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Abstract

Research on natural language interfaces has mainly concentrated on question
interpretation as well as answer computation, but not focused as much on
answer presentation. In most natural language interfaces, answers are in fact
provided extensionally as a list of all those instances satisfying the query
description. In this paper, we aim to go beyond such a mere listing of facts
and move towards producing additional descriptions of the query results re-
ferred to as ‘intensional answers’. We define an intensional answer (IA) as
a logical description of the actual set of answer items to a given query in
terms of properties that are shared by exactly these answer items. We argue
that IAs can enhance a user’s understanding of the answer itself but also of
the underlying knowledge base. In particular, we present an approach for
computing an intensional answer given an extensional answer (i.e. a set of
entities) returned as a result of a question. In our approach, an intensional
answer is represented by a clause and computed based on Inductive Logic
Programming (ILP) techniques, in particular bottom-up clause generaliza-
tion. The approach is evaluated in terms of usefulness and time performance,
and we discuss its potential for helping to detect flaws in the knowledge base
as well as to interactively enrich it with new knowledge. While the approach
is used in the context of a natural language question answering system in our
settings, it clearly has applications beyond, e.g. in the context of research
on generating referring expressions.
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1. Introduction

Question Answering systems for unstructured ([1]) or structured infor-
mation ([2]) - typically referred to as Natural Language Interfaces (NLIs) in
the latter case - have been a focus of research since a few decades now (see
[3] and [4] for somewhat older overviews of NLI research). They are a crucial
component towards providing users with intuitive access to the vast amount
of information available world-wide in the form of resources as heterogeneous
as web sites, classical and Semantic Web databases, RSS feeds, blogs, wikis,
etc.

However, most of the prevalent work has concentrated on providing ex-
tensional answers to questions. In essence, what we mean by an extensional
answer here is a list of instances that satisfy the query1. For example, a ques-
tion like: Which states have a capital?, when asked to a knowledge base about
Germany would deliver an (extensional) answer consisting of the 16 fed-
eral states (“Bundesländer”): Baden-Württemberg, Bayern, Rheinland-Pfalz,
Saarland, Hessen, Nordrhein-Westfalen, Niedersachsen, Bremen, Hamburg,
Sachsen, Brandenburg, Sachsen-Anhalt, Mecklenburg-Vorpommern, Schleswig-
Holstein, Berlin, and Thüringen. While this is definitely a correct answer,
it is certainly not maximally informative. An arguably more informative an-
swer would—beyond a mere listing of the matching instances—also describe
the answers in terms of relationships which can help a user to better un-
derstand the answer space. To a question “Which states have a capital?”
a system could, besides delivering the full extension, also return an answer
such as “All states (have a capital.)”

The predominant view in Question Answering research is that answers are
essentially lists of answer items. In fact, there has not been much research
on aspects of answer presentation, in particular on:

• integrating additional external data for presentation and visualization
purposes (e.g. mashups),

• structuring the answer space, i.e. by grouping/clustering answers,

• constructing explanations or proofs for answers,

1Actually, the bindings of the query variables in a query (seen as a logical formula) to
instances.
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• providing partial answers, and

• delivering non-extensional (e.g. intensional) answers.

While all above mentioned aspects are worthwhile to be investigated fur-
ther, this paper will be focused on the last point. We will in fact refer to such
descriptions which go beyond the mere enumeration of the answer items as
intensional answers (IAs). The intension in this sense is thus a description
of the answer items in terms of a distinguishing set of properties common to
all of them. In other words, the description is satisfied by all answer items
but by no item that is not contained in the answer set. In the above case,
the common property of the answers is that they represent exactly the set of
all federal states in the knowledge base.

It could be certainly argued that providing intensional descriptions “over-
answers” the question.

As a counterargument to this objection it is important to mention that,
first of all, the extension might simply be too large for a user to grasp it
completely. In this case, a compact representation of the answer in terms of
an intensional description might be useful.

Second, an intensional answer can indeed provide new but relevant knowl-
edge to the user. For example, let us consider the question “Which states
does the Spree flow through?”, with answers: Berlin and Brandenburg. The
intensional answer to this question, as generated by our approach, is: ‘(By
the way,) All the states which the Havel flows through.’ From this answer,
the user learns that the Havel and the Spree flow through exactly the same
states and this that the Havel also flows through Berlin and Brandenburg.

Third and most importantly, as we will see in the remainder of this paper,
IAs can help to detect flaws in the knowledge base as well as suggest refine-
ments. In the case of the above mentioned question “Which states have a
capital?”, the user could be asked whether to add the axiom that “All states
have a capital.” into the knowledge base, thus refining it in a query-driven
way. The confirmation by a user would be necessary as the axiom has been
derived inductively and it is not clear if it holds universally or only in the
given state of the knowledge base.

We present an approach for computing intensions of queries on the ba-
sis of their extensions and a given knowledge base. Our research has been
performed in the context of the natural language interface ORAKEL (see
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[2]) and the aim has been to integrate the component for providing inten-
sional answers into the system. Notwithstanding, the approach presented
here could be used in any setting where intensional answers are appropriate
(and as we will see in the related work section it has strong connections to
research on generating referring expressions). We describe an approach based
on Inductive Logic Programming (ILP) and in particular based on bottom-
up clause generalization which computes a clause covering the extension of
the query and thus representing an intensional answer in the sense that it
describes it in terms of features which only the elements in the extension
have in common. In particular, the system iteratively calculates least gen-
eral generalizations (LGGs) for the answers by adding one answer item at a
time and generalizing the clause computed so far.

The paper is structured as follows: in Section 2, we describe the ORAKEL
system in more detail in order to provide the reader with some background of
our research. We present the approach for generating intensional answers in
Section 3. In Section 4, we describe the empirical evaluation of our approach,
which has been carried out based on the dataset previously used in the eval-
uation of the ORAKEL system (see [2]). We analyze in detail to what extent
the intensional answers produced by the system are “useful” and also discuss
how the intensional answers can help in detecting errors in the knowledge
base. We discuss related work in Section 5 and conclude in Section 6.

2. Background: The ORAKEL System

The ORAKEL system is a portable and compositional natural language
interface to knowledge bases. It is portable as it can be easily adapted to new
ontologies and knowledge bases by non-experts. This has been corroborated
before by experimental data (see [2]). It is compositional in the sense that
it interprets the question by constructing a logical formula representing the
question, accomplishing this in a compositional way, i.e. on the basis of the
“meaning” of the constituents of the question and the way they are (syntac-
tically) combined (as made explicit by a syntactic analysis of the sentence).

The main components of the system as well as their interaction are de-
picted in Figure 1. These components are:

• Query Interpreter: translating the user question into a generic logi-
cal form,
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Figure 1: Overview of the ORAKEL system

• Query Converter: converting the generic logical form into the target
query language,

• Answer Generation: the component responsible for evaluating the
query (w.r.t. the knowledge base) and presenting the answers to the
user (as a list of instances satisfying the query so far),

• FrameMapper: a graphical user interface used to adapt the system
to a given domain by creating an ontology-specific lexicon,

• Domain-independent Lexicon: a lexicon specifying the domain-
independent meaning of closed class words (articles, wh-pronouns, prepo-
sitions etc.), and the

• Domain-specific Lexicon: a lexicon generated specifically for the
ontology in question.

The underlying syntactic theory of our system is a formalism called Log-
ical Description Grammars (LDGs, compare [5]), which is inspired by Lexi-
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calized Tree Adjoining Grammars (LTAGs, see [6]). The structures used in
LDG are essentially (descriptions of) trees consisting of nodes labeled with
syntactic information (compare Figure 2). Positive nodes in essence provide
arguments while negatively marked nodes require some arguments to be in-
serted. An important characteristic of these trees is that they encapsulate
all syntactic/semantic arguments of a word. In the LDG formalism used in
ORAKEL, there is only one syntactic composition operation, which consists
in identifying positively and negatively marked nodes with each other within
one or across trees. Hereby, two nodes can only be identified with each other
if (i) they have complementary marks (negative/positive), (ii) they have the
same syntactic category, (iii) their feature structures are compatible as well
as (iv) syntactic dominance and surface order of words is respected. The
parser of the ORAKEL system essentially thus plugs negatively and posi-
tively marked nodes together (see [7]).

