindings β (third component) are required for evaluating the so-
lutions of intermediary SOIs, mandatory variablesM (second component) are only needed
during the construction of the SOI.

De�nition 5.35 (Intermediary SOI for SAO)
Let DB be a graph database and Q ∈ SAO. The intermediary SOI for Q and DB is
denoted by I(Q,DB), and inductively de�ned by

I(t) := ({x, y}, {x, y}, {(x, x), (y, y)}, {y ≤ x · FaDB , x ≤ y ·Ba
DB})

I(Q1 OPTQ2) := I(Q1,DB) OPT I(Q2,DB)
I(Q1 ANDQ2) := I(Q1,DB) AND I(Q2,DB)

where t = (x, a, y) ∈ SA and for Q1,Q2 ∈ SAO. N

First note, with only slight adaptations, Algorithm 3 can still be used to compute the
greatest solution within a candidate S0. The new inequalities, due to the intermediary
SOIs, only have the shape (2). If such an inequality ε = v ≤ w is picked, we �nd the current
state of S invalid (i. e., χS(v) � χS(w)) in polynomial time (because |χS(v)|, |χS(w)| ≤
|ODB |). If S is invalid for ε, update χS(v) w. r. t. χS(w) by computing S′ through χS′(v) =
χS(v) ∧ χS(w). Otherwise, S′ remains equal to S.

We obtain the desired soundness result by looking at the projected solutions of the
intermediary SOI construction for queries Q ∈ SAO. Therefore, we show that every ap-
proximate dual simulation match S ∈ JQK∀DS

DB is a projected solution of the intermediary
SOI I(Q,DB). Conversely, if we have a solution of the intermediary SOI, then its projec-
tion is an approximate match.

Lemma 5.36 Let DB = (ODB ,Σ, EDB ) be a graph database, Q ∈ SAO, and I(Q,DB) =
(Var,M, β,NEq) the intermediary dual simulation SOI of Q and DB .

(I) If S ∈ JQK∀DS
DB , then there is a solution S′ for I(Q,DB) with β(S′) = S.
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(II) If S is a solution for I(Q,DB), then β(S) ∈ JQK∀DS
DB .

Proof: The proof strategy is an induction on the structure of Q.

Base: If Q is a triple pattern, Q = t = (x, a, y), then

I(Q,DB) = ({x, y}, {x, y}, {(x, x), (y, y)}, {y ≤ x · FaDB , x ≤ y ·Ba
DB}).

(I) Let S ∈ JQK∀DS
DB . By De�nition 4.54, JQK∀DS

DB = JQKDS
DB , and for each (x, o) ∈ S

there is an o′ ∈ ODB with (o, a, o′) ∈ EDB and (y, o′) ∈ S. Conversely, for
every (y, o) ∈ S there is an o′ ∈ ODB with (o′, a, o) ∈ EDB and (x, o′) ∈ S.
De�ne

S′ = {(x, o) | (x, o) ∈ S} ∪ {(y, o) | (y, o) ∈ S},

for which β(S′) = S holds by construction. We need to show that S′ is a
solution for I(Q,DB). Therefore, S′ must be valid for ε1 = y ≤ x · FaDB

and ε2 = x ≤ y · FaDB . Recall from Section 5.2.1, χS′(x), χS′(y) ⊆ ODB

and χS′(v) · FaDB is the set of nodes reachable from χS′(v) by traversing an
a-labeled edge in the forward direction. Suppose S′ is invalid for ε1, i. e.,
χS′(y) � χS′(x) ·FaDB , then there is a node o′ ∈ ODB , such that (y, o′) ∈ S′ but
o′ /∈ χS′(x) · FaDB . By construction, (y, o′) ∈ S and as o′ /∈ χS′(x) · FaDB , there
is no node o ∈ ODB with (x, o) ∈ S′ and (o, a, o′) ∈ EDB , which contradicts
the assumption that S is a dual simulation match. Thus, S′ is valid for ε1. By
a similar argumentation, S′ can be shown valid for ε2. Hence, S′ is a solution
for I(Q,DB).

(II) Let S be a solution for I(Q,DB). Then S is valid for ε1 and ε2 (cf. case (I)).
Let (x, o) ∈ β(S). Then we need to give some o′ ∈ ODB with (o, a, o′) ∈ EDB

and (y, o′) ∈ β(S). Since S is valid for ε2, there is at least one o′ ∈ χS(y),
so that (o, a, o′) ∈ EDB . Hence, (y, o′) ∈ S′ implies that (β(y), o′) = (y, o′) ∈
β(S). The case of (y, o) ∈ β(S) is completely analogous.

Hypothesis: For queries Qi ∈ SAO (i = 1, 2), it holds that (I) Si ∈ JQiK∀DS
DB implies a

solution S′i for I(Qi,DB) with β(S′i) = Si and (II) every solution Si for I(Qi,DB) =
(Vari,Mi, βi,NEqi) is an approximate match by βi(Si) ∈ JQiK∀DS

DB .

Step: It remains to be shown that the claims also hold for conjunctions Q = Q1 ANDQ2

and optional patterns Q = Q1 OPTQ2.

We �rst consider a conjunction Q = Q1ANDQ2 and its intermediary SOI I(Q,DB) =
(Var1∪̇Var2,M1 ∪M2, β1 ∪ β2,NEq) with NEq1 ∪ NEq2 ⊆ NEq.

(I) If S ∈ JQK∀DS
DB , there are Si ∈ JQiK∀DS

DB (i = 1, 2) with (a) S = S1∪S2, (b) vS2 ⊆
vS1 (v ∈M(Q1)), and (c) vS1 ⊆ vS2 (v ∈M(Q2)). By induction hypothesis,
there are solutions S′i for I(Qi,DB) (i = 1, 2) with βi(S

′
i) = Si. De�ne

S′ = S′1 ∪ S′2 with β(S′) = S by construction. S′ is valid for all inequalities in
NEq1 ∪NEq2. Additionally, we have to check validity of S′ w. r. t. inequalities
v ≤ w ∈ NEq where w ∈ Mi, v ∈ Varj , and βi(w) = βj(v) ({i, j} = {1, 2}).
Suppose S′ is invalid for v ≤ w (β(v) = β(w)), i. e., χS′(v) � χS′(w). Then
there is some node o′ ∈ χS′(βj(v)) with o′ /∈ χS′(βi(w)). A simple inductive
argument shows that w ∈ Mi implies βi(w) ∈ M(Qi). Then o′ constitutes a
contradiction for (b) for i = 1 or (c) for i = 2. Hence, S′ is valid for v ≤ w.

