Complexity Theory

Exercise 10: Randomised Computation

Exercise 10.1. Show that **MAJSAT** is in PP.

 $\mathbf{MajSat} = \{ \varphi \mid \varphi \text{ is some propositional logic formula that} \\ \text{is satisfied by more than half of its assignments} \}$

Exercise 10.2. Show BPP = COBPP.

* Exercise 10.3. Show $BPP^{BPP} = BPP$.

Exercise 10.4. Find the error in the following proof that shows PP = BPP: Let $L \in PP$. Then there exists a poly-time bounded PTM accepting L with error probability smaller than $\frac{1}{2}$. Using error amplification, we can make this error arbitrarily small, and in particular smaller than $\frac{1}{3}$. Hence, $L \in BPP$.

Exercise 10.5. Let \mathcal{M} be a polynomial-time probabilistic Turing machine. We say that \mathcal{M} has *error probability smaller than* $\frac{1}{3}$ if and only if

$$\mathit{Pr}[\mathcal{M} \ \mathrm{accepts} \ w] < \frac{1}{3} \quad \mathrm{or} \quad \mathit{Pr}[\mathcal{M} \ \mathrm{accepts} \ w] \geq \frac{2}{3}$$

for all inputs w. Show that deciding whether a polynomial-time probabilistic TM has error probability smaller than $\frac{1}{3}$ is undecidable.