As formalism for semantic composition, the lambda calculus is used, re-
lying on functional abstraction, functional application (β-conversion) and
variable renaming (α-conversion) to compose the meanings of the various
question parts into a complete logical query (compare [8]).

Figure 2 shows the parse tree, decorated with lambda expressions con-
veying the semantics for the question Which river passes through Berlin?

The meaning of the diverse lexico-syntactic units in the input can be ex-
pressed in functional lambda notation roughly2 as follows:

Which river λP ?x (river(x) ∧ P (x))
passes through λx λy flow through(x, y)
Berlin λQ Q(Berlin)

While passes through is interpreted here as referring to the flow through

relation, this is obviously not the case in general, as it can also refer to
the relation located at highway (with inverted arguments) modeling which
highways pass by which cities. The two different ‘readings’ of pass through
can be distinguished by taking into account restrictions on their slots, i.e.
rivers in the former and highways in the latter case. This is the reason why
the right interpretation of pass through (i.e. flow through) can be selected

2Roughly as in principle each word should be associated with a semantic representation.
We abstract from this for the sake of clarity of presentation.
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in the example question. The semantic representation of ‘passes through’
expects two individuals as arguments to be inserted into the appropriate
relation flow through. The expression ‘which river’ expects some property
P which x, a river, needs to satisfy. ‘Berlin’ requires some predicate Q into
which it can be inserted as an argument.

Given the simplified syntactic structure together with instructions on
how the semantic expressions are applied to each other in Figure 2, and
evaluating the tree in a standard bottom-up fashion, we would first carry
out the functional application

λu (λQ Q(Berlin))((λx λy flow through(x, y))(u)),

yielding as semantic representation of the V P node

λu flow through(u, Berlin)

in which the argument Berlin has been correctly inserted. To obtain the final
semantic representation of the top sentence node S, we would carry out the
functional application

(λP ?x (river(x) ∧ P (x)))(λu flow through(u, Berlin)),

resulting in the final logical query:

?x (river(x) ∧ flow through(x, Berlin))

After the question has been translated into logical form, the Query Con-
verter is invoked to translate this question into the target query language
of our choice. The above query would be represented in the F-Logic query
language [9] as follows:

FORALL X ← X : river AND X[flow through→ Berlin].

The answer to this query is then generated by evaluating it with respect
to the inference engine (in this case the OntoBroker system [10]), yielding
the following answers: Havel, Spree.

The ORAKEL system provides the flexibility to be applied to various
knowledge representation paradigms (see [2]), i.e. it has been applied to OWL
[11] and F-Logic [9], and supports any reasonably expressive query language.

7



Figure 2: Syntactic analysis with semantic representations for each word specified accord-
ing to the λ-calculus and instructions on how to combine the different representations with
each other.

If the query language is not expressive enough, then some of the queries
interpreted by the ORAKEL system will not be translated into the target
language. If the query language is too expressive this does not constitute a
problem for the ORAKEL system. In order to exchange the query language,
only a simple query rewriting interface needs to be instantiated. In this work,
the implementation is based on F-Logic [9], and Ontobroker [10] is used as
the underlying inference engine.

The results of the ORAKEL system have been shown to be reasonable
and competitive in comparison to other state-of-the-art approaches, yielding
a Precision of 84.23% and a Recall of 53.67% on the dataset described in
[2]. For more details about the ORAKEL system, the interested reader is
referred to [2].

3. Approach

In this section, we first present an overview of the component for gener-
ating intensional answers (Section 3.1), then we introduce the basis for the
computation of least general generalizations (LGG) of clauses in Section 3.2
and present the generalization algorithm in more detail in Section 3.3. The
crucial reduction step, yielding more compact clauses, is presented in Section
3.4. Section 3.5 presents a worked example. We conclude this section with a
short note on the worst-case complexity and the scalability of the approach.
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3.1. Overview

The aim of the work described in this article has been to extend the
ORAKEL natural language interface with capabilities for delivering inten-
sional answers. The workflow of the system is depicted in Figure 3. When
the user asks a natural language question w.r.t. the knowledge base, it is
processed by the ORAKEL system that computes a logical query which can
then be evaluated by the inference engine with respect to the KB and ontol-
ogy. With KB we mean here a set of ground facts, i.e. instances, while with
ontology we refer to a logical theory containing axioms constraining the set
of possible models according to a given conceptualization [12]).

While the extensional answer is displayed to the user, it is also forwarded
to the component which generates intensional answers (named Bottom-up
Generalization in the figure). By means of an ILP-algorithm, this component
provides a hypothesis (in the form of a clause) based on the extensional
answer. This hypothesis is the intensional answer and is displayed in addition
to the extensional answer. Note that in this paper, we are not concerned with
the problem of generating an adequate answer in natural language, but rather
with the previous step, i.e. the computation of a clause which represents the
intensional answer. Obviously, natural language generation techniques can
then be applied to generate an answer in natural language. However, this is
not the focus of the present paper, but an obvious direction for future work.

We assume that even in the case of a useful hypothesis, the user is in-
terested in the extensional answer as well, such that we do not forego its
presentation. The answer items are presented in parallel to the generation
of their intensional description, such that the user does not have to wait for
them until an intensional answer is possibly generated.

Before introducing the technical details of our approach, we briefly intro-
duce the basics of the least general generalization (LGG) of clauses in the
next section.

3.2. Basics: LGG Computation

Our approach to computing intensional answers is based on bottom-up
clause generalization, which computes a clause subsuming the extension of
an answer, thus representing an intensional answer in the sense that it de-
scribes it in terms of properties which all elements in the extension (and only
these) share. In particular, the system iteratively calculates least general
generalizations (LGGs) ([13] and below) for the answers by adding one an-
swer at a time and generalizing the clause computed so far. According to our
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Figure 3: Workflow of the system

formulation as an ILP problem, the intensional description of the answers is
regarded as a hypothesis which covers all the positive answers and is to be
found in a search space of definite Horn clauses. This search space of definite
Horn clauses is structured by a relation called θ-subsumption, which orders
the hypotheses (clauses) in a lattice, thus allowing to effectively navigate the
search space (compare [13], pp. 33-37).

Let us first recap some basic definitions needed for describing the compu-
tation of LGGs. Thereby we assume some basic familiarity with first order
predicate logic.

Definition 1 (Clauses)
A clause is a first order formula of the form L1∨. . .∨Ln, where Li are positive
or negative literals. For easier representation, clauses are usually conceived
as sets {L1, . . . , Ln}. A positive literal is an atom p(t1, . . . , tk), a negative
literal is a negated atom ¬p(t1, . . . , tk), where p is a predicate of arity k and
t1, . . . , tk are terms.

As we will deal with a function-free variant of first order logic, the only
terms we will encounter are constants and variables.

The clauses we will be concerned with in this paper are of a special type,
namely definite Horn clauses. These are clauses with exactly one positive
literal (and arbitrarily many negative ones). They can be equivalently repre-
sented as implications (also denoted as rules) of the form A← A1 ∧ . . .∧Ak,
where A, A1, . . . , Ak are atoms. Moreover, A is then referred to as the head
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of the rule and A1 ∧ . . . ∧ Ak as its body.

Definition 2 (Theta-subsumption)
A substitution θ is a function mapping variables to terms. Given a clause
c, the clause cθ is obtained by substituting the variables occurring in the
literals contained in c according to θ.

We then say that c θ-subsumes c′ iff there exists a substitution θ such
that cθ ⊆ c′.

