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Abstract

In multi-agent belief fusion, there is increasing interest in
results and methods from social choice theory. As a theoret-
ical cornerstone, the Condorcet Jury Theorem (CJT) states
that given a number of equally competent, independent agents
where each is more likely to guess the true out of two alterna-
tives, the chances of determining this objective truth by ma-
jority voting increase with the number of participating agents,
approaching certainty. Past generalizations of the CJT have
shown that some of its underlying assumptions can be weak-
ened. Motivated by requirements from practical belief fusion
scenarios, we provide a significant further generalization that
subsumes several of the previous ones. Our considered setting
simultaneously allows for heterogeneous competence levels
across the agents (even tolerating entirely incompetent or even
malicious voters), and voting for any number of alternatives
from a finite set. We derive practical lower bounds for the
numbers of agents needed to give probabilistic guarantees for
determining the true state through approval voting. We also
demonstrate that the non-asymptotic part of the CJT fails in
our setting for arbitrarily high numbers of voters.

1 Introduction
When aggregating pieces of information or judgments from
several sources, one can have one of two goals in mind:
One goal is to ensure a fair aggregation procedure that out-
puts a collective judgment which best reconciles the prefer-
ences held by each individual source – in such a case, “truth”
emerges from the process itself in form of the aggregated
judgment. Another goal presumes the existence of a true state
of the world, independent from the consulted sources’ incli-
nations, and strives for a procedure that has a high probability
to determine this objective truth, even at the risk of “unfairly”
discarding the information given by some sources. In this
work, it is the second, truth tracking goal we have in mind.

The Condorcet Jury Theorem (CJT) is a venerable and
prominent result from voting theory (Marquis de Condorcet
1785). In its simplest version, it states that a group of indepen-
dent, equally competent, and reliable agents voting on two
alternatives where one represents the true state of the world
(but the agents do not directly know which), then majority
voting best tracks this true state. The CJT’s original purpose
was to provide a strong justification for majority voting as
method of societal decision making, as its outcome in a demo-
cratic procedure binds the rest of society (Young 1988). The

CJT provides this justification by asserting that a large group
of voters performs better at reaching the objectively correct
decision – should one exist – than single individuals.

Lately, with waning focus on the human nature of voters,
the CJT and its extensions have been the subject of great
interest and found applications in various disciplines where
a voter now is seen more generally as some “abstract agent”
that could be instantiated by humans, but also by automated
decision-making procedures drawing information, e.g., from
sensors, pre-specified knowledge, and/or inferencing methods.
Notable application fields include information science, e.g.,
for relating voting to link-based ranking of webpages (Master-
ton and Olsson 2016), and machine learning, where CJT-like
results can be harnessed for evaluating the importance of
diversity for the quality of consensus-clustering algorithms
(Jain 2018) or for guaranteeing that sets of classifiers (typi-
cally referred to as an ensembles), whose individual decisions
are aggregated by some sort of voting mechanism, outperform
individual classifiers (Dietterich 2000; Lam 2000).

But also the knowledge representation area has seen signif-
icant recent influence from social choice theory. In particular,
voting methods have been applied to multi-agent systems
and information fusion, where pieces of information coming
from potentially conflicting agents have to be merged into
a collective knowledge base. In this setting, the aggregation
process is realized by defining belief fusion operators that
apply voting rules to propositional knowledge bases with the
aim of tracking the correct piece of information (Pigozzi and
Hartmann 2007). Subsequently, the CJT was formalized and
generalized for the belief fusion framework, demonstrating
how to best track the true state of the world when knowl-
edge bases in an incomplete information setting are merged
(Everaere, Konieczny, and Marquis 2010).

In the following, we will provide a high-level overview of
the CJT and its generalizations.1 In all settings, some number
of agents votes on a finite set of alternatives. Thereby, it is
always assumed that the true state of the world is among the
alternatives that can be voted on.

Condorcet’s Theorem. Condorcet’s original setting is di-
chotomic, that is, the set of alternatives is restricted to two and
each agent has to vote for exactly one of the two. Moreover,

1For a rigid formalization of these results, see Section 4.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

205



a particular agent is said to be reliable if the probability that
she votes for the true state of the world is strictly greater than
one half. In a homogenous setting, the probability of voting
for a particular alternative is the same across all agents. Ad-
ditionally, the agents choices are assumed to be independent.
That is, intuitively, knowing the choices of some of the agents
does not provide any information on the choices of the other
agents. Upon voting, the majority rule stipulates that the al-
ternative that receives more than half of the votes wins. Note
that in a dichotomic setting with an odd number of voters, the
majority always produces a unique winner. From the above
assumptions, Condorcet derived the following result:
Theorem 1 (Marquis de Condorcet 1785). For odd-numbe-
red homogenous groups of independent and reliable agents
in a dichotomic voting setting, the probability that majority
voting identifies the correct alternative
(1) increases monotonically with the number of agents and
(2) converges to 1 as the number of agents goes to infinity.

Note that only (2), commonly referred to as the asymp-
totic part of the theorem or Crowd Infallibility is featured in
most generalizations of the CJT (Ben-Yashar and Paroush
2000), while (1), the non-asymptotic part, also called Grow-
ing Reliability, has been demonstrated to be violated for a
small number of agents when the homogeneity assumption is
weakened (Owen, Grofman, and Feld 1989).

Naturally, the underlying assumptions seem quite strong:
Voters are typically not equally competent. Moreover, agents
often times will be presented more than two alternatives. Also,
an agent might wish to abstain or to vote for more than one
particular alternative at a time. Guided by these observations,
various generalizations of the CJT have been established, re-
laxing some of the underlying assumptions. In the following,
we briefly discuss some existing generalizations of the CJT
that are central to our contribution.

