Non-Monotonic Reasoning

Steffen Hölldobler

International Center for Computational Logic Technische Universität Dresden
Germany

- Introduction
- Closed World Assumption
- Completion
- Circumscription
- Default Logic
- Answer Set Programming

Introduction - The Missionaries and Cannibals Puzzle

- Puzzle Three missionaries and three cannibals come to a river.

A rowboat that seats two is available. If the cannibals ever outnumber the missionaries on either bank of the river, the missionaries will be eaten. How shall the missionaries and the cannibals cross the river?

- Representation MCB where
$\triangleright M$ denotes the number of missionaries on the left bank of the river
$\triangleright C$ denotes the number of cannibals on the left bank of the river
$\triangleright B$ denotes the number of rowboats on the left bank of the river
- Solution
(331, 220, 321, 300, 311, 110, 221, 020, 031, 010, 021, 000)
Can it be derived as a logical consequence of a first order formalization?

Problems

- Unless it can be deduced that an object is present, we conjecture that it is not present
- Unless there is something wrong with the boat or something else prevents the boat from using it, it can be used to cross the river

Non-Monotonic Logics

- A logic $\langle\mathcal{A}, \mathcal{L}, \models\rangle$ is said to be non-monotonic iff there exist $\mathcal{K}, \mathcal{K}^{\prime}$ and G such that

$$
\mathcal{K} \vDash G \text { and } \mathcal{K} \cup \mathcal{K}^{\prime} \not \models G
$$

where \mathcal{K} and \mathcal{K}^{\prime} are sets of formulas in \mathcal{L} and G is a formula in \mathcal{L}

- Propositional and first order logic are monotonic \rightsquigarrow Exercise

Closed World Assumption

- Open world assumption (OWS) the only answers given to a query are those that can be obtained from proofs of the query, given the knowledge base
- Closed world assumption (CWS)
certain additional answers are admitted as a result of a failure to prove a result
- Example
$\triangleright \mathcal{K}=$ \{lectures(steffen, cl1), lectures(steffen, cl5),
lectures(michael, cl2), lectures(michael, cl5),
lectures(heiko, cl4), lectures(horst, cl3)\}

\triangleright| \triangleright query | OWS | CWS |
| :---: | :---: | :---: |
| $\mathcal{K} \models(\exists X)$ lectures(steffen, $X)$ | yes | yes |
| $\mathcal{K} \models \neg$ lectures(michael, cl6) | no | yes |

The Formal Theory

- Let $\langle\mathcal{A}, \mathcal{L}, \models\rangle$ be a first order logic
- Let $\mathcal{K} \subseteq \mathcal{L}$ be a satisfiable set of formulas
- $\mathcal{C}(\mathcal{K})=\{\boldsymbol{G} \mid \mathcal{K} \vDash \boldsymbol{G}\}$ is the theory or closure of \mathcal{K}
- Let $\mathcal{K}_{C W A}=\{\neg \boldsymbol{A} \mid \boldsymbol{A}$ is a ground atom in \mathcal{L} and $\mathcal{K} \not \vDash \boldsymbol{A}\}$
- $\mathcal{C}_{\text {CWA }}(\mathcal{K})=\mathcal{C}\left(\mathcal{K} \cup \mathcal{K}_{C W A}\right)$ is the theory of \mathcal{K} under the closed world assumption

Satisfiability

- Is $\mathcal{C}_{\text {CWA }}(\mathcal{K})$ satisfiable?
- Consider $\mathcal{K}=\{$ leakyValve \vee puncturedTube $\}$
$\triangleright \mathcal{K} \not \vDash$ leakyValve
$\triangleright \mathcal{K} \not \vDash$ puncturedTube
$\triangleright\{\neg$ leakyValve, \neg puncturedTube $\} \subseteq \mathcal{K}_{c w A}$
$\triangleright \mathcal{K} \cup \mathcal{K}_{c w a} \supseteq$ \{leakyValve \vee puncturedTube, \neg leakyValve, \neg puncturedTube\}
$\triangleright \mathcal{K} \cup \mathcal{K}_{C W A}$ is unsatisfiable!
- Theorem Let \mathcal{K} be a satisfiable set of formulas in Skolem normal form. $\mathcal{C}_{\text {CWA }(\mathcal{K})}$ is satisfiable iff \mathcal{K} admits a least Herbrand model