θ-subsumption induces a partial order between clauses. In particular,
each pair of clauses has an upper bound in the generalization lattice. The
partial order ≤ is defined by: c ≤ c′ iff c θ-subsumes c′. In that case we can
also say that c is at least as general as c′. Note that c ≤ c′ always implies
that c′ is a logical consequence of c (c |= c′) whereas the converse does not
hold (see [13]).

θ-subsumption allows to prune large parts of the search space as if we
generalize a clause c′ to c, all the examples covered by c′ will also be covered
by c. Consequently if c′ covers a negative example, all of its generalizations
will also cover the negative example, such that we do not have to examine the
generalizations of c′ further. We refer to the least upper bond of two clauses c
and c′ in the generalization lattice as the least general generalization (LGG)
of c and c′.

The LGG of two clauses is computed in essence as described in [13], pp. 41:

Definition 3 (LGG)

LGG(c1, c2) :=
⋃

Li∈c1,Lj∈c2

LGG(Li, Lj)

where the LGG of literals is defined as follows:

• If both literals are positive:
LGG(p(t1, ..., tn), p(s1, ..., sn)) = {p(LGG(t1, s1), ..., LGG(tn, sn))}
LGG(p(t1, ...tn), q(s1, ..., sn)) = ∅ in case p 6= q.

• If they are negative:
LGG(Li, Lj) = LGG(¬Ai,¬Aj) = ¬LGG(Ai, Aj).

• Otherwise, if one is positive and one is negative:
LGG(Li, Lj) = ∅.
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For terms, the LGG is defined as follows:

• LGG(t, t) = t

• LGG(s, t) = V where s 6= t.

Thereby, V is a variable not occurring in c1 or c2, which is uniformly used to
represent the LGG of s and t.

While there is explicit negation in the F-Logic language and this is sup-
ported by the F-Logic implementation of OntoBroker, we do only use definite
Horn clauses so far. However, the above definition is general enough to ac-
commodate negation in future stages. Still, it is easy to see that when applied
to two definite Horn clauses having the same head predicate, the resulting
clause is again definite and Horn and also carries the same head predicate.

From the way the LGG is constructed, it can be shown that it is the most
specific clause (w.r.t. ≤) such that: LGG(c1, c2) ≤ c1 and LGG(c1, c2) ≤ c2.

While F-Logic and OntoBroker support function symbols, our assump-
tion here is that the knowledge base is actually function-free, so that we do
not support function symbols in our approach to generating an intensional
description.

3.3. Generalization

In order to compute a clause which covers all the extensional answers,
we iterate over all the answers and compute pairwise LGGs by adding one
answer at a time. We make sure that the resulting clause is consistent (in the
sense that it does not cover negative examples) by evaluating it with respect
to the knowledge base. Thereby, we rely on the inference engine in order
to check that no other than the original answer items are returned. In fact,
any definite Horn clause with an artificial answer-predicate in the head can
be easily translated into a corresponding query to the knowledge base. Our
learning algorithm is thus similar to the classical FindS algorithm described
in [14] in the sense that it aims at finding one single hypothesis which covers
all positive examples and ignores negative examples during learning. If the
resulting hypothesis which covers all positive examples is consistent, then
an appropriate clause has been found. Otherwise, there is no clause which
covers the positive examples without overgeneralizing.

In our approach, we perform the search of the hypothesis space in a
bottom-up manner. We start with the most specific hypothesis which covers
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IntensionalAnswerClause(Set Answers, KnowledgeBase KB)
1 a = Answers .getNext();
2 c = constructClause(a,KB);
3 while not all answers have been processed
4 do
5 a′ = Answers .getNext();
6 c′ = constructClause(a′,KB);
7 c = LGG(c, c′);
8 Answers ′ = evaluateQuery(query(c),KB);
9 if Answers ∩ Answers ′ ⊂ Answers ′(i.e. c is inconsistent)

10 then
11 return ∅ ( no consistent clause can be found )
12
13 c′′ = reduceClause(c,KB,Answers)
14 Answers ′′ = evaluateQuery(query(c′′),KB);
15 if Answers ′′ = Answers (i.e. c′′ covers all answers)
16 then
17 return c′′;
18
19 Answers = Answers\Answers′ (optimization)
20 return reduceClause(c,KB,Answers);

Figure 4: Generalization Algorithm (calculating a reduced clause after each LGG compu-
tation)

a given example and generalize this clause with the specific hypothesis for
the next example by means of the LGG until it can not be further generalized
without covering negative examples. Our approach proposes an efficient and
simple way to generate an intensional answer as we do not construct the
hypothesis from scratch, but generalize specific hypotheses representing one
element in the extension of the answer.

The generalization algorithm is given in Figure 4. The algorithm takes
as input the set of (extensional) answers (Answers) as well as the knowledge
base KB. The aim is to generate a hypothesis which exactly covers the
extensional answers. A hypothesis in our approach is actually a definite
Horn clause. For the hypothesis generation, the ILP-learner first constructs
a specialized clause based on the first answer – or positive example from the
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ILP point of view (line 1). This is achieved by sending queries asking for
the names of methods or concepts3 containing the constant representing the
answer as argument. The received answers are used to define literals which,
arranged in the body of a definite Horn clause, represent the intension of the
first example. As head of this clause, we use an artificial target predicate
answer.4 The constructClause(a,KB) procedure (line 2) returns such a clause
for a certain individual a in the knowledge base KB consisting of all the
factual information directly referring to a that can be retrieved from the
knowledge base.

In our example, the first answer (positive example) to the query is: Saar-
land and the following specialized clause for this example is generated:

c := answer(Saarland) ← state(Saarland), location(Saarland),

inhabitants(Saarland, 1.062.754),

borders(Saarland, Rheinland-Pfalz),

borders(Saarland, France),

borders(Saarland, Luxembourg),

borders(Rheinland-Pfalz, Saarland),

borders(France, Saarland),

borders(Luxembourg, Saarland),

f lows through(Saar, Saarland),

location(Saarbrücken, Saarland),

capital of(Saarbrücken, Saarland).

If there is only one answer, the constructed clause will be exactly the
intensional answer we are searching for. In such a case, the user thus obtains
additional information about the entity in terms of the concepts it belongs to
as well as other entities it is related to. In case there are more answers (line
3), we loop over these and compute the LGG of the clause c constructed so
far and the clause c′ (line 7) constructed on the basis of the next answer a′

(lines 5 and 6).
In our example, the next specialized clause c′ for the next answer Meck-

lenburg-Vorpommern is:

3Methods and concepts are the F-Logic notions for binary and unary predicates, re-
spectively.

4Essentially, the target predicate is used to indicate which variable is the one actually
referring to the instances that have been asked for. In that sense, it resembles the SELECT
statement in SQL.
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c′ := answer(Mecklenburg-V orp.) ← state(Mecklenburg-V orp.),

location(Mecklenburg-V orp.),

inhabitants(Mecklenburg-V orp., 1.735.000),

borders(Mecklenburg-V orp., Brandenburg),

borders(Mecklenburg-V orp., Niedersachsen),

borders(Mecklenburg-V orp., Sachsen-Anhalt),

borders(Mecklenburg-V orp., Schleswig-Holstein),

borders(Brandenburg, Mecklenburg-V orp.),

borders(Niedersachsen, Mecklenburg-V orp.),

borders(Sachsen-Anhalt, Mecklenburg-V orp.),

borders(Schleswig-Holstein, Mecklenburg-V orp.),

location(Rostock, Mecklenburg-V orp.),

location(Schwerin, Mecklenburg-V orp.),

capital of(Schwerin, Mecklenburg-V orp.).