Choosing from More Options. The first generalization we
discuss is due to List and Goodin (2001), who generalized
the CJT to any finite number of alternatives. As before, their
setting still presumes homogeneous groups of independent
agents, and each agent is supposed to pick exactly one of
the alternatives. However, each agent is now seen as reliable
if the probability that she votes for the correct alternative is
strictly greater than the probability that she votes for any other
alternative. Moreover, instead of majority voting, plurality
voting is applied. That is, an alternative wins if it receives
strictly more votes than any other alternative.
Theorem 2 (List and Goodin 2001). For a homogenous
group of independent and reliable agents where each agent
votes for exactly one alternative from a finite set of alter-
natives, the probability that plurality voting identifies the
correct alternative
(1) is higher than that for any other alternative winning and
(2) converges to 1 as the number of agents goes to infinity.

Still, for this result it is assumed that all voters are equally
reliable and that agents can vote for one alternative only.

Choosing Several Options or None. More recently, Ever-
aere et al. (2010) generalized the CJT to settings where agents

vote by choosing any subset from a finite set of alternatives.
Again, they presume a homogeneous group of independent
agents, but adjust the reliability criterion: It requires that the
probability of the correct alternative being contained in the
chosen set is strictly greater than that of any other.

The appropriate voting method is then approval voting,
where an alternative wins if it is contained in more of the
agent-picked-sets than any other.

Theorem 3 (Everaere, Konieczny, and Marquis 2010). For a
homogeneous group of independent and reliable agents, the
probability that approval voting on finitely many alternatives
identifies the correct alternative converges to 1 as the number
of agents goes to infinity.

While Everaere et al.’s result allows a more liberal voting
scheme, it still relies on the – rather artificial – assumption
that all agents are equally competent.

Heterogenous Competence. One has to acknowledge that,
in most natural cases, there are agents more competent than
others. Likewise, it would be practical if one could give (prob-
abilistic) correctness guarantees even for cases where the
group of agents contains a certain share of incompetent (or
even malicious) agents. To this end, Owen et al. (1989) have
shown a generalized CJT wherein, in a dichotomic setting,
the homogeneity requirement is dropped and the reliability as-
sumption is significantly weakened. They define reliability on
a group-level rather than individually and merely require that
the probability to vote for the correct alternative, averaged
across all agents, is strictly greater than one half.

Theorem 4 (Owen, Grofman, and Feld 1989). For a reliable
group of independent agents in a dichotomic voting setting,
the probability that majority voting identifies the correct alter-
native converges to 1 as the number of agents goes to infinity.

Then again, while allowing for voter heterogeneity, this
result is restricted to two alternatives where agents can vote
for one alternative at a time only.

Our Contribution. As central contribution of this paper,
we state (Section 4) and prove (Section 5) a generalization
of the CJT that subsumes all the results discussed before. It
establishes that the probability of approval voting identifying
the correct alternative converges to 1 as the number of agents
goes to infinity, in any setting where

(i) the set of choices to pick from is finite and fixed, but of
arbitrary size,

(ii) upon voting, the agents can choose any number of alter-
natives from that set, and

(iii) we require group reliability, i.e., the average probability
to vote for the true alternative is (by a fixed margin
∆p > 0) greater than the average probability to vote for
any other alternative.

We note that the existence of a fixed positive probability mar-
gin ∆p is an implicit requirement in all mentioned versions
of the CJT. All these results fail if the difference between the
probabilities is allowed to approach zero as the number of
voters grows (see Berend and Paroush 1998).

Further contributions of this paper are the following:
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• We establish a formally rigorous unifying probabilistic
framework that allows for comparing the discussed results
and makes all underlying assumptions explicit (Section 4).

• We derive bounds for the minimal number of agents re-
quired to guarantee that the approval voting is successful
with a probability higher than a given value Pmin, depend-
ing on the number m of choices and the probability margin
∆p. It turns out that for different values of these parameters,
different formulae provide better estimates.

• We discuss why an analogon to part (1) of the CJT cannot
be established in our setting and provide corresponding
counterexamples for arbitrarily large numbers of agents.

2 Motivational Scenario
To further motivate the use of the CJT for information fu-
sion, we briefly discuss a hypothetical scenario based on an
emerging technology called Smart Dust.

Smart Dust is a micro-electro-mechanical system (MEMS)
with wireless, dust-sized components, called motes, that can
carry sensors in order to provide information on their do-
main of application (Sharma and Sultana 2020). Possible
applications range from general engineering and health to
environmental monitoring (e.g., to support forecasting of nat-
ural disasters) (Haenggi 2016).

For instance, when applied to monitoring geological ac-
tivity, a Smart Dust system consisting of possibly thousands
of motes (Nerkar and Kumar 2016), spread across a region
of interest, can be used to detect patterns known to precede
major geological events such as earthquakes or landslides.
The goal then is to assemble the individual motes’ findings to
derive predictions of such events occurring in the near future
(Sharma and Sultana 2020). Key issues in collecting the data
from the Smart Dust system include the aggregation of het-
erogeneous information and the management of uncertainty
at various levels (Agogino, Granderson, and Qiu 2002).

In the CJT setting, we can see each sensor-carrying mote
as an individual agent. In a hypothetical scenario, we can
imagine a manufacturer of a Smart Dust system to give cer-
tain guarantees regarding the reliability of the provided motes.
This may include a certain percentage of motes malfunction-
ing (through production errors or as a consequence of their
deployment) as well as the probabilities of a functional mote
to correctly identify patterns that precede earthquakes or land-
slides, and to distinguish these patterns from each other and
from harmless geological activity in the area where it is ap-
plied. In this scenario, the probability of a mote correctly
identifying such a pattern also depends on, for instance, its
location in that area. The collection of motes/agents then
has heterogeneously distributed levels of competence about
which only statistical guarantees can be given.