(II) If S is a valid assignment for I(Q,DB), S is valid for all inequalities in NEq.
Hence, S is also valid for NEq1 and NEq2 (since NEq1 ∪NEq2 ⊆ NEq). In fact,
there is a largest assignment S1 ⊆ S valid for NEq1 and a largest assignment
S2 ⊆ S valid for NEq2, so that S = S1 ∪ S2 but dom(S1) ∩ dom(S2) = ∅
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(because Var1 ∩ Var2 = ∅). For these assignments, βi(Si) ∈ JQiK∀DS
DB by induc-

tion hypothesis. We need to show that β1(S1) ∪ β2(S2) ∈ JQK∀DS
DB . Therefore,

let v ∈ M(Q1) (analogously, v ∈ M(Q2)). Towards a contradiction, assume
vβ2(S2) * vβ1(S1). Again by an inductive argument, v ∈M(Q1) implies some
variable x ∈M1 with β1(x) = v. Furthermore, v ∈ vars(Q2) implies a variable
y ∈ Var2 with β2(y) = v. By construction of I(Q,DB), y ≤ x ∈ NEq. Now
vβ2(S2) * vβ1(S1) implies β2(y)β2(S2) * β1(x)β1(S1), which implies itself
χS(y) � χS(x) and, thereby, contradicts the assumption that S is a solution
for I(Q,DB), including the inequality y ≤ x.

The case of Q = Q1 OPTQ2 is completely analogous, replacing the symmetric argu-
ment ({i, j} = {1, 2}) by the instance for i = 1 and j = 2. q. e. d.

Finally, the maximal dual simulation match Ŝ ∈ JQKMDS
DB is the greatest dual simulation

S ∈ JQK∀DS
DB . Therefore, the greatest solution of the intermediary SOI I(Q,DB) projects

to the maximal dual simulation match Ŝ. We conclude the intermediary SOI of a query
Q ∈ SAO and graph database DB is sound (under projection).

Theorem 5.37 Let DB be a graph database and Q ∈ SAO. The intermediary SOI of
Q and DB is sound, i. e., the greatest solution Ŝ of I(Q,DB) possesses the property of
JQKMDS

DB = {β(Ŝ)}.

Proof: By Lemma 5.36, every approximate dual simulation match S of Q in DB has a
solution S′ for I(Q,DB), so that β(S′) = S, and vice versa. Thus, from Lemma 4.71, the
greatest solution Ŝ is the maximal dual simulation match by β(Ŝ). q. e. d.

As a last open proof, we have to argue that computing the maximal dual simulation match
is in polynomial time (Theorem 4.75).

Proof of Theorem 4.75

We give a Ptime procedure that computes the maximal solution of the intermediary SOI of
Q and DB , I(Q,DB). We apply Algorithm 3 to solve the I(Q,DB) = (Var,M, β,NEq) on
initial candidate S0 ⊆ Var×U . For all inequalities ε ∈ NEq of shape (1), i. e., ε = w ≤ v ·A
(v, w ∈ Var), Algorithm 3 already produces the greatest solution in Ptime. Additionally,
the algorithm must cope with inequalities φ of shape (2), i. e., φ = v ≤ w. Once all ε
are stable, say at state S, we check S for validity of φ, i. e., whether χS(v) ≤ χS(w) in
O(|ODB |) if χS(v), χS(w) are bit-vectors. If S is invalid, we update S to S′ by

χS′(x) :=

{
χS(v) ∧ χS(w) if x = v

χS(x) otherwise.
(5.30)

Updates due to (5.30) can be done in O(|ODB |) by iterating over all positions of the vectors
χS(v) and χS(w). If there is a j with χS(v)(j) = 1 but χS(w)(j) = 0, �ip the jth bit in
χS(v). Upon such an update, we have to declare all inequalities u ≤ v · A unstable. After
we updated all φ, either all inequalities are stable, or we begin with the standard procedure
of Algorithm 3. After �nitely many such iterations, all inequalities of shape (1) are stable,
and S is valid for all inequalities of shape (2). Thus, the overall computation is in Ptime.
The worst case adds a factor of |Var| · |ODB | because in each iteration, a single update as
in (5.30) may reduce S by a single bit. After we have reached a solution S of I(Q,DB),
we have to compute the maximal dual simulation match by β(S), which may be done in
O(|Var| · |ODB |) in a naïve implementation. q. e. d.
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5.3.3 The Union Operator and Some Filter Conditions

Even without a formal proof of soundness8, we still want to sketch feasible constructions
of SOIs for unions Qu = Q1 UNION Q2 and some built-in �lter conditions, i. e., Qf =
Q1 FILTER R. We assume for the query clauses, Qi (i ∈ N), to have already obtained
intermediary SOI representations I(Qi,DB) = (Vari,Mi, βi,NEqi). As before, we require
that for every i, j ∈ N, Vari ∩ Varj 6= ∅ implies i = j.

Example 5.38 The most basic form of unions considers all queries Q ∈ SAOU in the
union normal form (cf. Example 4.16 and Proposition 4.17), i. e., Q = Q1 UNIONQ2 UNION

. . . UNIONQk (k > 1) with Q1,Q2, . . . ,Qk ∈ SAO. For these queries, our intermediary SOI
representation can canonically be extended to capture Q by

I(Q,DB) :=

 ⋃
1≤i≤k

Vari,
⋃

1≤i≤k
Mi,

⋃
1≤i≤k

βi,
⋃

1≤i≤k
NEqi

 . (5.31)

The maximal dual simulation match for Q in DB surely is the union of the maximal dual
simulation matches ofQ1, Q2, . . . , Qk. Suppose, we have a variable v ∈ vars(Qi)∩vars(Qj)
(1 ≤ i < j ≤ k). Then there are distinct variable x ∈ Vari and y ∈ Varj with βi(x) = v and
βj(y) = v. Hence, any projected maximal solution re�ects on both variables independently
because Vari ∩ Varj = ∅. Summarizing, the constructs we allow for systems of inequalities
su�ce in case of union normal form queries.