Computing the LGG of c and c′, we obtain: LGG(c, c′) :=

answer(X) ← state(X), location(X), inhabitants(X, Y ),

borders(X, V1,1), borders(X, V1,2), borders(X, V1,3), borders(X, V1,4),

borders(V1,1, X), borders(V1,2, X), borders(V1,3, X), borders(V1,4, X),

borders(X, V2,1), borders(X, V2,2), borders(X, V2,3), borders(X, V2,4),

borders(V2,1, X), borders(V2,2, X), borders(V2,3, X), borders(V2,4, X),

borders(X, V3,1), borders(X, V3,2), borders(X, V3,3), borders(X, V3,4),

borders(V3,1, X), borders(V3,2, X), borders(V3,3, X), borders(V3,4, X),

borders(V∗,5, V1,∗), borders(V∗,6, V1,∗), borders(V∗,7, V1,∗), borders(V∗,8, V1,∗),

borders(V∗,5, V2,∗), borders(V∗,6, V2,∗), borders(V∗,7, V2,∗), borders(V∗,8, V2,∗),

borders(V∗,5, V3,∗), borders(V∗,6, V3,∗), borders(V∗,7, V3,∗), borders(V∗,8, V3,∗),

borders(V4,∗, V∗,1), borders(V4,∗, V∗,2), borders(V4,∗, V∗,3), borders(V4,∗, V∗,4),

borders(V5,∗, V∗,1), borders(V5,∗, V∗,2), borders(V5,∗, V∗,3), borders(V5,∗, V∗,4),

borders(V6,∗, V∗,1), borders(V6,∗, V∗,2), borders(V6,∗, V∗,3), borders(V6,∗, V∗,4),

location(P, X), location(Q, X), capital of(Q, X).

The variables above then represent the LGGs of the following pairs of
terms in the original clauses:
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Variable Term c Term c′

X Saarland Mecklenburg-Vorpommern
Y 1.062.754 1.735.000
V1,1 Rheinland-Pfalz Brandenburg
V1,2 Rheinland-Pfalz Niedersachsen
V1,3 Rheinland-Pfalz Sachsen-Anhalt
V1,4 Rheinland-Pfalz Schleswig-Holstein
V2,1 France Brandenburg
V2,2 France Niedersachsen

... ...
V3,4 Luxembourg Schleswig-Holstein
V1,∗ Rheinland-Pfalz Mecklenburg-Vorpommern
V2,∗ France Mecklenburg-Vorpommern
V3,∗ Luxembourg Mecklenburg-Vorpommern
V4,∗ Rheinland Pfalz Mecklenburg-Vorpommern
V5,∗ France Mecklenburg-Vorpommern
V6,∗ Luxembourg Mecklenburg-Vorpommern
V ′
∗,1 Saarland Brandenburg

V ′
∗,2 Saarland Niedersachsen

V ′
∗,3 Saarland Sachsen-Anhalt

V ′
∗,4 Saarland Schleswig-Holstein

V ′
∗,5 Saarland Brandenburg

V ′
∗,6 Saarland Niedersachsen

V ′
∗,7 Saarland Sachsen-Anhalt

V ′
∗,8 Saarland Schleswig-Holstein

P Saarbrücken Rostock
Q Saarbrücken Schwerin

The resulting clause is then transformed into a query in the target lan-
guage, i.e. F-Logic in our case, so that it can be evaluated by the infer-
ence engine, which returns the extension of the clause LGG(c, c′) on the
basis of the given knowledge base (line 8). If the clause is inconsistent (line
9), i.e., it covers more answers than the required ones (this is the case if
Answers ∩ Answers′ ⊂ Answers′) then no consistent clause can be con-
structed and the algorithm returns the empty clause ∅ (line 11).

As a further optimization of the algorithm, we could always remove those
examples which have been already covered by the clause computed so far
(see line 19). However, we have not made use of this optimization in our
experimental settings.

Note that the clause computed as the LGG can grow exponentially in
the size of the original clauses. However, the clauses representing the LGG
can also be reduced. In case the clause c is consistent, it is reduced as
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described below in Section 3.4 (line 13) and we test if this reduced clause
covers exactly the original answers (line 15). If so, we return the reduced
clause c′′ and are done (line 17). Otherwise, we proceed to consider the next
answer and compute the next least general generalization between the last
unreduced clause c and the clause c′ generated by the next answer a′ (lines
5-7). This algorithm returns a clause in case it covers exactly the set of
extensional answers.

By removing redundant literals, the above LGG can be reduced to:

answer(X) ← state(X), location(X), inhabitants(X, Y ), borders(X, Z),

borders(Z,X), location(P, X), capital of(Q,X)

The above clause is intensionally equivalent to the LGG, i.e. the above
clause and the LGG θ-subsume each other. All atoms of the form borders(X, ∗)
and borders(∗, X) (12 each) are intensionally equivalent to the above atoms
borders(X, Z) and borders(Z,X). All the other border-predicates can be
removed as they are trivially fulfilled in case there is at least one instance of
the border-predicate. This is certainly the case in our LGGs as the clauses
in the LGG appear only in case they appear in one specialized clause, such
that it is guaranteed that there is at least one instance.

The above clause can be transformed into a query as follows and sent to
the inference engine to be evaluated, yielding the answers below:

FORALL X ← EXISTS Y, Z, P,Q X : state AND X : location AND

X[inhabitants→ Y ] AND X[borders→ Z] AND

Z[borders→ X] AND P [location→ X] AND

Q[capital of → X].
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Nordrhein-Westfalen
Bayern
Hessen
Baden-Württemberg
Berlin (Bundesland)
Brandenburg (Bundesland)
Niedersachsen
Sachsen
Sachsen-Anhalt
Thüringen
Schleswig-Holstein
Hamburg (Bundesland)
Rheinland-Pfalz
Saarland
Mecklenburg-Vorpommern

Note that the state of Bremen is missing from the above list. The reason
is that Bremen is not modeled as bordering any state, such that the atoms
borders(X, Z) and borders(X, Z) are not satisfied.

Thus, the clause reduction we discuss below accomplishes two goals: i) it
makes the intensional answer more compact and ii) it potentially increases
the coverage (in terms of positive answers) of the query by removing certain
literals.

Concerning the first case, assuming that the above clause would cover all
of the examples in the original answers, it is highly redundant from the point
of view of the knowledge base. For example, any state X is also a location
according to our ontology (as state is subsumed by location in our ontology).
Further, every state can be assumed to have some number of inhabitants
Y as well as some capital Q, etc. Thus, all the literals besides state(X)
are irrelevant in the sense that removing them will not introduce negative
examples but potentially cover more positives (like the missing Bremen in
our case). In order to obtain more compact (but consistent) descriptions, we
apply a clause reduction step which we describe in the next section.

3.4. Clause Reduction

The clause reduction algorithm removes body literals in order to poten-
tially increase the coverage of the clause in terms of positive examples without
introducing any negative ones. Further, the reduction yields a more compact
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clause which might be more intuitive and informative for the user of the
system compared to a longer clause.

Note that by removing literals we create a clause which is at least as
general as the original clause, so that the number of examples can increase
but not decrease. Thus, it is important to verify that no negative examples
are covered by the resulting clause, i.e. that it is consistent.

The following algorithm performs the reduction of the clause:

reduceClause( Clause c, KnowledgeBase KB, Set Answers)
1 List literals = orderLiterals(c); (in increasing order)
2 for i = 1 to |literals|
3 do
4 c′ = remove(c, Li);
5 Answers′ = evaluateQuery(query(c′),KB);
6 if Answers ∩ Answers ′ = Answers ′(i.e. c′ is consistent)
7 then
8 c = c′

9
10 return c;

The algorithm first sorts the literals in the clause according to a specific
total order given below (line 1) and checks incrementally (line 2) whether
each of these literals (following the ordered list) can be removed without
covering any negative examples. It does so by constructing a query from
the clause c′ with the removed literal (line 4) and evaluating this query with
respect to the knowledge base (line 5). If c′ is consistent (line 6), the change
is applied to the clause (line 8). As result, the algorithm returns a clause
which is at most as long as the original query. In case no literal can be re-
moved while preserving consistency at the same time, the original clause is
returned.