Then, the data delivered by the plethora of motes has to
be aggregated. To this end, it is conceivable to apply voting
methods, where each potential prediction associated with a
detected pattern constitutes a particular alternative to vote
on. The generalization of the CJT proven in this paper justi-
fies this strategy in principle and ensures that – given basic
reliability guarantees – the probability of making the right
prediction goes against 1 with a growing number of motes.

Even more, our results providing lower bounds on this suc-
cess probability depending on the number of agents, the num-
ber of alternatives, and certain quantified statistical reliability
guarantees, allow us to give practical concrete estimates for
the number of motes (or “kilograms of smart dust”) that need
to be deployed in order to successfully track the correct geo-
dynamic situation.

3 Preliminaries
Probability Theory. While we assume the reader to be
familiar with the foundations of probability, we briefly recall
some basic notions and fix notations used. Following com-
mon practice we use X (usually with annotations) to denote
random variables. For Bernoulli random variables, where
X can only take values from {0, 1}, we let p = P(X = 1)
denote the probability for X taking the value and obtain
P(X = 0) = 1 − p, where, as usual, P(.) is used to denote
the probability of X taking the indicated values. Given a ran-
dom variable X , we let E(X) denote the expected value of X ,
defined as

∑
x XP(X = x) whenever X ranges over finitely

many values. Likewise, we define the variance Var(X) of
X as E((X − E(X))2). For Bernoulli distributions with pa-
rameter p, we obtain E(X) = p and Var(X) = p(1− p).

Voting. We assume a finite set W = {ω1, . . . , ωm} of m
items referred to as choices. We further assume a finite set
A = {a1, . . . , an} of n agents.

Given A and W , one approval voting (instance) is rep-
resented by the relation V ⊆ A × W where (ai, ωj) ∈ V
means that agent ai approves choice ωj (meaning that she
considers it more favourable or likely than any of the non-
approved choices). Given an approval vote V , the score #V ω
of some choice ω ∈ W is defined as the overall number of
votes that ω receives, i.e.,

#V ω = |{ai ∈ An | (ai, ω) ∈ V }|.
We then say some choice ω ∈ W wins the approval vote

V if it receives strictly higher scores (that is: strictly more
votes) than any other choice, that is,

#V ω > max
ω′∈W\{ω}

#V ω′.

Let us remark that other types of voting schemes can be
obtained from approval voting. Whenever every agent is re-
quired to vote for exactly one choice (i.e., V is required to be
a function), approval voting is identical to plurality voting. If
one additionally requires m = 2, one obtains majority vot-
ing, since in the functional setting with two choices, a choice
winning the approval vote means that it must obtain strictly
more than half of all votes.

4 Truth Tracking through Voting
In the truth tracking setting, the choices represent possible
world states, with the basic assumption that in each instan-
tiation of the voting procedure, exactly one of these states
ω∗ ∈ W is the true, actual world state. The agents are as-
sumed not to have direct access to the information about the
actual world state, but they might be able to obtain indications
through some epistemic process (such as sensor readings).
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Formal Probabilistic Model. As usual, the described sce-
nario is modeled as a random process. This process generates
ω∗ as well as V and is governed by a joint probability dis-
tribution P over the Bernoulli (i.e., {0, 1}-valued) random
variables

Xω1
∗ , . . . , Xωm

∗ ,
Xω1

1 , . . . , Xωm
1 ,

...
...
...
...

...
Xω1

n , . . . , Xωm
n .

The values taken by these random variables represent the
outcome of a voting event as follows: Xωj

∗ is 1 if ωj is the
actual world state (i.e., ωj = ω∗), and 0 otherwise, whereas
X

ωj

i is 1 if the ith agent voted for the jth world state (i.e.,
(ai, ωj) ∈ V ) and 0 otherwise. For brevity, we let [ω∗ = ωj ]
denote the expression X

ωj
∗ =1 ∧

∧
ω∈W\{ωj} X

ω
∗ =0.

We next specify basic assumptions we make about the
above joint distribution. Obviously, considering the described
meaning of the joint distribution, we always require that
[ωj = ω∗] holds for exactly one ωj ∈ W .

One central and crucial assumption that we impose is
that the agents do not influence each other in their decision
whether or not to approve some choice.

Definition 1. A joint distribution satisfies agent approval
independence if, conditioned on the actual world state, the
decision to approve any given ωj is made independently
across all agents, i.e., for any ω, ωj ∈ W and any sequence
v1, ..., vn of values from {0, 1} the following holds:

P
( n∧
i=1

X
ωj

i = vi | [ω∗=ω]
)
=

n∏
i=1

P
(
X

ωj

i = vi | [ω∗=ω]
)
.

In other words, in a setting satisfying agent approval inde-
pendence, the joint probability of any given approval voting
outcome referring to a given world state can be obtained as
the product of the corresponding marginal probabilities, when
controlling for the actual world state.

Next, we introduce a formal notion that will allow us to
quantify how well the group of agents as a whole is able to
estimate the actual true world state.

Definition 2. A joint probability distribution satisfies ∆p-
group reliability for some ∆p > 0, if the probability to ap-
prove the true world state, averaged across all agents, is at
least by ∆p higher than the averaged probability for approv-
ing any other state, i.e., for every ω, ω′ ∈ W with ω ̸= ω′ the
following holds:

1
n

n∑
i=1

P
(
Xω

i =1 | [ω∗=ω]
)
≥ ∆p+ 1

n

n∑
i=1

P
(
Xω′

i =1 | [ω∗=ω]
)
.

The previous two assumptions are required to obtain our
result (and any of the prior results discussed in this paper), so
we refer to this setting as I&R (for independent and reliable).

The assumptions introduced next are optional; they allow
to constrain the setting further in order to formalize existing
results in a uniform framework. The first such constraint
requires the conditional approval probabilities to be uniform
across all agents.