Models and the Closed World Assumption

\checkmark Let $M=\left(\mathcal{D}, I^{\prime}\right)$ and $M^{\prime}=\left(\mathcal{D}^{\prime}, I^{\prime}\right)$ be two models of \mathcal{K}

- Let \mathcal{R} be the set of relation symbols in \mathcal{L} and $\mathcal{P} \subseteq \mathcal{R}$
- M is a submodel of M^{\prime} wrt $\mathcal{P}\left(M \preceq_{\mathcal{P}} M^{\prime}\right)$ iff
$\mathcal{D}=\mathcal{D}^{\prime}$ and $.^{I}, I^{\prime \prime}$ are identical except that for all $q \in \mathcal{P}$ we find $q^{I} \subseteq q^{\prime^{\prime}}$
$\triangleright\left(q^{\prime}\right.$ is often called the extension of q under $\left.I\right)$
- If $\mathcal{P}=\mathcal{R}$ then we write $M \preceq M^{\prime}$ instead of $\boldsymbol{M} \preceq_{\mathcal{P}} M^{\prime}$
- A model M of \mathcal{K} is minimal
iff for all models M^{\prime} of \mathcal{K} we find that $M^{\prime} \preceq M$ implies $M=M^{\prime}$
- $M \prec M^{\prime} \quad$ iff $\quad M \preceq M^{\prime}$ and $M \neq M^{\prime}$
- A model M of \mathcal{K} is the least model of \mathcal{K}
iff for all models M^{\prime} of \mathcal{K} we find $\boldsymbol{M} \neq M^{\prime}$ implies $\boldsymbol{M} \prec M^{\prime}$
- The closed world assumption eliminates non-least models!

TECHNISCHE
UNIVERSITAT

Remarks

- $\mathcal{K} \not \models \boldsymbol{A}$ cannot be decided in first-order logic!
- There are several extensions of the closed world assumption

Completion

- Can we add more complex formulas than negative ground atoms to a knowledge base?
- Let $\mathcal{F}=\{$ tweedy, john $\}$ and $\mathcal{R}=\{$ penguin $\}$
- Let $\mathcal{K}=\{$ penguin(tweedy) $\}$
- Models for \mathcal{K}
$\triangleright M_{1}=\{$ penguin(tweedy) $\}$
$\triangleright M_{2}=\{$ penguin(tweedy), penguin(john) $\}$
- $M_{1} \prec M_{2}$
- How can the least model be computed?
- Another example $\mathcal{K}=\{$ penguin(tweedy), penguin(john) $\}$
- And another one $\mathcal{K}=\{(\forall X)(\neg f l y(X) \rightarrow f l y(X))\}$

Solitary Clauses

- An occurrence of an \boldsymbol{n}-ary predicate symbol \boldsymbol{p} in a clause \boldsymbol{C} is said to be
\triangleright positive iff we find terms $\boldsymbol{t}_{\boldsymbol{i}}, \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}$, such that $\boldsymbol{p}\left(\boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{\boldsymbol{n}}\right) \in \boldsymbol{C}$
\triangleright negative iff we find terms $t_{i}, 1 \leq i \leq n$, such that $\neg p\left(t_{1}, \ldots, t_{n}\right) \in C$
- A set \mathcal{K} of clauses is said to be solitary wrt p
iff for each clause $C \in \mathcal{K}$ we find that if C contains a positive occurrence of p then C does not contain another occurrence of p
- The clause

$$
[\neg f l y(t w e e d y), \neg f l y(j o h n), \text { penguin(tweedy), } \neg \text { penguin(john)] }
$$