If we do not pursue the exponential construction to obtain the union normal form, we
need an additional inequality shape. Consider the query

Qu = (p, teach, c)︸ ︷︷ ︸
t1

AND

(p, advise, s)︸ ︷︷ ︸
t2

UNION (s, advisedBy, p)︸ ︷︷ ︸
t3

 ,

where advisedBy is thought of as the reverse property for advise. Hence, by this query we
look for completeness as we assume that both kinds of triples might occur in the graph
database. Intermediary SOIs for t1, t2, and t3 are derived from De�nition 5.35 and we may
assume the occurrences of p to be re�ected by variables p1, p2, and p3 (in I(ti,DB), i =
1, 2, 3). For sure, p2 ≤ p1 and p3 ≤ p1 (since p1 ∈M1 and p2 ∈ Var2/p3 ∈ Var3). However,
p1 is also bounded because of compatibility between matches of the union t2 UNION t3 and
of t1. p1 must not exceed what p2 and p3 prescribe together, i. e.,

p1 ≤ p2 + p3 (5.32)

would be an inequality re�ecting on valid matches/assignments and solutions. �

The general construction is more involved as we need to keep track of union patterns in
a compositional way. Think about a query Q1 AND (Q2 UNIONQ3) in which some variable,
say x, is mandatory in Q1 and Q2 but optional in Q3.

Queries employing built-in �lter conditions do not generally have SOI representations.
Examples that work are single atoms of the shapes x = c and x 6= c. In both cases, let
I = (Var,M, β,NEq) be a sound SOI representation of Q. Then the former case is realized
by

I FILTER (x = c) := (Var,M, β,NEq ∪ {x ≤ c | x ∈ Var ∧ β(x) = x}), (5.33)

8Such a soundness proof would at least require a formal de�nition of the semantics of the additional
operator structures.
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where c is an |ODB |-dimensional vector with single component set to 1, i. e., c(c) = 1 and
c(n) = 0 (n 6= c). In the latter case, we get a SOI realization by

I FILTER (x = y) :=

(
Var,M, β,NEq ∪

{ ∑
x∈Var:β(x)=x x ≤

∑
y∈Var:β(y)=y y,∑

y∈Var:β(y)=y y ≤
∑

x∈Var:β(x)=x x

})
(5.34)

Derived from (5.33), we also handle x 6= c by simply assuming the inverse vector c. Nega-
tion of x = y and general negations of built-in �lter conditions would require negated types
of inequalities. However, conjunctions of the atomic built-in �lter conditions above are
manageable. Disjunctions only work as long as in C1 ∨ C2 ∨ . . . ∨ Ck, every of the clauses
has the form x = ci (1 ≤ i ≤ k). As soon as the clauses are mixed, we can derive no
restrictions at all in terms of additional inequalities. For instance, if a query is �ltered by
the condition x = c ∨ y = c, we cannot assert additional constraints as in Equation (5.33)
as x could be matched by anything, as long as c matches y. The same applies to arbitrary
mixes of conjunctions and disjunctions.

As a last construct, we mention bound(x) and ¬bound(x). The latter is implemented
by an additional constraint, namely ∑

x∈Var:β(x)=x

≤ 0. (5.35)

The former case requires, once again, negated types of inequalities, which may be imple-
mented, but leave the scope of this thesis.

For (5.34) and (5.35), we had to use inequalities with complex expressions on the left-
hand side of the inequalities. But as long as summation is used, they are just shorthands.
Let {x1, x2, . . . , xm} = {x ∈ Var | β(x) = x}. Then (5.35) unfolds to

x1 ≤ 0
x2 ≤ 0

...
xk ≤ 0

(5.36)

5.3.4 E�ciency

In this set of experiments, we used our implementation sparqlSim and both database sys-
tems, Virtuoso and RDFox (Appendix A.1). To emulate a querying setting incorporating
maximal dual simulation pruning for Sparql, we �rst compute the pruning (DBprune) by
sparqlSim. Afterwards, we load the small database prune into the database and execute
the query as described in Appendix A.1. All experiments were performed on is69.

The results have recently been published in [93, 92]. We did conduct further experi-
ments using Wikidata queries. However, the results are no more conclusive than the ones
we already obtained on DBpedia and LUBM. The reasons for this potentially stem from
the 10% sample of Wikidata and the implied selection procedure of Wikidata queries (cf.
Appendix A.3).

To be self-contained, we include the result tables of our experiments in Table A.8 in
Appendix A.4. Column TsparqlSim reports on the pruning time of our implementation.
Columns T (DB0) and T (DBprune) contains the running times of the database systems on
the full dataset (DB0) and the pruned dataset (DBpruned). Columns for the combined
times of sparqlSim's pruning and the system's querying on the prune is captioned by

∑
.

Summarizing, the DBMS Virtuoso [47] that builds upon relational database system
techniques to answer Sparql queries is almost always faster than our the maximal dual
simulation pruning combined with querying on the pruned database. Only for query L2,
our pruning approach has a consistent impact on both database systems on LUBM. In 20
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out of 31 queries on DBpedia, RDFox bene�ts from the reduction by sparqlSim's prun-
ing. Although sparqlSim's e�ectiveness improves upon the baseline only by 5%, RDFox
exhibits consistently lower computation times on the pruned database. With a maximal
gain of more than 40 seconds and a minimal loss of less than 2 seconds, sparqlSim's
method appears as a viable complementation of RDFox.

5.4 Summary

In this chapter, we started with a characterization of several dual simulation-related prob-
lems. As it turned out, each problem was reducible toDualSim, the special dual simulation
problem, which, given two graphs, Q and G and a dual simulation candidate S0 ⊆ VQ×V ,
asks for the greatest dual simulation S ⊆ S0. Therefore, we concentrated on algorithmic
principles and solutions for this particular problem.

To get an overview of existing solutions, we presented a naïve iteration and HHK, the
most popular similarity algorithm, as measured by its reception in the literature9. Further-
more, we sketched more space-e�cient solutions that are not required in our setting (small
query/large data graph). Based on graph database-speci�c assumptions, we developed a
system of inequalities (SOI) approach that �rst transforms the DualSim problem into an
instance of an SOI. Finding dual simulations is the same task as �nding solutions to the
constructed SOI.