Definition 3. A joint distribution satisfies homogeneity if,
upon fixing the actual world state, the marginal probability to
approve any given ωj is the same for every agent, i.e., for any
ω, ω′ ∈ W and all i, k ∈ {1, . . . , n} the following holds:

P(Xω
i = 1 | [ω∗=ω′]) = P(Xω

k = 1 | [ω∗=ω′]).

Another constraint realizes the plurality voting scheme by
imposing that every agent must approve exactly one of the
choices.
Definition 4. A joint distribution satisfies (vote) complete-
ness if for every i ∈ {1, . . . , n} the following holds:∑m

j=1 X
ωj

i = 1.

We conclude our framework by formally defining an ap-
propriate notion characterizing the chance that the true world
state is identified via an approval vote.
Definition 5. Given a family P of joint probability distribu-
tions for n agents and a set W of m choices, the approval
vote worst-case success probability Pwcs

m,n is defined by

min
P∈P
ω∈W

P
( ∧

ω†∈W\{ω}

∑n
k=1 X

ω
k >

∑n
k=1 X

ω†
k | [ω∗ = ω]

)
.

In words, for m choices and n agents, given a family P of
distributions adhering to a specific set of assumptions about
the voting setting, Pwcs

m,n expresses the guaranteed minimal
probability that approval voting identifies the true world state.

Formulating CJT Versions. With the above notions in
place, we can represent the previously shown versions of the
CJT in a uniform way as follows, where the number m ≥ 2
of choices and the group reliability parameter ∆p > 0 are
arbitrary but fixed throughout the limit process:
• Marquis de Condorcet: In any complete, homogeneous

I&R setting holds Pwcs
2,n −−−−→

n→∞
1.

• List and Goodin: In any complete, homogeneous I&R set-
ting holds Pwcs

m,n −−−−→
n→∞

1.

• Everaere, Konieczny, and Marquis: In any homogeneous
I&R setting holds Pwcs

m,n −−−−→
n→∞

1.

• Owen, Grofman, and Feld: In any complete I&R setting
holds Pwcs

2,n −−−−→
n→∞

1.

In the same vein, we can express our main theorem, which
generalizes all of the above:
Theorem 5 (Generalized CJT). In any I&R setting with fixed
m ≥ 2 and ∆p > 0 holds Pwcs

m,n −−−−→
n→∞

1.

5 Proof of the Asymptotic Result
For the proof of our generalization of the (asymptotic part of)
CJT, it is convenient to consider ω∗ fixed (yet still unknown
to the agents) and the remaining elements of W appropri-
ately renamed, i.e., we let W = {ω∗, ω1, . . . , ωm−1}. This
is without loss of generality and allows for a more succinct
formulation without conditional probabilities.

For every ω ∈ W , we let pω1 , . . . , p
ω
n denote the Bernoulli

parameters of the random variables Xω
1 , . . . , X

ω
n , respec-

tively, which are independently distributed by assumption.
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Then E(Xω
k ) = pωk for all k ∈ {1, . . . , n}. We will make use

of the average of the pωk given by

p̄ω =
1

n

∑n
k=1 p

ω
k .

We define for all ω, n, and k

X̃ω
k = Xω

k − E(Xω
k ) = Xω

k − pωk

the centralized versions of all considered distributions. Ob-
serve that E(X̃ω

k ) = 0 and

Var(X̃ω
k ) = Var(Xω

k ) = pωk (1− pωk ) ≤ 1
4 . (1)

Moreover, for every ω ∈ W , we define the (original and
centralized) distribution for the score received by ω by

Xω =
∑n

k=1 X
ω
k and X̃ω =

∑n
k=1 X̃

ω
k ,

respectively, and note that

Xω =
∑n

k=1 X
ω
k =

∑n
k=1 E(X

ω
k ) +

∑n
k=1(X

ω
k − E(Xω

k ))

=
∑n

k=1 p
ω
k +

∑n
k=1(X

ω
k − E(Xω

k ))

= np̄ω +
∑n

k=1 X̃
ω
k = np̄ω + X̃ω. (2)

Furthermore, note that (due to the independence of all
Xω

1 , . . . , X
ω
n )

Var(X̃ω) = Var(Xω) =
n∑

k=1

Var(Xω
k ) ≤ n

4 . (3)

According to the group reliability assumption, there exists
some (uniform) ∆p > 0 such that for every n and ω† ∈
W \ {ω∗} holds

p̄ω∗ ≥ ∆p+ p̄ω† .

In the following, let ω† ∈ W \ {ω∗} denote an arbitrary but
fixed “competitor” of ω∗ in the approval vote. The strategy
used toward showing the desired result starts by establishing
a lower bound for the probability of ω∗ winning against ω†.
Intuitively, this probability increases with growing n, since
the distributions for Xω∗

n and Xω†

n will get concentrated more
and more narrowly around p̄ω∗ and p̄ω† , respectively.2

To separate the scores of ω∗ and ω†, we make use of the
threshold values

θ∗ = n(p̄ω∗ − ∆p
2 ) as well as θ† = n(p̄ω† + ∆p

2 )

and observe that θ∗ ≥ θ† holds by construction, as the differ-
ence between p̄ω∗ and p̄ω† is at least ∆p. For the following,
we will employ a popular inequality by Chebyshev.

Lemma 1 (Chebyshev 1867). For any distribution X with
finite E(X) and Var(X) and any real number r holds

P(|X − E(X)| > r) ≤ Var(X)
r2 .

2This general observation regarding growing sums of indepen-
dently distributed random variables also shows up in the popular
Central Limit Theorem, but, as we will argue in Section 7, that
theorem itself is not applicable in our case.