The literals are ordered according to a total order satisfying the following
conditions:

• Li < Lj if Li is an atom of higher arity than Lj

• Li < Lj if Li and Lj have the same arity and less variables in Li

appear in the remaining literals of the clause.
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For the literals in the following clause:

answer(X) ← state(X), location(X), inhabitants(X, Y ), borders(X, Z),

borders(Z,X), location(P, X), capital of(Q,X)

the following order would be admissible:

location(P, X) < capital of(Q,X) < inhabitants(X, Y ) <

borders(X, Z) < borders(Z,X) < location(X) < state(X)

Thus, we would first attempt to remove the literals location(P, X) and
capital of(Q,X) and inhabitants(X, Y ), as they have the highest arity and
the variables P , Q and Y only occur once. The rationale for eliminating such
literals should be clear: as they share fewer variables with other literals, their
effect on the other literals (in terms of dependencies) is smaller. Then we
would remove borders(X, Z) and borders(Z,X) as they share two variables
with other literals in the body of the query. Finally, we would consider the
literals with an arity of 1 for removal, i.e. location(X) and state(X). This
order criterion of descending predicate arity was chosen in order to obtain
descriptions that are preferably intuitive.

In fact, we have implemented two different procedures for the elimina-
tion of irrelevant literals. These procedures differ with respect to whether
the clause is reduced after the computation of each LGG (as sketched in the
algorithm depicted in Figure 4, line 13) or only at the end. Reduction at the
end is unproblematic as the clause then already covers all the positive ex-
amples and the reduction does not affect the coverage. In case the reduction
is performed after each LGG-computation, this can affect the computation
of the further LGGs. Therefore, in the version of our approach in which
we compute a reduced clause after each iteration, the reduced clause is only
used as output in case it consistently covers all answers. Otherwise, the unre-
duced clause is used in the next iteration. Our experiments actually show
that by applying the reduction procedure after each iteration we can reduce
the number of iterations and speed up our algorithm in many cases.

3.5. A Worked Example
After having explained the different steps involved in the computation

of an intensional answer, we now discuss the computation of an intensional
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description for our running example in an end-to-end fashion, abstracting
from details explained in earlier sections to enhance the overall understanding
of the approach.

Let’s consider our running example, the question: “Which states have a
capital?”. ORAKEL translates this question into the following logical query:
FORALL X ← EXISTS Y X : state∧X[capital→ Y ]. The answer of the
ORAKEL system can be represented as follows in clause notation:

answer(Saarland)
answer(Mecklenburg-Vorpommern)
answer(Rheinland-Pfalz)
answer(Hamburg (Bundesland))
answer(Schleswig-Holstein)
answer(Thüringen)
answer(Sachsen-Anhalt)
answer(Sachsen)
answer(Bremen)
answer(Niedersachsen)
answer(Brandenburg)
answer(Berlin (Bundesland))
answer(Baden-Württemberg)
answer(Hessen)
answer(Bayern)
answer(Nordrhein-Westfalen)

Now the goal of our approach is to find a clause describing the answer-
predicate intensionally. The number of positive examples is 16, while there
are no explicit negative examples given. Nevertheless, a clause is inconsistent
if, evaluated with respect to the knowledge base by the inference engine, it
returns answers which are not in the set of positive examples. This is verified
by the condition Answers ∩ Answers′ ⊂ Answers′ in the algorithm from
Fig. 4.

In what follows, we illustrate our algorithm using the version which re-
duces the learned clause after each iteration. The first example considered is
“Saarland”. The algorithm is initialized with the following clause represent-
ing all the facts about “Saarland” in the knowledge base (compare Section
3.2):
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answer(Saarland) ← state(Saarland), location(Saarland),

inhabitants(Saarland, 1.062.754), borders(Saarland, Rheinland-Pfalz),

borders(Saarland, France), borders(Saarland, Luxembourg),

borders(Rheinland-Pfalz, Saarland), location(Saarbrücken, Saarland),

capital of(Saarbrücken, Saarland), borders(France, Saarland),

borders(Luxembourg, Saarland), f lows through(Saar, Saarland)

The above specialized clause with the artificial predicate answer as head is
produced by constructClause(“Saarland”). As there are more examples, the
next example “Mecklenburg-Vorpommern” is considered, which is represented
by the following clause (see Section 3.2).

answer(Mecklenburg-V orpommern) ← state(Mecklenburg-V orpommern),

location(Mecklenburg-V orpommern),

inhabitants(Mecklenburg-V orpommern, 1.735.000),

borders(Mecklenburg-V orpommern, Brandenburg),

borders(Mecklenburg-V orpommern, Niedersachsen),

borders(Mecklenburg-V orpommern, Sachsen-Anhalt),

borders(Mecklenburg-V orpommern, Schleswig-Holstein),

borders(Brandenburg, Mecklenburg-V orpommern),

borders(Niedersachsen, Mecklenburg-V orpommern),

borders(Sachsen-Anhalt, Mecklenburg-V orpommern),

borders(Schleswig-Holstein, Mecklenburg-V orpommern),

location(Rostock, Mecklenburg-V orpommern),

location(Schwerin, Mecklenburg-V orpommern),

capital of(Schwerin, Mecklenburg-V orpommern)

Now, computing the LGG of these two clauses yields the clause (compare
Sec. 3.2 for the full clause):

answer(X) ← state(X), location(X), inhabitants(X, Y ),

borders(X, V1,1), ..., borders(X, V3,4), (12 border-predicates)

borders(V1,1, X), ..., borders(V3,4, X), (12 inverse border-predicates)

borders(V∗,5, V1,∗), ..., borders(V6,∗, V∗,4), (24 border-predicates)

location(P, X), location(Q, X), capital of(Q, X)

This clause can then be reduced to the following by removing redundant
literals:
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answer(X) ← state(X), location(X), inhabitants(X, Y ), borders(X, Z),

borders(Z,X), location(P, X), capital of(Q,X)

This clause covers 15 of the 16 original answers, but we can apply the
procedure to remove irrelevant literals by considering one literal at a time
according to our order (see Section 3.4), such that the following literals are
removed in the indicated order as their removal does not increase the exten-
sion:

1. location(P,X) (covering 15 examples)

2. capital of(Q,X) (covering 15 examples)

3. inhabitants(X,Y) (covering 15 examples)

4. borders(X,Z) (covering 15 examples)

5. borders(Z,X) (covering in addition Bremen)

6. location(X) (covering 16 examples)

This produces the clause: answer(X)← state(X) for our example. This
clause then covers exactly the original answers and no others. The key here
to cover also the example Bremen is thus the removal of the two borders

predicates.
While this is not part of our current implementation of the system, an

appropriate natural language answer could be generated from this clause,
thus having “All states (have a capital)” as final intensional answer.

Thus, reducing the clause after each step has the effect that a correct
clause can be derived with one LGG computation (one pass through the
algorithm) for our example. In case the clause is not reduced after each
step (by removing irrelevant literals), the algorithm needs to make 7 itera-
tions, considering the examples: Mecklenburg-Vorpommern, Rheinland-Pfalz,
Hamburg, Schleswig-Holstein, Thüringen, Sachsen-Anhalt and Bremen. Due
to space limitations, we do not describe this procedure in more detail.

3.6. A note on complexity and scalability

Concerning the worst-case complexity of our approach consider the algo-
rithm in Fig. 4 and let n be the number of answers. Each of the maximally n
loops of the algorithm involves: i) a query to the knowledge base to construct
a clause (line 6), ii) the computation of an LGG (line 7), iii) the evaluation
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of a query with respect to the knowledge base (line 8) and iv) the reduction
of the clause (line 13).

The main bottleneck is the computation of the LGG c (line 7), the size
of which can get exponential in the number of the input clauses. It is bound
by O(mn) where n is the number of answer items in the extensional answer
and m is the maximum size of a specific clause for an entity in the knowledge
base (roughly the maximum number of other entities an entity can be directly
related to). This increase of c also affects the evaluation of the query with
respect to the knowledge base (line 8).