In a �rst experiment (cf. Section 5.2.6), we were able to show that our algorithm does
indeed perform better than the naïve algorithm and HHK. Constructing the count-data
structure, that is required for an e�cient �xpoint retrieval, always exceeded the evaluation
without using it. Therefore, we presented results only for the cubic version of HHK (cf.
Section 5.1.2). In terms of a feasibility evaluation, our solution seems to be the best �t for
tasks related to database querying.

Based on our SOI approach, we implemented and formally justi�ed the maximal dual
simulation semantics of Chapter 4 as a pruning semantics for Sparql query processing. Its
formalization is tightly coupled with our implementation sparqlSim. We gave sketches of
how Sparql's union operator and some built-in �lter conditions can be reintegrated into
the SOI representation.

Brie�y, our e�ciency evaluation shows that a full-�edged (commercial) database system
like Virtuoso often works faster if no external mechanism interferes. Sometimes Virtuoso
needed more time answering the query on the pruned database than on the full one. One
reason for this may be that the heuristics used for �nding the right query execution plan
are out of reach when considering the (degenerated) statistics of the pruned database.
Of course, the structure of our experimental setting presupposes that our tool runs as
an integrated component in the database management system. Furthermore, the data
structures we used are highly optimized towards the necessary �xpoint operations. If we
cannot build upon similar indexing techniques, as we used them throughout this chapter,
the running times will become much slower. In that case, our techniques are still feasible
additions to database systems that already build on bit-matrix representations of the data,
e. g., Redisgraph [31].

We observed that the order in which unstable inequalities are processed by Algorithm 3
plays an important rôle in the overall evaluation time. As discussed, we aimed for straight-
forward optimizations and ordering heuristics (cf. Section 5.2.5), but more involved in-
sights, also based on the mathematical structures, might boost our implementation even
further.

9according to the ACM Digital Library, 537 citations on Oct 21, 2019



CHAPTER 6
Conclusion

The individual chapters already provide summary sections. Therefore, we will only brie�y
re�ect on the goals we set out in Chapter 1. Furthermore, we provide a perspective on
simulations we obtained during the process of this thesis.

We believe the reason why tractable graph pattern matching up to (dual) simulations
has not been conducted on extensive datasets because the existing algorithms, most of
the works build upon [86], do not scale well with large data graphs. Tractability, i. e., the
worst-case complexity is polynomial, only accounts for the worst imaginable case. In our
experiments, we could show that the worst-case occurs only rarely in real, sometimes in
synthetic data. The implementation of our new solution devised for solving the maximal
dual simulation problem outperforms competitors by several orders of magnitude, although
they sometimes exhibit a better worst-case complexity. Thereby, we could also show that
graph pattern matching up to dual simulations handles the usual amount of data in large-
scale real-world knowledge graphs. Although our software prototype cannot cope with
industrial standard relational database technology in runtime, it provides enhancements
for other software prototypes. Our tool can be used as a pruning mechanism for Sparql
using conjunctions, disjunctions, unions, and some built-in �lter conditions. Thereby, we
sketched the potential of dual simulation pattern matching.

Our implementation was grounded on a sound basis of formal results, justifying that
our ultimate maximal dual simulation semantics is a correct approximation of the Sparql
semantics. At �rst, it seemed as if dual simulations must not be combined by Sparql

operators since, otherwise, tractability or correctness get lost. Each of the correct semantics
we developed contributed an idea that could later be used to tackle the union-closed
Sparql semantics of maximal dual simulations.

6.1 Perspective

We devised several semantic notions based on simulations. Right from the beginning,
we recaptured graph schemas and their semantics, as given by the modeled database
instances. As early as in this step, the mathematical objects of simulations showed an
enormous fragility towards change. While the graph schema model had a sound basis on
classical simulations, the lack of root nodes in modern graph data immediately turned a
well-known preorder into a re�exive relation with hardly any meaning. We had to adapt
two assumptions in exchange for root nodes:

1. Connectedness of graph schemas, which is a property guaranteed by root nodes (cf.
Section 2.1.1) and
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2. incorporation of backward steps as simulation steps, culminating in dual simulations.

The second assumption, i. e., employment of dual simulations, also guarantees a property,
formerly held by root nodes, namely reachability of all other nodes. Once we recti�ed
our simulation preorder, and thereby, justi�ed the semantics of graph schemas, we tried
to add a small feature, namely mandatory edges, which immediately destroyed any use-
ful properties for deriving a sensible semantics. It was only the fallback to deterministic
graph schemas that helped here. According to the literature, the implications and the con-
crete limits of modality and alternating simulation (i. e., modal re�nement) are open [79].
Going onward, the same issues as for simulations occurred with the notions of similarity
and bisimilarity in Chapter 3. Also, essentially the same �xes applied. On our last quest
in Chapter 4, we only added two operators and directly turned the resulting query se-
mantics incomparable, where it was still comparable in case of basic graph patterns (cf.
Theorem 3.24).

Based on this brief experience report, we are curious about the following:

1. Are there other mathematically well-founded notions that are fragile in the sense
described above?

2. Are there other robust notions? We suspect graph isomorphisms to be a robust
matching notion.

3. If Sparql and general relational algebra is not the right query language for simula-
tions, which one is?

6.2 Other Future Work

We aim at extending our graph schema and graph pattern matching models by incorpo-
rating data values. A �rst sketch has been part of our earlier work [90]. Although, as we
discussed in [91], some form of heterogeneity (e. g., incomplete data by failures in Chap-
ter 3) can be captured by means of pattern matching principles, what if the matches are
drastically di�erent from the pattern? We believe, in these cases, there is still hope for
graph pattern matching notions, but they have to be devised according to an application
context. A very general framework is known by the name of isotactics [111, 110], which
were invented to �nd equivalent business process models (e. g., in BPMN notation), al-
though they have quite di�erent shape. One of the key components of the method are
alignments as we sketched them in Section 2.1.1.

Another reason to go beyond pure pattern matching and also take the data, i. e.,
literals and annotations, in graph data seriously is the experienced rise of popularity of the
property graph model[23, 7, 5], the data model of Neo4j. In this model, key�value pairs
may be attached to nodes and concrete edges, raising the classical graph pattern matching
to a hybrid mode of relational and graph technologies.