Then we can obtain a lower bound for the probability that
in the course of an approval vote the correct choice ω∗ re-
ceives more votes than some fixed competitor ω† as follows:

P(Xω∗ > Xω†)

introduce fixed separating thresholds

> P(Xω∗ > θ∗ ≥ θ† > Xω†)

worst case, even if Xω∗ , X
ω† maximally dependent

≥ 1− P(Xω∗ ≤ θ∗)− P(θω† ≤ Xω†)

Equation (2) and Definitions of θ∗ and θ
†

= 1− P(np̄ω∗ + X̃ω∗ ≤ n(p̄ω∗ − ∆p
2 ))

− P(n(p̄ω† + ∆p
2 ) ≤ np̄ω† + X̃ω†)

= 1− P(X̃ω∗ ≤ −n∆p
2 )− P(n∆p

2 ≤ X̃ω†) (4)

≥ 1− P(|X̃ω∗ | ≥ n∆p
2 )− P(n∆p

2 ≤ |X̃ω† |)
Chebyshev’s inequality (2×)

≥ 1− Var(X̃ω∗ )

(n∆p
2 )2

− Var(X̃ω† )

(n∆p
2 )2

Equation (3) (2×)

≥ 1−
n
4

(n∆p
2 )2

−
n
4

(n∆p
2 )2

= 1− 2
n∆p2 (5)

Now, in order to obtain the probability for ω∗ winning the
approval vote against all competing ω† ∈ W \ {ω∗} simulta-
neously, we state

P(
∧

ω†∈W\{ω∗} X
ω∗ > Xω†)

worst case, even if Xω1 , X
ω2 , . . . maximally dependent

≥ 1−
∑m−1

i=1 P(Xω∗ ≤ Xωi)

= 1−
∑m−1

i=1 (1− P(Xω∗ > Xωi)) (6)
Equation (5)

> 1−
∑m−1

i=1 (1− (1− 2
n∆p2 )) = 1− 2(m−1)

n∆p2 (7)

As this argument holds for every choice of ω∗ and is valid
for every I&R joint probability distribution, this allows us to
conclude our desired result

Pwcs
m,n −−−−→

n→∞
1, (8)

which finishes the proof of the main theorem.

6 Estimates for Required Number of Agents
For the given proof, not much care was given to arrive at par-
ticularly tight bounds. Still, beyond the convergence behavior
in the infinite, the obtained result allows to derive concrete
guarantees in the finite: Provided the average probability of
the true state being approved is known to be by ∆p better than
that of any competitor, the number n of agents needed to guar-
antee a success probability of at least Pmin when choosing
among m options is

n ≥ 2(m− 1)

∆p2(1− Pmin)
. (9)

That is, the number of agents needed grows linearly with
the number of wrong alternatives offered, is inversely pro-
portional to the admissible failure probability 1− Pmin, and
depends inversely quadratically on the guaranteed margin
between the average probabilities of right and wrong choice.
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Better Bounds for High Values of Pmin and/or m. The
guarantees established via Equation (9) are still unsatis-
factory, in particular when the required success probability
and/or the number of choices are high. Assuming a gener-
ous margin of ∆p = 0.5, the number of required voters for
m = 11 and Pmin = 0.9 is 800 and grows to 80, 000 when
requiring Pmin = 0.99 and letting m = 101. This raises
the question of whether lower, more practical bounds can be
obtained. Fortunately this is the case.

To this end, a crucial observation is that for Bernoulli ran-
dom variables, their potential values are confined to the in-
terval [0, 1], so the probability of a value outside that interval
being taken is 0. For the sum of (not necessarily identically
distributed) independent random variables with this property,
Hoeffding’s inequality provides a tail estimate.

Lemma 2 (Hoeffding 1963). LetX1, . . . , Xn be independent
random variables satisfying P(li ≤ Xi ≤ ui) = 1 for
reals li, ui. Consider the sum of these random variables,
X =

∑n
i=1 Xi. Then for every real number t > 0 holds

P(X − E(X) ≥ t) ≤ e
− 2∑n

i=1(ui−li)2
t2

.

This allows for improving the established lower success
probability bound for winning against one competitor:

P(Xω∗ > Xω†)

Equation (4)

≥ 1− P(X̃ω∗ ≤ −n∆p
2 )− P(n∆p

2 ≤ X̃ω†)

Hoeffding’s theorem (2×) noting that ui − li = 1 for all i

≥ 1− e−
2
n (n∆p

2 )2 − e−
2
n (n∆p

2 )2 = 1− 2e−
1
2n∆p2

(10)

Then we obtain for the winning against all competitors:

P(
∧

ω†∈W\{ω∗} X
ω∗ > Xω†)

Equation (6)

≥ 1−
∑m−1

i=1 (1− P(Xω∗ > Xωi))

Equation (10)

= 1−
∑m−1

i=1 (1− (1− 2e−
1
2n∆p2

))

= 1− (m− 1)2e−
1
2n∆p2

(11)

And as estimate for the number of independent agents needed
to surpass a success probability of Pmin:

n ≥ 2

∆p2
ln

2(m− 1)

1− Pmin
(12)

Note that this significantly lowers the bounds in the cases
considered above: for ∆p = 0.5, m = 11 and Pmin = 0.9
the number of required voters is 42. For Pmin = 0.99 and
m = 101, it grows only very moderately to 80. It is also
easy to see that Equation (12) yields better estimates than
Equation (9) for all possible values of ∆p, m, and Pmin due
to the fact that ln(x) < x always holds.

Better Bounds for Large ∆p. The improved bound still
yields unintuitively high values under certain conditions. As
an informative cornercase, consider ∆p = 1. This means

that the average probability to approve the true world state
is by 1 higher than approving any other state. This condition
can only be satisfied if every voter behaves perfectly, i.e.,
she always approves ω∗ and never approves any competing
ω†. Under such fortunate circumstances, it is obvious that
consulting just one agent (i.e., n = 1) must be sufficient,
no matter how high Pmin and m. However, upon inspection
of Equation (12), even when fixing ∆p = 1, we can obtain
arbitrarily large values for n upon choosing high Pmin and/or
m. Note that very large values of ∆p are not just of academic
interest since there might be belief fusion scenarios wherein
close-to-perfect sensors are deployed.