\triangleright is solitary in fly and
\triangleright not solitary in penguin

The Completion Algorithm

Input \mathbf{A} set \mathcal{K} of clauses and a predicate symbol p
Output The completion formula $\boldsymbol{C}_{\mathcal{K}, p}$ of \mathcal{K} with respect to \boldsymbol{p}
1 Replace each clause $\left[L_{1}, \ldots, L_{n}, p\left(t_{1}, \ldots, t_{m}\right)\right] \in \mathcal{K}$ by

$$
(\forall \bar{X})\left((\exists \bar{Y})\left(X_{1} \approx t_{1} \wedge \ldots \wedge X_{m} \approx t_{m} \wedge \neg L_{1} \wedge \ldots \wedge \neg L_{n}\right) \rightarrow p(\bar{X})\right)
$$

where
$\bar{X}=X_{1}, \ldots, X_{m}$ is a sequence of 'new' variables
\bar{Y} is a sequence of those variables which occur in the clause and all occurrences of double negation are removed
2 Let

$$
\left\{(\forall \bar{X})\left(C_{i} \rightarrow p(\bar{X})\right) \mid 1 \leq i \leq k\right\}
$$

be the set of all formulas where p occurs in the conclusion.
Return the completion formula

$$
C_{\mathcal{K}, p}=(\forall \bar{X})\left(C_{1} \vee \ldots \vee C_{k} \leftarrow p(\bar{X})\right)
$$

An Example

$\triangleright \mathcal{K}=\{\neg \operatorname{penguin}(Y) \vee \operatorname{bird}(Y)$, bird(tweedy), \neg penguin(john) \}

- $\mathcal{K}_{1}=\{(\forall X)((\exists Y)(X \approx Y \wedge \operatorname{penguin}(Y)) \rightarrow \operatorname{bird}(X))$, $(\forall X)(X \approx t w e e d y \rightarrow \operatorname{bird}(X))$, \neg penguin(john)
$\rightarrow(\forall X)((\exists Y)(X \approx Y \wedge \operatorname{penguin}(Y) \vee X \approx t w e e d y) \rightarrow \operatorname{bird}(X))$
$\triangleright C_{\mathcal{K}, \text { bird }}=(\forall X)((\exists Y)(X \approx Y \wedge$ penguin $(Y) \vee X \approx$ tweedy $) \leftarrow \operatorname{bird}(X))$

The Equational System \mathcal{E}_{C}

- Let

$$
\begin{aligned}
\mathcal{E}_{C} & =\{(\forall \bar{X}, \bar{Y}) f(\bar{X}) \not \approx g(\bar{Y}) \mid f, g \in \mathcal{F} \text { and } f \neq g\} \\
\cup & \{(\forall X) t\lceil X\rceil \not \approx X \mid t \neq X\} \\
\cup & \left\{(\forall \bar{X}, \bar{Y})\left(\bigvee_{i=1}^{n} X_{i} \not \approx Y_{i} \rightarrow f(\bar{X}) \not \approx f(\bar{Y})\right) \mid n \text {-ary } f \in \mathcal{F}\right\} \\
\cup & \{(\forall X) X \approx X\} \\
\cup & \left\{(\forall \bar{X}, \bar{Y})\left(\bigwedge_{i=1}^{n} X_{i} \approx Y_{i} \rightarrow f(\bar{X}) \approx f(\bar{Y})\right) \mid n \text {-ary } f \in \mathcal{F}\right\} \\
\cup & \left\{\forall\left(\bigwedge_{i=1}^{n} X_{i} \approx Y_{i} \wedge p(\bar{X}) \rightarrow p(\bar{Y})\right) \mid n \text {-ary } p \in \mathcal{R}\right\}
\end{aligned}
$$