To potentially overcome the issue regarding the runtime of some queries, an immediate
aid is O�ine pre-processing of the data graphs. Instead of searching the whole data graph,
we would run our dual simulation procedure on the smallest graph that is equivalent to the
full data graph up to dual similarity. Techniques of partition re�nement (cf. Section 5.1.3)
and the algorithmic ideas of knowledge graph summarization (cf. Section 1.1) might help in
producing such a small graph. However, as argued earlier, dual similarity is highly instable
on updates. Single edge insertions or deletions may invalidate the equivalent small graph.



APPENDIX A
Evaluation Setup and Results

A.1 Environment

We have performed all our experiments on two di�erent servers. Whenever necessary, we
identify them by their names. is68 is a server running Ubuntu 18.04.1 with an IntelCore
i9 7940X, 3.1000 GHz, having 14 cores and 128 GB RAM. is69 is a server running Ubuntu
18.04.2 with four XEON E7-8837, 2.6700 GHz, having eight cores each, 384 GB RAM, and
a Kingston DCP1000 NVMe PCI-E SSD.

In our e�ectiveness and e�ciency experiments, we used two RDF database systems,
namely Virtuoso [47] and the high-performance in-memory database RDFox [102]. We
deactivated caching for Virtuoso to achieve stable query evaluation times. RDFox is not
using query caches.

For the evaluation of e�ciency, we have run all queries ten times on each database
and averaged the times. We did the same to get stable runtime results from our tool
sparqlSim.

A.2 Datasets

We have summarized the dataset's characteristics in Table A.1. Thereby, every dataset
forms a graph database G = (V,Σ, E). The reported numbers, especially for |Σ|, re�ect
on the number of predicates used in the respective dataset, i. e., Σ ( P with Σ = {p ∈ P |
(s, p, o) ∈ E}.

DBpedia: We used DBpedia [17, 99, 82] in version 2015-101. Compared to all the other
datasets, we have more than 60,000 predicates in use in the dataset. Thus, we
expect (1) the individual rows of the adjacency matrices to be extremely sparse and
(2) also, the number of non-empty rows per adjacency rows to be lower than for
the other dataset. Regarding (1), the node with the maximum degree of 51,328
incoming and outgoing edges references a Polish government Website, specifying
how territorial information shall be represented. The average degree within the
dataset is 1.8500. Observe, based on the numbers reported in Table A.1, the average
216132665× 216132665 adjacency matrix would have approximately 11,500 entries.
The forward matrices have an average number of non-empty rows of 6211 (with a
median of 3) while the backward edges come with 4019 (with a median of 2) non-
empty rows on average.

1https://wiki.dbpedia.org/Downloads2015-10
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Table A.1: Used Datasets and Their Characteristics

Dataset |V | |Σ| |E|

DBpedia 216,132,665 65,430 751,603,507
Wikidata 167,747,925 4681 318,444,534
LDBC 100 122,544 40 209,063
LDBC 500 424,673 40 957,026
LDBC 1000 904,466 40 2,152,183
LDBC 5000 7,066,988 40 17,254,242
LUBM 328,620,750 18 1,334,681,192

Wikidata: We picked a 10% random sample from Wikidata [87, 70], September edition of
2018 without metadata and references. The sample was constructed by picking 10%
of the subjects and including all their outgoing edges. The sample covers two-thirds
of the predicates of the original dataset. The average forward matrix has 29,844
non-empty rows (median of 66). The node with the most incoming/outgoing links
(840 in total) is an article on insertional mutation in embryonic stem cells of mice.
The average node has 2 neighbors.

LDBC: The LDBC datasets [46] represent our �rst synthetic datasets. The quali�er 100,
500, 1000, and 5000 represent the input parameter to the social network generator.
Subsequently, we report on the numbers maximum degree/average degree/average
number of non-empty rows:

100: 100 / 1.0900 / 4793.5000

500: 244 / 1.1500 / 20,758

1000: 602 / 1.1700 / 96,090.4000

5000: 2529 / 1.1900 / 362,246.9000

LUBM: The Lehigh University Benchmark [61] dataset is our extreme case, which we
generated for 10,000 universities. More than one billion edges distribute over only
18 predicates. The average number of node neighbors is 1.2580, while the maximum
number of neighbors is 12. An average forward adjacency matrix has 58,934,718.1700
(median of 19,795,772) non-empty rows.

A.3 Queries

We employed three interpretations of the queries in our evaluations. As an example,
consider Q = (x, occupation, Lawyer) OPT (x, familyname, Obama).

Original: The original interpretation keeps the query as it is.

Variable: The variable interpretation replaces constants in queries by variables, consis-
tently. Hence, the variable version of Q is (x, occupation, y) OPT (x, familyname, z).
If Q is a query, then we denote its variable version by Qv, D1 is the �rst DBpedia
(original) query and Dv1 its variable interpretation.

BGP: The BGP interpretation of queries ignores all nesting of optional operators and
just regards the triple patterns. For Q, this means we consider the BGP

(x, occupation, Lawyer) AND (x, familyname, Obama),

or G = {(x, occupation, Lawyer), (x, familyname, Obama)}, equivalently.
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Here, we report on the original query sets, from which variable as well BGP forms are
automatically derived by �ag options �all-variable and �bgp within our tool sparqlSim.
If a Sparql query Q does not contain a constant (i. e., node of the database), then its
variable interpretation is identical to the original. Furthermore, if Q is a BGP, its BGP
interpretation is the same as the original one.

All our queries are published in our GitHub repository and can be found in the folder
queries/. We report on the querys' characteristics in Table A.2. The �rst query in the
table refers to the �rst line in the respective repository �le. Each query gets an identi�er
(Q). Furthermore, we list for Q the number of variables (|vars|), the number of used labels
(|Σ|), the number of triple patterns (|t|), the number of optional operators (| OPT |), the
query's optional depth (od), and whether or not it is a well-designed query (wd). The
optional depth is the maximal number of nested optional clauses, e. g., P1 OPT P2 OPT P3

has an optional depth of 1, while query P1 OPT (P2 OPT P3) has 2.
Our �rst set of queries comprises 6 queries, that have also been used by Medha Atre [15],