To appropriately handle such situations, we resort to a
more careful analysis and refined estimates of tail probabil-
ities. We state Jensen’s inequality, recalling that a function
f : [l, h] → R from some real interval [l, h] to the real num-
bers is concave if for any x1, x2 ∈ [l, h] and every t ∈ [0, 1]
holds

f(tx1 + (1− t)x2) ≥ tf(x1) + (1− t)f(x2).

Lemma 3 (Jensen 1906). For any concave function f :
[l, u] → R, real values x1, . . . , xn ∈ [l, u] and positive
weights w1, . . . , wn > 0 holds∑n

i=1 wif(xi)∑
wi

≤ f

(∑n
i=1 wixi∑

wi

)
.

In particular, choosing wi = 1
n for every i ∈ {1, . . . , n}

yields
1
n

∑n
i=1 f(xi) ≤ f

(
1
n

∑n
i=1 xi

)
.

That is, for concave functions, applying the function to
the average of a collection of numbers yields a larger value
than taking the average over the corresponding collection of
function values. In particular, given values p1, . . . , pn and
letting p̄ = 1

n

∑n
i=1 pi, we can use the observation that the

function f : x 7→ x(1− x) is concave to obtain
1
n

∑n
i=1 pi(1− pi) =

1
n

∑n
i=1 f(pi) ≤ f

(
1
n

∑n
i=1 pi

)
= f(p̄) = p̄(1− p̄). (13)

This insight allows us to obtain a better bound on the
variance of the sum of the approvals for a given ω ∈ W:

Var(X̃ω) = Var(Xω)

=
∑n

k=1 Var(X
ω
k ) =

∑n
k=1 p

ω
k (1− pωk )

Equation (13)

≤ npω(1− pω). (14)

As another ingredient, we make use of the Chebyshev-
Cantelli inequality, a less commonly known variant of Cheby-
shev’s inequality, which allows to infer good estimates for
one-sided tail bounds of probability distributions.
Lemma 4 (Chebyshev 1867, Cantelli 1928). For any distri-
bution X with finite E(X) and Var(X) and any real number
λ > 0 holds

P(X − E(X) ≥ λ) ≤ Var(X)
Var(X)+λ2 .

Applying the above to −X yields

P(X − E(X) ≤ −λ) ≤ Var(X)
Var(X)+λ2 .

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

210



0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1 0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

1

10

102

103

104

105

106

∆p

Pmin

n

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

∆p

P
m
in

m = 2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

∆p

P
m
in

m = 3

Figure 1: Left: Lower bound for n, given ∆p and Pmin for fixed m = 2. Plot cut off at n = 106, note that n −−−−→
∆p→0

∞ and n −−−−−→
Pmin→1

∞.

Right: Contour lines for n = 104, 103, 100, 50, 20, 10, 5, and 2 (left to right), given m = 2 (top) and m = 3 (bottom). The dotted
lines separate the area for large ∆p, where Equation (12) provides the better estimate.

These tools allow us to arrive at an improved lower bound
for the probability of ω∗ winning against one competitor:

P(Xω∗ > Xω†)

Equation (4)

= 1− P(X̃ω∗ ≤ −n∆p
2 )− P(n∆p

2 ≤ X̃ω†)

Chebyshev-Cantelli inequality (2×)

≥ 1− Var(X̃ω∗ )

Var(X̃ω∗ )+(n∆p
2 )2

− Var(X̃ω† )

Var(X̃ω† )+(n∆p
2 )2

= n2∆p2

4Var(X̃ω∗ )+n2∆p2
+ n2∆p2

4Var(X̃ω† )+n2∆p2
− 1

Equation (14)

≥ n2∆p2

4npω∗ (1−pω∗ )+n2∆p2 + n2∆p2

4npω† (1−pω† )+n2∆p2 − 1

value minimal for pω∗ = 1+∆p
2 and p

ω† = 1−∆p
2 , cf. appendix

≥ n∆p2

(1−∆p2)+n∆p2 + n∆p2

(1−∆p2)+n∆p2 − 1

= 2n∆p2

1+(n−1)∆p2 − 1 = (n+1)∆p2−1
1+(n−1)∆p2

= 1− 2 1−∆p2

1+(n−1)∆p2 (15)
This allows us to obtain a lower bound for the probability of
ω∗ winning the approval vote:

P(
∧

ω†∈W\{ω∗} X
ω∗ > Xω†)

Equation (6)

≥ 1−
∑m−1

i=1 (1− P(Xω∗ > Xωi))

Equation (15)

≥ 1−
∑m−1

i=1 (1− (1− 2 1−∆p2

1+(n−1)∆p2 ))

= 1− 2(m−1)(1−∆p2)
1+(n−1)∆p2 (16)

Consequently, we obtain the following estimate for the num-
ber of independent agents needed to surpass a given success
probability of Pmin:

n ≥ 1 + 2
( 1

∆p2
− 1

)( m− 1

1− Pmin

)
. (17)

Note that now we obtain n ≥ 1 whenever ∆p = 1 as
desired. It can also be checked that this estimate is superior
to Equation (9) for all values of ∆p, m, and Pmin. However,
between the estimates Equation (12) and Equation (17) none
dominates the other for all values; therefore it is advisable to
determine the minimum of the two in every case. Thus we
arrive at our final bound:

Theorem 6. In a ∆p-group reliable setting with m choices,
the worst case approval vote success probability is at least
Pmin whenever the number of agents is equal or higher than

min
(

2
∆p2 lnQ, 1 +

(
1

∆p2 − 1
)
Q
)
, (18)

where Q = 2 m−1
1−Pmin

is the twofold ratio between the number
of incorrect alternatives and the admissible error probability.