The reduction of the clause (line 13) is again linear in the number of
atoms of the clause to be reduced, which can be exponential as mentioned
above.

While the algorithm does not seem very tractable at first sight, it turns
actually out that it is very scalable when considering standard scenarios:
the complexity is primarily determined by the number n of answer items
returned, which can be assumed not to be too high for meaningful questions
which do not ask for the complete extension of some concept (e.g. asking for
all cities in the world). Our approach never operates on the full knowledge
base but only on the answers returned, such that it can in principle scale
to arbitrary large datasets as long as the number of answers returned is
reasonable. The second source of complexity is the maximum number m of
entities an entity is connected to. On the one hand, this is determined by
the schema of the dataset and all the relationships that are possible. Larger
datasets are typically poor from a schema point of view (e.g. the DBLP
dataset).

The performance of our algorithms is thus highly dependent on the con-
nectedness of the entities in the knowledge base. If the connectedness ratio is
moderate, then the algorithm can certainly scale to arbitrarily big datasets.

4. Evaluation

The empirical evaluation of the system has been carried out with respect
to a dataset used previously for the evaluation of the ORAKEL natural lan-
guage interface (see [2])5. We analyze in detail to what extent the intensional

5The dataset is available at http://www.cimiano.de → Projects (Tab) → Datasets
and other material → ORAKEL
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answers produced by the system are “useful” and also discuss how the inten-
sional answers can help in detecting errors in the knowledge base. Thus, we
first describe the used dataset in more detail, then we discuss the usefulness
of the generated intensional answers. After that, we show how intensional
answers can be used to detect flaws (incomplete knowledge) in the knowledge
base and also present some observations with respect to the time performance
of our algorithm.

4.1. Dataset

The dataset previously used for the evaluation of the ORAKEL natural
language interface consists of 463 wh-questions about German geography.
These questions correspond to real queries by users involved in the experi-
mental evaluation of the ORAKEL system (see [2]). The currently available
system is able to generate an F-Logic query for 245 of these, thus amounting
to a recall of 53%. For 205 of these queries, OntoBroker delivers a non-
empty set as answer. Obviously, it makes sense to evaluate our approach to
the generation of intensional answers only on the set of queries which result
in a non-empty extension, i.e. the 205 queries mentioned before. Of these,
the ILP-based approach is able to generate a clause for 169 of the queries.
Roughly, we are thus able to generate intensional answers for about 83% of
the relevant questions in our dataset. Here, only those questions are regarded
as relevant which are translated by ORAKEL into an appropriate F-Logic
query and for which OntoBroker delivers a non-empty extension. In general,
there are two cases in which our ILP-based approach is not able to find a
clause (in 36 out of 205 cases):

• The concept underlying the answers is simply not learnable in the form
of a (single) clause expressible using our language (about 67% of the
cases). An example here is ‘Where is a city with more than 1.000.000
inhabitants?’, translated by ORAKEL into the query: FORALL X ←
EXISTS Y, Z X[location → Y ] Y : city AND Y [inhabitants → Z]
AND greater(Z, 1000000)). In order to represent such a clause we
would need to introduce numerical comparison operators into our clause
language. However, note that it is not excluded that such answers can
be represented with our clause language if there are other properties
not requiring numerical comparisons which might be used to pick out
the entities in question. Such an example is the question ‘Which cities
have more than 1500000 inhabitants?’ (Answers: Berlin, Hamburg),
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for which our approach generates the answer ‘All (the cities) that are
located at the A24 and which a river flows through’. Another example
is “Which rivers flow through a capital?”, which is translated into the
query FORALL X ← EXISTS Y, Z X[flows through → Y ] AND
Y [capital of → Z]. No intensional clause is produced in this case as
it requires to explore the further neighborhood of the entity Y to add
the essential literal capital of (Y, Z)

• The answer to the query is the result of counting (about 33% of the
cases), e.g. “How many cities are in Baden-Württemberg?”. Such nu-
meric constants are not first-order citizens in the knowledge base (but
actually elements of a certain datatype) and have no properties one
could use to describe them.

Given this dataset, we first proceeded to analyze the usefulness of the
intensional answers. For this purpose, we examined all the answers and
determined whether the user learns something new from the answer or it
merely constitutes a rephrasing of the question itself.

4.2. Analysis of Intensional Answers

For the 169 queries for which our approach is able to generate an inten-
sional answer, it turned out that in 140 cases, the intensional answer could
be actually regarded as “useful”, i.e. as not merely rephrasing the question
and thus giving new information to the user. For example, to the question:
“Which rivers do you know?”, the intensional answer “All rivers” does not
give any additional knowledge, but merely rephrases the question. Of the
above mentioned 140 useful answers, 97 are intensional answers describing
additional properties of a single answer. Thus, for only 43 of the 140 useful
answers the bottom-up generalization algorithm was actually used.

In order to further analyze the properties of intensional answers, we de-
termined a set of 54 questions which, given our observations above, could
be suitable for presenting intensional answers. For the new 54 queries, we
received as results 49 useful intensional answers and 1 answer considered as
not useful. For the other 4 questions, no consistent clause could be found.
Together with the above mentioned 140 queries the overall number of useful
intensional answers for the actual knowledge base is 189. The queries which
provided useful answers can be classified into the four three types:
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• Questions asking for all instances with a special property which turn
out to coincide exactly with the extension of some atomic concept in the
ontology (about 28% of the cases). The user learns from such an answer
that all the instances of the atomic class in question share the property
he/she is querying for. An example is the question: “Which states have
a capital?”, which produces the answer answer(X) ← state(X) or in
natural language simply “All states”.

• Questions asking for the relation with a specific entity which is para-
phrased (possibly because the user doesn’t know or remember it) (16%
of the cases) Examples of such questions are: “Which cities are in a
state that borders Austria?” or “Which capitals are passed by a highway
which passes Flensburg?”. In the first case, the state in question which
borders Austria is “Bayern” and the intensional answer is correctly:
“All the cities which are located in Bayern.” In the second case, the
highway which passes Flensburg is the A7, so the intensional answer is
“All the capitals located at the A7”.

• Questions about properties of entities which lead to the description of
additional properties shared by the answer set as intensional answer
(about 5% of the cases). For example, the question “Which states
do three rivers flow through?” produces the intensional answer “All
the states which border Bayern and which border Rheinland-Pfalz”,
i.e. Hessen and Baden-Württemberg. Another example is the ques-
tion: “Which rivers flow through more than 5 cities?” (Answer: Rhein
and Ruhr), yielding the intensional answer: “All the rivers which flow
through Duisburg”. A further interesting example is the question “Which
cities are bigger than München?” with the intensional answer: “All the
cities located at highway A24 and which a river flows through”. These
are the cities of Berlin and Hamburg. Such answers provide additional
knowledge to the user about the entities in the extension, i.e. learning
that Berlin and Hamburg are the only cities bigger than Munich, but
also the only ones which are located at highway A24 and at some river.

• Questions which yield a single answer as a result and for which the
intensional answer describes additional properties (51%). An example
would be: “What is the capital of Baden Württemberg?”, where the
extensional answer would be “Stuttgart” and the intensional answer
(paraphrased in natural language) “Stuttgart is located at the highways
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A8, A81, A85 and A831. It has 565.000 inhabitants and is the capital
of Baden Württemberg. The Neckar flows through Stuttgart.”