and is referred to by dbpedia.original.sparql. The 19 DBpedia benchmark queries
dbpedia.benchmark.sparql are drawn from the set Morsey et al. [99] used as showcases
for their DBSP (DBpedia Sparql Benchmark) methodology. Thereby, we excluded rep-
etitions from our �rst set of queries. Our Wikidata queries (cf. wikidata.sparql) are a
subset from the Wikidata Sparql logs [87], Interval 1 (2017-06-12 till 2017-07-09)2. We
randomly picked queries with 0 up to 10 optional operators. For each con�guration of
optional operators, we were looking for 20 di�erent queries. Unfortunately, we could not
�nd 20 feasible queries for all con�gurations. However, this procedure already returned
85 queries. After the queries have been cleaned to match our fragment SAO, we checked
whether we would �nd any match in our 10% sample of Wikidata (cf. Appendix A.2).
Only 11 of the 85 queries matched because the constants asked for belonged to the sam-
ple. Therefore, we changed the interpretation of all the other queries to variable, i. e., we
treated every constant as if it was a variable. After that, 22 queries for Wikidata were
left. 13 of those queries consisted of a single triple pattern, which we also had to remove.
Finally, we had 9 of formerly 85 queries, presented as W1�W9 in Table A.2. Therefore, we
repeated the procedure on the same interval for queries with at least two triple patterns.
After applying the same procedure, as we did for the �rst Wikidata query set, to 217
queries, we obtained 52 additional queries (W10�W61). The LDBC queries (ldbc.sparql)
stem from an LDBC GitHub repository3, from which we included the 7 queries from the
interactive-short query set. Our LUBM queries (lubm.sparql) are again those, used
by Medha Atre [15]. Additionally, we used the 14 benchmark queries, the LUBM Website4

lists as benchmark queries (lubm.benchmark.sparql).

A.4 Evaluation Results

In this section, we present the result tables that we interpret in Sections 4.4.3, 5.2.6
and 5.3.4. Thereby, Tables A.4 to A.6 belong to our evaluation of e�ectiveness in Sec-
tion 4.4.3. Table A.7 list the runtime results of di�erent dual simulation algorithms com-
puting the maximal dual simulation (cf. Section 5.2.6). Finally, Table A.8 shows our
results for the e�ciency evaluation of Section 5.3.4.

2https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en
3https://github.com/ldbc/ldbc_snb_implementations/tree/master/sparql/queries
4http://swat.cse.lehigh.edu/projects/lubm/queries-sparql.txt
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Table A.2: The Queries

# Q |vars| |Σ| |t| | OPT | od # Q |vars| |Σ| |t| | OPT | od # Q |vars| |Σ| |t| | OPT | od

dbpedia.original.sparql

1 D1 14 9 9 4 1 2 D2 9 7 7 1 1 3 D3 7 5 5 1 1
4 D4 10 6 7 2 1 5 D5 5 3 3 1 1 6 D6 21 12 12 8 1

dbpedia.benchmark.sparql

1 DB1 7 5 5 1 1 2 DB2 3 2 2 0 0 3 DB3 3 2 2 0 0
4 DB4 5 4 4 0 0 5 DB5 6 5 5 0 0 6 DB6 4 3 3 0 0
7 DB7 3 2 2 0 0 8 DB8 3 2 2 0 0 9 DB9 5 3 4 0 0
10 DB10 3 2 2 0 0 11 DB11 6 3 3 2 1 12 DB12 4 2 2 1 1
13 DB13 4 2 2 1 1 14 DB14 5 3 4 0 0 15 DB15 3 2 2 0 0
16 DB16 11 6 6 4 1 17 DB17 3 2 2 0 0 18 DB18 5 3 4 0 0
19 DB19 6 5 5 0 0

wikidata.sparql

1 W1 3 2 2 0 0 2 W2 4 2 2 1 1 3 W3 9 5 5 3 1
4 W4 14 7 9 4 1 5 W5 10 5 5 4 1 6 W6 12 6 6 5 1
7 W7 15 8 8 6 1 8 W8 16 8 8 7 1 9 W9 26 15 15 10 1
10 W10 4 2 2 1 1 11 W11 4 2 2 1 1 12 W12 4 2 2 1 1
13 W13 4 2 2 1 1 14 W14 4 2 2 1 1 15 W15 4 2 2 1 1
16 W16 4 2 2 1 1 17 W17 4 2 2 1 1 18 W18 4 2 2 1 1
19 W19 4 2 2 1 1 20 W20 4 2 2 1 1 21 W21 4 2 2 1 1
22 W22 4 2 2 1 1 23 W23 4 2 2 1 1 24 W24 4 2 2 1 1
25 W25 4 2 2 1 1 26 W26 4 2 2 1 1 27 W27 4 2 2 1 1
28 W28 4 2 2 1 1 29 W29 4 2 2 1 1 30 W30 4 2 2 1 1
31 W31 4 2 2 1 1 32 W32 4 2 2 1 1 33 W33 4 2 2 1 1
34 W34 4 2 2 1 1 35 W35 4 2 2 1 1 36 W36 3 2 2 0 0
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# Q |vars| |Σ| |t| | OPT | od # Q |vars| |Σ| |t| | OPT | od # Q |vars| |Σ| |t| | OPT | od

37 W37 4 2 2 1 1 38 W38 4 2 2 1 1 39 W39 4 2 2 1 1
40 W40 4 2 2 1 1 41 W41 4 2 2 1 1 42 W42 3 2 2 0 0
43 W43 5 2 3 1 1 44 W44 3 2 2 0 0 45 W45 3 2 2 0 0
46 W46 4 3 3 0 0 47 W47 4 2 2 1 1 48 W48 3 2 2 0 0
49 W49 6 3 3 2 1 50 W50 3 2 2 0 0 51 W51 6 3 3 2 1
52 W52 5 3 3 1 1 53 W53 6 3 3 2 1 54 W54 4 3 3 0 0
55 W55 3 2 2 0 1 56 W56 5 3 4 0 0 57 W57 6 3 3 2 1
58 W58 5 3 3 1 1 59 W59 5 3 3 1 1 60 W60 4 3 3 0 0
61 W61 8 5 5 2 1

ldbc.sparql

1 C1 10 9 9 0 0 2 C2 11 9 10 0 0 3 C3 7 6 6 0 0
4 C4 5 4 4 0 0 5 C5 5 4 4 0 0 6 C6 9 8 8 0 0
7 C7 9 7 8 0 0

lubm.sparql

1 L1 9 6 7 2 1 2 L2 15 11 13 3 1 3 L3 15 10 13 3 1
4 L4 6 5 5 1 1 5 L5 6 5 5 1 1 6 L6 7 5 5 1 1

lubm.benchmark.sparql

1 LB1 3 2 2 0 0 2 LB2 6 4 6 0 0 3 LB3 3 2 2 0 0
4 LB4 6 5 5 0 0 5 LB5 3 2 2 0 0 6 LB6 2 1 1 0 0
7 LB7 5 3 4 0 0 8 LB8 6 4 5 0 0 9 LB9 6 4 6 0 0
10 LB10 3 2 2 0 0 11 LB11 3 2 2 0 0 12 LB12 5 3 4 0 0
13 LB13 2 1 1 0 0
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Table A.4: E�ectiveness Evaluation on LUBM and DBpedia