Figure 1 visualizes the thus established lower bounds of
n depending on the parameters. While, in conformance with
intuition, n goes against infinity as m grows, as Pmin ap-
proaches 1, or as ∆p approaches 0, the asymptotic behaviour
is qualitatively different: ensuring very high success probabil-
ities or managing large numbers of choices has a much more
moderate influence on the number of agents to be employed
than coping with small group reliability margins.
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7 Failure of the Non-Asymptotic Statement
We recall the non-asymptotic part of the original CJT stating
that for any two odd natural numbers i, j ∈ N with i < j, the
probability that ω∗ wins the majority vote in a setting with
i agents is strictly smaller than the probability for a setting
with j agents.

It has been observed before that this proposition fails when
the homogeneity assumption is dropped, even when uphold-
ing completeness and confining the choices to two (Owen,
Grofman, and Feld 1989). We will now formally show that
this failure is not just an artifact for small agent numbers, but
that it occurs for arbitrarily large n.
Theorem 7. Let k ∈ N. Given W = {ω∗, ω†} as well as
average approval probabilities p̄ω∗ and p̄ω† = 1− p̄ω∗ with
p̄ω∗ − p̄ω† = ∆p satisfying 1 > ∆p > 0, then there exist
i, j ∈ N with j > i > k and corresponding joint distributions
P and P′ for complete approval voting settings over W with
j and i agents, respectively, such that

P
(
Xω∗ > Xω†

)
< P′

(
Xω∗ > Xω†

)
.

In words, no matter how large the number of agents, if the
concrete success probability is unknown, one can never be
sure it will improve upon picking a setting with more agents.

We will show this by providing, for any given k and ∆p
concrete joint distributions where the success probability
decreases despite an increasing number of agents. These
distributions will be obtained, on the one hand, from the
homogeneous setting underlying the original CJT and, on
the other hand, from a scenario that we call the experts &
deniers setting. In the following, let p̄ω∗ and p̄ω† be fixed
with p̄ω∗ − p̄ω† = ∆p satisfying 1 > ∆p > 0. Due to the
complete setting, we also know that p̄ω† = 1− p̄ω∗ and thus
p̄ω∗ = 1+∆p

2 and p̄ω† = 1−∆p
2 .

Definition 6. For any j ∈ N, let P−
j denote the unique joint

probability distribution for the j-agent homogeneous com-
plete setting with choices W = {ω∗, ω†}.

This is the probability distribution underlying Condorcet’s
original theorem. We obtain the following coarse estimate
of an upper bound for the probability of the approval vote
leading to a correct outcome:

P−
j

(
Xω∗ > Xω†

)
< 1− P−

j

(
Xω†=j

)
= 1− (p̄ω†)j

= 1− ( 1−∆p
2 )j .

Hence, given ∆p < 1, we note that P−
j

(
Xω∗ > Xω†

)
is

strictly smaller than 1 for every j.
This homogeneous setting will now be contrasted with

the experts & deniers setting, which in a way represents the
“most inhomogeneous” way of realizing a joint probability
distribution with the given average probabilities. In such a
setting, every but possibly one agent falls into one of two
categories: she can be an expert, who always infallibly picks
the right choice, or a denier, who persistently chooses the
incorrect option. Notably, in such a setting, the outcome of
the majority vote is almost deterministic: it can take at most
two different values, namely the floor and the ceiling of the
expected value.

Definition 7. For any i ∈ N, we let P+
i denote the i-agent

joint probability distribution with agent-wise Bernoulli pa-
rameters pω∗

1 , p
ω†
1 , . . . , pω∗

i , p
ω†
i defined by:

pω∗
ℓ =


1 ℓ ≤ ⌊ip̄ω∗⌋
ip̄ω∗ − ⌊ip̄ω∗⌋ ⌊ip̄ω∗⌋ < ℓ ≤ ⌈ip̄ω∗⌉
0 ⌈ip̄ω∗⌉ < ℓ

while p
ω†
ℓ = 1− pω∗

ℓ . We refer to this type of distribution as
the experts & deniers setting.

Inspecting P+
i , we see that p̄ω∗ and p̄ω† are indeed the

average approval probabilities of ω∗ and ω†, respectively.
Also note that by construction, due to the near-deterministic
nature of this setting, we have

P+
i (⌊ip̄

ω∗⌋ ≤ Xω∗ ≤ ⌈ip̄ω∗⌉) = 1 as well as

P+
i (⌊ip̄

ω†⌋ ≤ Xω† ≤ ⌈ip̄ω†⌉) = 1.

Then, whenever we pick i ≥ 2
∆p , we obtain

⌈ip̄ω†⌉ < ip̄ω† +1 ≤ ip̄ω† + i∆p− 1 = ip̄ω∗ − 1 < ⌊ip̄ω∗⌋,

and therefore with the above

P+
i (X

ω∗ > Xω†) = 1.

In words, whenever the number of agents is large enough,
the experts & deniers setting ensures that the true world
state will be identified with a probability of 1. From these
observations, the proof of Theorem 7 follows immediately
by picking j > i > max(k, 2

∆p ) and letting P′ = P+
i as well

as P = P−
j .

As an aside, the experts & deniers setting discussed here
also serves as a good case in point to demonstrate that in the
non-homogeneous setting, the Central Limit Theorem (CLT,
which, in fact, comes handy to show homogeneous versions
of the CJT) is not applicable. This holds even when resort-
ing to the CLT formulations of Lyapunov (1900; 1902) or
Lindeberg (1922) which can cope with sums of not identi-
cally distributed random variables. Both versions rely on the
sum of the variances to grow indefinitely for n → ∞. This
is not the case for sequences of experts & deniers settings
where most of the underlying Bernoulli parameters pωi are 0
or 1, leading to a variance of 0. Indeed, such sequence do not
converge against the normal distribution. This is the reason
why we employed tail estimates in our proofs which are more
robust against extremal variances.