4.3. Debugging the Knowledge Base

In addition to providing further information about the answer space, a
key benefit of intensional answers is that they allow to detect errors in the
knowledge base. We found that in some cases the intensional answer pro-
duced was not the expected one, hinting at possible modeling flaws in the
knowledge base in question. We give a few examples to illustrate this idea:

• For example, for the question “Which cities have more than 9 inhabi-
tants?”, we would expect the intensional answer “All cities”. Yet, we
obtained the answer answer(X) ← city(X) ∧ inhabitants(X, Y ), i.e.
“all the cities with a number of inhabitants”. This hints at the fact that
the number of inhabitants is not defined for all declared cities in the
knowledge base. A closer inspection of the knowledge base revealed
that some Swiss cities are mentioned in the knowledge base because
some German rivers have their origin in Switzerland, but no number of
inhabitants is specified for these cities.

• As another example, the query “Which river has an origin?” yielded as
intension: answer(X) ← river(X) ∧ length(X, Y ) (“All rivers which
have a length”) instead of “All rivers”. This is due to the fact that
there is one instance of river for which neither a length nor an origin is
specified. This instance is the river Isar.

This shows that intensional answers can be useful to detect where infor-
mation in the knowledge base is missing.

4.4. Query-Driven Knowledge Base Refinement

Another application of intensional answers is knowledge base refinement.
Consider our initial example, where we were looking for states having a cap-
ital, formally we queried for all x with state(x) as well as capital of (y, x) for
some y or, more formally, for all x satisfying state(x) ∧ ∃y(capital of (y, x)).
The intensional answer we obtained from the system tells us that these are
exactly those x satisfying just state(x). Therefore, the logical proposition
∀x(state(x) ∧ ∃y(capital of (y, x)) ↔ state(x)) holds with respect to all in-
dividuals recorded in our knowledge base. While the “→” direction of this
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Time (in sec.) # Iterations
Reduction ∅ min max ∅ min max

after each LGG computation 0.528 0.08 13.61 0.621 0 5
at the end 0.652 0.07 33.027 1.702 0 73

Table 1: Performance measurements for our testsuite

proposition is trivially true, the “←” direction provides information about
the domain telling that every state has a capital. Now, there are two possi-
bilities: This might be a proposition that is just incidentally true for all the
states recorded in the knowledge base and that could be disproven by adding
an (existing but not yet recorded) state that has no capital to the knowledge
base. The other case would be that having a capital is a necessary feature
for every possible state such that the above proposition has to be universally
valid. In this case, the proposition (state(x)→ state(x)∧∃y(capital of (y, x))
or its equivalent in the used formalism) can be added to the ontology as a
logical axiom, provided the knowledge modeling language used offers the
required expressivity for doing so.

This strategy provides a way of continuously refining the knowledge stored
in the system by the user. If a query imposed by the user returns a nontrivial
intensional answer, the user can be asked, whether the original query implies
the delivered intensional answer and/or the other way around. If he denies,
he might be able to input “witness individuals” for this denial, otherwise the
confirmed propositions are added to the knowledge base. Either way, the
information system is enriched by new knowledge that might be useful in
further queries.

4.5. Performance Analysis

Finally, we have also carried out a performance analysis of the component
for inducing intensional answers. Table 1 shows the average time and itera-
tions needed to compute an intensional answer. In particular, we tested two
configurations of our system: one corresponding to a version in which the
clause is reduced after each LGG computation and one in which the clause is
only reduced at the end. A first analysis of the time performance reveals that
our approach can be used efficiently, taking on average about half a second
to compute an intensional answer. As we see extensional and intensional
answers as equally important and assume that both are shown to the user,
we can even assume that first the extensional answer is computed and shown
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already to the user while the intensional answer is still computed. While
the results differ considerably with respect to the maximum for the different
configurations of the system, it is interesting to see that they hardly differ in
the average case. In fact, when the reduction is performed after each LGG
computation, the average time is only very slightly under the average time
for the version in which the clause is reduced only at the end. Nevertheless,
the reduction clearly has an influence on the number of iterations needed,
which is much lower than in the case where the reduction is only applied at
the end.

5. Related Work and Discussion

We have presented an approach for computing intensional answers to
a query formulated in natural language with respect to a given knowledge
base. The approach relies on Inductive Logic Programming techniques, in
particular bottom-up clause generalization, to compute a clause subsuming
the extensional answer as returned by the inference engine, which evaluates
queries to the knowledge base. This clause represents the intensional answer
to the question and could be transformed back into natural language. The
latter step is not part of our present contribution and thus remains for fu-
ture work. The idea of delivering intensional answers to queries is relatively
straightforward and has been researched in the context of knowledge discov-
ery from databases (see e.g. [15], [16], [17]), but also logic programs (see e.g.
[18]).

Intensional query answering (IQA) emerged as a subject in the research of
cooperative response generation, which has been a topic of some works related
to natural language interfaces (compare [19] and [20]). The work closest to
ours is the one of Benamara [20] who also presents an approach to induce
intensional answers given the extension of the answer. Instead of using ILP,
Benamara relies on a rather ad-hoc approach in which parts of the answer are
replaced by some generalized description on the basis of the given knowledge
base. This generalization is guided by a “variable depth intensional calculus”
which relies on a metric measuring the distance between two concepts as the
number of arcs and the inverse proportion of shared properties. On the one
hand, the mechanism for generating intensional answers seems quite adhoc
in comparison to ours, but, on the other hand, the WEBCOOP system of
Benamara is able to generate natural language answers using a template-
based approach.
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Our approach is very related to research in the area of generating referring
expressions (compare [21], [22], [23], [24], [25]). The problem is formulated
in a way that resembles our problem formulation in [21], where the task is
defined as follows: Given a set of entities S (the target set) to be described,
the task is to find a distinguishing description that is true of all elements in
S but of no other entity in a set of potential distractors D := C\S, where
C is the context set. In research on generating referring expressions (typ-
ically generating noun phrases and definite descriptions in particular) the
context set is assumed to be what is accessible to the reader or hearer in
the situation in question. In our settings, the target set S consists of the
answers to the original query, the context set C are all those entities avail-
able in the knowledge base (as closed world) and D := C\S is the set of
negative examples. The tasks are thus conceptually similar and consist in
finding a distinguishing description which exactly picks out the elements of
the target set from the larger context. Our solution to this problem has
been a bottom-up generalization algorithm based on ILP, which starts from
a clause representing all the factual information gathered for the entity in
question from the knowledge base. Answers are added iteratively one at a
time to yield a most specific generalized description until a description which
uniquely picks out the target set is found. An important characteristic of
our approach is that we only search for single clauses and stop when the first
consistent clause is found, which can then be reduced by removing certain
literals. Our algorithm is thus greedy and lacks any completeness properties
which would be needed to find the clause which is maximal or minimal with
respect to some criteria (e.g. minimizing the length of the description [25]).
Clearly, the problem of minimizing or maximizing a certain criterion requires
enumerating all solutions and is NP-hard (see [22]). Gardent deals with this
problem by a formulation of the problem as a constraint satisfaction problem
and using efficient constraint programming techniques for this purpose (see
[25]). While our approach is certainly far from being complete, we have tried
to approximate some criteria via some heuristics. For example, the order by
which we remove irrelevant literal aims at producing more compact and thus
hopefully more intuitive clauses.