Query Result No. Gold Base sparqlSim Query Result No. Gold Base sparqlSim

LUBM Dataset DBpedia Dataset

L1 10,448,905 3,276,841 505,801,654 10,181,730 D1 523,066 3,139,273 91,456,630 3,141,102
L2 226,641 114,989 757,247,049 25,429,750 D2 0 0 68,555,187 0
L3 32,828,280 15,416,012 683,467,844 50,237,812 D3 12 60 82,491,252 60
L4 11 35 587,712,255 126 D4 5794 28,704 81,004,705 28,704
L5 10 33 587,712,255 101 D5 25,102,459 22,630,477 37,296,555 22,691,521
L6 7 35 674,284,193 35 D6 365,693 79,943 101,844,668 79,944

Lv1 10,448,905 3,276,841 505,801,654 10,181,730 Dv1 10,159,863 14,565,628 91,456,630 14,591,682
Lv2 226,641 114,991 757,247,049 26,112,456 Dv2 0 0 68,555,187 0
Lv3 110,521,609 26,915,573 683,467,844 242,767,878 Dv3 37,453 50,003 82,491,252 50,003
Lv4 7,788,533 22,276,006 587,712,255 152,664,613 Dv4 1,165,353 150,227 81,004,705 150,284

Dv5 25,102,459 22,630,477 37,296,555 22,691,521
Lv6 7,199,781 35,850,845 674,284,193 35,998,905 Dv6 365,693 79,943 101,844,668 79,944

DBpedia Dataset (Benchmark Queries)

DB1 12 60 82,491,252 60 DB2 859,751 726,749 5,362,530 726,812
DB3 913,786 1,587,731 5,362,530 1,588,127 DB4 438,542 386,000 81,176,300 386,020
DB5 0 0 81,176,302 0 DB6 0 0 67,165,169 0
DB7 815,522 886,826 66,505,605 886,939 DB8 34,991 37,965 66,422,294 37,965
DB9 8416 30,258 80,259,440 30,258 DB10 8247 13,116 406,598 13,116
DB11 8061 12,642 742,007 12,642 DB12 9849 8955 16,165 8955
DB13 9554 8660 16,165 8660 DB14 123,467 365,131 80,274,588 365,154
DB15 22,673,220 27,652,055 37,296,555 27,747,192 DB16 2 4 18,005,367 4
DB17 7,898,331 8,285,964 67,144,769 8,294,385 DB18 66,903 41,808 66,461,056 41,808
DB19 879,460 292,531 74,149,022 292,541
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Table A.5: E�ectiveness Results on the LDBC Datasets

100 500 1000 5000
Query Base sparqlSim Base sparqlSim Base sparqlSim Base sparqlSim

C1 85,776 792 400,498 4014 889,398 8127 6,799,411 40,635
C2 107,398 0 451,120 0 989,787 0 7,587,208 0
C3 50,489 756 214,871 8318 479,215 21,941 3,906,783 198,501
C4 57,829 0 254,867 0 563,510 0 4,410,731 0
C5 46,033 19,530 165,450 135,412 347,982 313,344 2,428,553 2,357,826
C6 85,333 2732 272,192 35,242 556,019 93,136 3,755,637 892,254
C7 62,387 9706 317,376 136,420 726,750 356,716 5,987,946 3,458,852
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Table A.6: E�ectiveness on the Wikidata Sample

Query Base sparqlSim Query Base sparqlSim Query Base sparqlSim Query Base sparqlSim

W1 30,701,618 3,810,056 W2 271,993 13,432 W3 7,058,477 57,040 W4 7,326,621 3457
W5 5,002,684 4,785,432 W6 4,787,804 4,764,043 W7 5,841,508 189,705 W8 6,702,321 4,956,191
W9 6,127,069 6 W10 2 1 W11 5 4 W12 7 6
W13 9 1 W14 10 9 W15 10 7 W16 11 8
W17 12 9 W18 12 12 W19 12 11 W20 21 8
W21 21 19 W22 24 23 W23 25 24 W24 26 17
W25 29 3 W26 38 37 W27 41 41 W28 46 46
W29 47 46 W30 54 37 W31 58 57 W32 68 68
W33 70 67 W34 73 71 W35 135 126 W36 84,620 8913
W37 84,620 48,368 W38 259,503 308 W39 271,993 13,432 W40 280,557 280,554
W41 280,557 280,554 W42 504,172 50,361 W43 1,313,454 674,683 W44 4,803,540 8645
W45 4,805,362 9056 W46 4,813,606 78 W47 4,818,549 4,767,157 W48 4,851,711 17,711
W49 4,863,584 4,771,917 W50 4,900,823 27,479 W51 4,962,167 812 W52 5,062,736 8773
W53 5,252,988 4,810,560 W54 5,264,685 7500 W55 5,406,767 131,460 W56 5,407,223 0
W57 5,754,187 4,856,051 W58 6,008,218 190,146 W59 6,417,127 194,913 W60 30,731,883 4660
W61 31,065,525 5169
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Table A.7: Dual Simulations: Comparison to State-of-the-Art on LUBM and DBpedia

Q Naive HHK sparqlSim Q Naive HHK sparqlSim Q Naive HHK sparqlSim

LUBM Dataset

L1 1326.4800 � 9.6985 L2 580.2890 � 5.3251 L3 1264.6000 � 35.3777
L4 442.1960 � 1.5902 L5 402.0810 � 1.5767 L6 786.8520 � 0.8215
Lv1 1370.6600 � 9.6837 Lv2 2539.8700 � 7.8567 Lv3 1488.7700 � 34.9070
Lv4 680.5930 � 20.1893 Lv6 888.6590 � 9.6929 LB1 676.5460 � 0.1604
LB2 302.5910 � 1.3451 LB3 830.9850 � 0.4802 LB4 71.5194 � 0.6089
LB5 648.2550 � 0.0123 LB6 1373.2200 � 0.0063 LB7 609.5130 � 1.0110
LB8 655.9270 � 0.1016 LB9 248.6370 � 5.7442 LB10 639.1510 � 0.0124
LB11 28.8619 � 0.0308 LB12 40.5184 � 0.0735 LB13 1124.5400 � 0.4453