8 Conclusion and Future Work
Motivated by multi-agent belief fusion scenarios, this pa-
per established a generalized Condorcet Jury Theorem that
holds under remarkably weak assumptions. That is, in the
generalization presented here, agents are allowed to have het-
erogeneously distributed competence levels as long as the
group of agents is on average more likely to vote for the cor-
rect alternative than any other alternative. It was shown that
this holds for any finite number of alternatives under approval
voting, where every agent is allowed to vote for any number
of alternatives.
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Beyond establishing this result, we were able to derive
estimates for the number of independent agents necessary
to guarantee a prescribed minimal probability, Pmin, of the
aggregation process being successful, given the number m of
alternatives, and the minimum distance ∆p between the aver-
age approval probabilities for correct and wrong alternative.

Finally, we proved an impossibility result: When weak-
ening the homogeneity assumption by allowing for average
competence levels, part (1) of Condorcet’s original jury theo-
rem fails for any arbitrarily large number of agents. That is,
the probability that the voting procedure yields the correct
alternative cannot be guaranteed to increase when choosing a
larger team of agents.

In future work, we intend to perform experiments to es-
timate whether there still is a significant margin between
the theoretically established guarantees we provide and the
statistical behavior observed when belief fusion through vot-
ing aggregation is simulated. If a significant difference were
found, this would clearly motivate the search for even better,
tighter theoretical bounds.

We also aim to integrate our generalized Condorcet Jury
Theorem into the formal belief fusion framework: following
the argument by Everaere, Konieczny, and Marquis (2010),
our generalization gives rise to a new postulate for belief
merging operators, based on group-reliability. Consequently,
it is worthwhile to investigate which of the well-known op-
erators used in the belief fusion literature satisfy this new
postulate. The operators found to satisfy this new postulate
are capable of tracking the true state of the world under the
weak assumptions underlying our generalization of the CJT.

Moreover, it would be important to investigate to what
extent our results can be maintained when allowing for a
certain degree of mutual influence among the voters, thereby
weakening the assumption of independence. Indeed, there
exist results that extend the CJT in that direction. Ladha
(1992) generalized the CJT in the dichotomic setting with
majority voting by only restricting the average coefficients of
correlations. On another note, Pivato (2017) generalized the
CJT to a class of voting rules for more than two alternatives
such as plurality voting and approval voting allowing for
significant correlations among voters. Note that both these
works weaken the requirement toward agent independence
but impose that all participating agents are individually reli-
able, i.e., they cannot handle scenarios where unreliable or
even malicious agents are involved. For future work, it is
thus interesting to see to what extent the result shown here
can be generalized to accommodate a moderate amount of
correlation among voters, along the lines of the approaches
mentioned above.

As a further generalization, it seems promising to look
into scenarios where agents are allowed to give more fine-
grained feedback than the simple approval or non-approval
of alternatives. For example, Morreau (2021) recently proved
a variant of the CJT that considers the aggregation of grades
into the median grade assigned to some object in order to
track the correct grade: In a peer review scenario, the re-
viewers assign scores to a given proposal, each of which
represents a grade, i.e. a gradual evaluation of the object
in question. This approach being restricted to finitely many

grades, a natural generalization to consider would be to allow
for real-valued evaluations of objects such as fuzzy values
or probabilities. If such a generalization can be shown, one
could, for instance, aggregate probabilistic statements with
the aim of tracking the correct probability assessment of an
event directly. Clearly, approaches along those lines will need
to be compared to well-established methods of quantitative
belief fusion for heterogeneous sources such as Bayesian
frameworks, Dempster-Shafer theory as well as fuzzy and
possibilistic approaches (Bloch et al. 2001).

Appendix
We briefly present the determination of the extremal value
determination used in Equation (12). Our goal is to determine
the minimal value of the following expression over all p =
p̄ω∗ :

n2∆p2

4npω∗ (1−pω∗ )+n2∆p2 + n2∆p2

4npω† (1−pω† )+n2∆p2 − 1

=
1

4npω∗ (1−pω∗ )
n2∆p2 + 1

+
1

4npω∗ (1−pω† )
n2∆p2 + 1

− 1

substitute u =
4npω∗ (1−pω∗ )

n2∆p2
and v =

4np
ω† (1−p

ω† )

n2∆p2

= 1
u+1 + 1

v+1 − 1

We obtain the value of the p = p̄ω∗ producing the min-
imum of this expression as the zeros of its first derivative.
Consequently, letting (.)′ denote d

dp (.), we find

0 =
(

1
u+1 + 1

v+1 − 1
)′

=
(

1
u+1

)′
+

(
1

v+1

)′
= −u′

(u+1)2 + −v′

(v+1)2 .

Multiplying with (u+ 1)2(v + 1)2, we obtain:
0 = −v′(u+ 1)2 − u′(v + 1)2,

and further
0 = (2p− 1− 2∆p)(p− p2 + (n∆p

2 )2)2

+ (2p− 1)((n∆p
2 )2 + p− p2 −∆p+ 2p∆p−∆p2)2

= (2p−∆p− 1)·
(2p4 − 4p3∆p− 4p3 + 4p2∆p2 + 6p2∆p

− 4p2(n∆p
2 )2 + 2p2 − 2p∆p3 − 4p∆p2

+ 4p∆p(n∆p
2 )2 − 2p∆p+ 4p(n∆p

2 )2

+∆p3 +∆p2 − 2∆p(n∆p
2 )2 + 2(n∆p

2 )4).

As the second factor does not produce zeros under the given
assumptions, we proceed with

0 = 2p−∆p− 1

p = 1+∆p
2 ,

which yields

pω∗ = p = 1+∆p
2 as well as

pω† = pω∗ −∆p = 1−∆p
2 .
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