In the area of generating referring expressions, Dale and Reiter have pre-
sented a top-down (starting from the empty description) and incremental
(in the sense that it does never back-track) algorithm which adds the best
attribute at a time in a greedy fashion and stops when a distinguishing (con-
sistent in our terms) description has been found (see [21]). In its original
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fashion the incremental algorithm of Reiter and Dale only generates a de-
scription of a single referent by conjoining properties to yield a distinguishing
description. Van Deemter [22] has convincingly shown that the incremental
algorithm of Reiter and Dale is not complete in the sense that it can not be
guaranteed that if there is an actual distinguishing description, it will also
be found. Van Deemter then shows that under certain assumptions the algo-
rithm can be extended to be complete. Further, he presents an extension to
the algorithm dealing with sets of referents, one version dealing with sets in
a trivial manner and a further version in which sets are ‘first-order citizens’
(elements of the power set of entities), thus allowing to define properties on
whole sets rather than on elements of sets. Such descriptions are for exam-
ple: Sets of rivers which have the same origin. This is clearly a property
predicated of sets rather than of single elements. Horacek proposes a best-
first (also top-down) search algorithm for generating referring expressions
which scores the (partial) solutions found so far, adding in each loop new
attributes to the best solution, scoring it and checking if it is better than the
solutions found so far. This best-first search algorithm is extended in [24] to
include constraints on surface form with the goal of producing more natural
descriptions from a linguistic point of view as well as extending the descrip-
tion language by allowing to express exclusion (in addition to conjunction,
negation and disjunction) explicitly. Dale and Haddock [26] present an ex-
tension to the incremental algorithm to handle relational properties. This is
a challenge in a generation context as one would like to avoid recursive de-
scriptions, which could emerge when describing an entity through its relation
to another entity for which a description needs to be recursively generated.
As we are not concerned with a generation setting here, we have no need to
describe the entities standing in a relation to an entity in the answer further,
such that we are not concerned with this problem. In this sense, while our
approach certainly takes into account relational information, from one point
of view it does so in a rather propositional manner as the entities to which
the entities in the answer are related to are not further considered. How-
ever, from another point of view, the concrete values of a relation can be
abstracted over in the induction process by inserting a variable, so that we
are not really treating these relations only in a propositional manner. In this
sense we also introduce new properties which hold for whole sets (i.e. the ex-
tension of a clause) in the line of Van Deemter and by suitable modifications
of the generalization step (currently implemented via the LGG), we could
also generate descriptions such as All the rivers which have the same origin,

32



which should be located somewhere between having a concrete constant at
a given argument position and allowing any value (as indicated by a vari-
able) in the generalization lattice. In contrast to the approaches of Horacek
[23], [22] and [25] our approach is limited to conjunctive descriptions as the
original incremental algorithm of Reiter and Dale [21].

As discussed above, there is a clear connection between the generation
of intensional answers and the generation of referring expressions (GRE).
The algorithms in the GRE literature loop over the set of descriptors adding
descriptors in a top-down manner until the set of potential distractors is
empty. This resembles the strategy adopted in other ILP approaches which
perform in a top-down manner (e.g. FOIL [27]).

We have proceeded in a bottom-up way in our approach, adding one
example at a time, generalizing the growing descriptions until it covers all
positive examples but no negative ones.

Neither of these two strategies are specific to the problem nor technique
adopted. Both in GRE and GIA (Generation of Intensional Answers), the
search space of possible descriptions can be traversed in a bottom-up or
top-down manner. Common to both problems is that finding all possible
descriptions is NP-hard. Thus, more efficient, i.e. greedy, algorithms are
needed that cut-down the search space while producing the most suitable,
compact or economic solutions. Both in GRE and GIA we would certainly
like to produce descriptions which users can grasp with minimal effort. Such
preferences are encoded into algorithms in order to guide the search in the
space of all possible descriptions, either in a greedy style as in our case and
also in the case of the incremental algorithm of Reiter and Dale [21] or in a
best-first fashion [23].

The dichotomy intension vs. extension is also prevalent in the mathe-
matical area of Formal Concept Analysis (FCA, [28]) where lattice theory6 is
applied to model conceptual thinking. In terms of FCA, every formal concept
comprises a set of objects (the extension) and a maximal set of attributes
(the intension) that is shared by all objects and characterizes them. While
original FCA deals with propositional logic only, the framework has been
extended to description logics [29] and first order logics [30]. Building on
the FCA algorithm of attribute exploration [31], techniques for interactive
knowledge base refinement in those settings have been developed (cf. also

6more precisely: the theory of Galois connections
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[32],[33], and [34]). Conceptually, those techniques are similar to the strat-
egy presented in Section 4.4. However, all those methods aim at completely
clarifying all logical interdependencies holding in a domain, leading to a large
number of hypotheses subsequently presented to the user for decision. This
has shown to be a time-consuming and tedious task. In contrast to that,
the strategy outlined by us just comes up with one question to the user that
is related to his current focus of interest anyway (as it is triggered by the
according query posed by him).

6. Conclusion

While the idea of delivering intensional answers is certainly appealing
and intuitive, and we have further shown that they can be computed in a
reasonable amount of time, we have also argued that their benefit is not
always obvious. While our approach is able to generate intensional answers
for about 83% of the questions which can be translated by ORAKEL to
a logical query and actually have an extension according to the inference
engine, we have shown that in some cases the answer is actually θ-equivalent
and thus also logically and extensionally equivalent to the question. In these
cases, the intensional answer is not delivering additional information to the
user. However, this case could be easily ruled out by checking θ-equivalence
between the query and the clause returned as intensional answer. In these
cases, the intensional answer can then be omitted. An interesting option to
explore would be to determine the literals to be removed during the clause
reduction on the basis of the given query to avoid producing an answer which
is θ-equivalent, thus yielding more informative answers.

In the remaining cases, the intensional answers seem to indeed be deliver-
ing additional information about the knowledge base to a user (in some cases
in a quite oracle-like fashion arguably). Thus, while we have considered such
answers as “useful”, a real proof of “usefulness” can only be provided in the
form of user experiments, which we have not carried out.

While our work on generation of intensional answers (GIA) has been
carried out in the context of the ORAKEL system, the approach presented
is not specific to the latter in any way. The approach operates on the basis of
the extensional answer returned by some system and merely requires a query
interface to the knowledge base. In this sense the approach presented is
generic and can be integrated into any natural language interface or question
answering system relying on a knowledge base.
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The most obvious avenues for future work are the following. First, the
bottom-up rule induction approach should explore “larger environments” of
the answer items for clause construction by not only considering properties
of the answer item itself (i.e. related through one step in the KB) but further
properties of the entities to which it is related. In the extreme case, all facts
of the knowledge base could be selected as body of the constructed clause.
Overall, increasing the environment considered to construct our clauses will
also clearly affect the complexity of our approach (see Section 3.6). The
additional gain in expressivity needs thus to be balanced with the increased
complexity, a non-trivial issue.

Second, instead of only computing one single clause, we should also con-
sider computing (disjunctive) sets of conjunctive descriptions, thus hopefully
increasing the coverage of the approach. However, it could turn out that the
disjunctions of intensional descriptions are much harder to grasp by users.
The possibility of expressing disjunction might in some cases shorten the pro-
cess of finding an intensional description. Using disjunction, a corresponding
intensional description for our states example might be yielded in one step
as “All states that have a capital and border at least one state, as well as
Bremen”. While the increase in expressiveness in the language used allows
to induce a description in one step, it is questionable if such an answer is
perceived as more intuitive by users.

Further, the addition of negation and exclusion operators to our language
should be investigated together with its implications on the formulation of
the bottom-up generalization and its performance. The addition of exclusion
would have for instance produced a different answer for the example ques-
tion Which river has an origin?, with the answer ‘All rivers except for the
Isar’, which would have been certainly very informative and would also show
the incompleteness of the knowledge base in a straightforward and intuitive
manner.

It would also be interesting to compare the algorithms suggested to pro-
duce distinguishing descriptions in research on generating referential expres-
sions on our task.

Clearly, our approach is restricted to “closed” domains and assumes that
all relevant information is modeled in the form of a knowledge base from
which the intensional answers are generated. We do not see any way how
our approach could be straightforwardly extended to an open domain sce-
nario. It is even questionable if extending the approach to handle unstruc-
tured and open domains is desirable at all. After all, the advantage of a
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question answering approach operating on a closed domain modeled in terms
of a knowledge base is that counting, aggregation, comparisons etc. can be
performed, which is very hard, if not impossible, to achieve in unstructured
and open-domain settings.

Finally, the task of generating natural language descriptions of the inten-
sional answers represents an obvious continuation of our work.

On a more general note, we hope that our work contributes to stimulating
discussion on a research issue which has not been on the foremost research
frontier lately, but seems crucial towards achieving more natural interactions
with information systems.
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