DBpedia Dataset

D1 131.8180 1210.1300 0.1645 D2 0.0491 4.9914 0.0023 D3 87.8867 510.3250 0.0368
D4 82.7732 2468.6000 0.0374 D5 99.8869 133.0480 1.1803 D6 0.0006 11.3141 0.0021
Dv1 133.8560 1688.6300 0.6205 Dv2 0.0495 5.6256 0.0023 Dv3 88.4062 788.5090 0.4993
Dv4 81.2308 3563.2400 0.0311 Dv5 97.5897 135.1350 1.1722 Dv6 0.0007 11.2269 0.0020
DB1 88.9172 501.3390 0.0369 DB2 25.8251 135.9880 0.0176 DB3 27.2936 94.0591 0.1354
DB4 66.0301 1135.2500 0.5018 DB5 0.0000 2.9788 0.0000 DB6 0.2047 2211.1400 0.0106
DB7 0.0006 25.8374 0.0022 DB8 2.5369 267.7570 0.4502 DB9 1.9976 580.7460 0.4733
DB10 77.9261 8258.7900 0.0521 DB11 0.7098 9.6570 0.0141 DB12 3.8993 25.6195 0.0159
DB13 0.0709 6.6031 0.0105 DB14 151.6360 392.4540 0.1020 DB15 142.4860 208.7410 1.5962
DB16 0.0000 1.1351 0.0000 DB17 10.2253 131.5840 0.4946 DB18 2.1530 1587.6800 0.4849
DB19 34.7248 486.9790 0.5007
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Table A.8: E�ciency on LUBM and DBpedia

Q TsparqlSim T (DB ) T (DBprune)
∑

T (DB ) T (DBprune)
∑

Virtuoso RDFox

L1 15.6839 5.1261 2.2609 17.9448 19.1000 1.4010 17.0849
L2 5.2648 50.8528 0.9709 6.2357 25,900.0000 888.0000 893.2648
L3 49.8689 56.6760 26.7672 76.6361 161.0000 15.6900 65.5589
L4 2.4795 0.0007 0.0001 2.4796 0.0000 0.0000 2.4795
L5 1.8955 0.0003 0.0001 1.8956 0.0000 0.0000 1.8955
L6 1.4653 0.0003 0.0001 1.4654 0.0000 0.0000 1.4653
Lv1 15.6582 5.1261 2.2609 17.9191 19.1000 1.4010 17.0592
Lv2 10.8789 50.8528 0.9709 11.8498 25,900.0000 888.0000 898.8789
Lv3 50.4400 105.7132 76.4734 126.9134 240.4000 157.6000 208.0400
Lv4 30.7849 55.0371 49.6343 80.4192 59.4000 38.6700 69.4549
Lv6 14.1073 5.3266 3.9156 18.0229 12.7000 7.5740 21.6813

D1 0.6910 0.3945 0.3590 1.0500 1.4000 1.1150 1.8060
D2 0.0036 0.0005 0.0000 0.0036 0.0000 0.0000 0.0036
D3 0.0523 0.0019 0.0003 0.0526 1.1000 0.0030 0.0553
D4 0.0688 0.0104 0.0033 0.0721 0.6200 0.0020 0.0708
D5 2.2756 2.1480 4.0081 6.2837 5.9600 3.4930 5.7686
D6 0.5392 0.0393 0.0210 0.5602 3.2300 0.0160 0.5552
Dv1 1.5046 3.4059 3.8493 5.3539 49.5000 5.6930 7.1976
Dv2 0.0034 0.0017 0.0000 0.0034 0.0000 0.0000 0.0034
Dv3 0.1725 0.0172 0.0049 0.1774 4.4000 0.0060 0.1785
Dv4 1.3464 0.0608 0.0341 1.3805 30.3000 0.1780 1.5244
Dv5 1.5604 2.1399 3.6889 5.2493 5.9000 4.3480 5.9084
Dv6 0.5376 0.0364 0.0211 0.5587 3.3000 0.0160 0.5536

DB1 0.0625 0.0024 0.0000 0.0625 1.4680 0.0000 0.0625
DB2 0.0267 0.0426 0.0086 0.0353 0.0990 0.0300 0.0567
DB3 0.1617 0.0687 0.0637 0.2254 0.3480 0.1100 0.2717
DB4 0.9985 0.0450 0.0127 1.0112 0.1040 0.0120 1.0105
DB5 0.0000 0.0001 0.0000 0.0000 0.0330 0.0000 0.0000
DB6 0.0182 0.0001 0.0001 0.0183 0.0000 0.0000 0.0182
DB7 0.6252 0.0222 0.0134 0.6386 12.8300 0.0420 0.6672
DB8 0.7034 0.0034 0.0011 0.7045 14.4100 0.0020 0.7054
DB9 0.1437 0.0208 0.0053 0.1490 0.7930 0.0010 0.1447
DB10 0.0730 0.0025 0.0010 0.0740 0.1170 0.0010 0.0740
DB11 0.0210 0.0033 0.0028 0.0238 0.0040 0.0010 0.0220
DB12 0.0257 0.0011 0.0017 0.0274 0.0010 0.0000 0.0257
DB13 0.0200 0.0011 0.0018 0.0218 0.0010 0.0010 0.0210
DB14 0.0196 0.0541 0.0308 0.0504 0.6430 0.0220 0.0416
DB15 0.1334 1.0824 0.4405 0.5739 3.2820 1.9980 2.1314
DB16 1.6231 0.0000 0.0002 1.6233 0.0000 0.0000 1.6231
DB17 0.0138 0.1212 0.0989 0.1127 0.7580 0.3100 0.3238
DB18 0.8411 0.0116 0.0033 0.8444 0.1190 0.0010 0.8421
DB19 0.6780 0.1019 0.0556 0.7336 18.7500 0.0480 0.7260
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