Predicate Completion

- Let \mathcal{K} be a set of formulas which is solitary in p
- The predicate completion $\mathcal{C}_{C}(\mathcal{K}, p)$ of p is defined as

$$
\mathcal{C}_{C}(\mathcal{K}, p)=\left\{G \mid \mathcal{K} \cup\left\{\mathcal{C}_{\mathcal{K}, p}\right\} \cup \mathcal{E}_{C} \models G\right\}
$$

- Theorem Let \mathcal{K} be a set of clauses which is solitary in p. If \mathcal{K} is satisfiable, then so is $\mathcal{C}_{C}(\mathcal{K}, p)$.

Parallel Completion and Logic Programming

$\rightarrow \mathcal{K}=\{\operatorname{bird}($ tweedy $),(\forall X)(\neg \operatorname{bird}(X) \vee a b(X) \vee f l y(X))\}$

- Normal program clauses $p(\bar{t}) \leftarrow \boldsymbol{A}_{1} \wedge \ldots \wedge \boldsymbol{A}_{\boldsymbol{m}} \wedge \neg \boldsymbol{A}_{\boldsymbol{m + 1}} \wedge \ldots \wedge \neg \boldsymbol{A}_{\boldsymbol{n}}$
- A normal logic program is a set of normal program clauses
- p is defined in the logic program \mathcal{K} iff \mathcal{K} contains a clause with \boldsymbol{p} occurring in its head
- Let \mathcal{R}_{D} be the set of defined predicate symbols
- The completion $\mathcal{C}_{C}(\mathcal{K})$ of a normal logic program \mathcal{K} with defined predicate symbols \mathcal{R}_{D} is defined as

$$
\begin{aligned}
& \mathcal{C}_{C}(\mathcal{K})= \\
& \left\{G \mid \mathcal{K} \cup\left\{C_{\mathcal{K}, p} \mid p \in \mathcal{R}_{D}\right\} \cup \mathcal{E}_{C} \cup\left\{(\forall \bar{X}) \neg p(\bar{X}) \mid p \in \mathcal{R} \backslash \mathcal{R}_{D}\right\} \models G\right\}
\end{aligned}
$$

Stratified Logic Programs

- Consider \mathcal{R}, \mathcal{F} and \mathcal{V}
- A level mapping is a total mapping level : $\mathcal{R} \rightarrow \mathbb{N}$
- level (p) is the level of p
- A normal logic program \mathcal{K} is stratified iff in each clause of the form

$$
p(\bar{t}) \leftarrow p_{1}\left(\overline{s_{1}}\right) \wedge \ldots \wedge p_{m}\left(\overline{s_{m}}\right) \wedge \neg p_{m+1}\left(\overline{s_{m+1}}\right) \wedge \ldots \wedge \neg p_{n}\left(\overline{s_{n}}\right)
$$

of \mathcal{K} we find level $(p) \geq \operatorname{level}\left(p_{i}\right), 1 \leq i \leq m$, and level $(p)>\operatorname{level}\left(p_{j}\right)$, $\boldsymbol{m}<\boldsymbol{j} \leq \boldsymbol{n}$

- Theorem Let \mathcal{K} be a stratified normal logic program.

Then $\mathcal{C}_{C}(\mathcal{K})$ is satisfiable

- Exercise Find non-stratifiable programs \mathcal{K}_{1} and \mathcal{K}_{2} such that
$\triangleright \mathcal{C}_{C}\left(\mathcal{K}_{1}\right)$ is satisfiable and
$\triangleright \mathcal{C}_{C}\left(\mathcal{K}_{2}\right)$ is unsatisfiable

Negation as Failure

- We do not want to compute with the "only-if" parts and $\mathcal{E}_{\boldsymbol{C}}$!
- $\{\neg A \mid \neg A \in \mathcal{C}(\mathcal{K})\} \neq\left\{\neg A \mid \neg A \in \mathcal{C}_{C}(\mathcal{K})\right\}$
- Replace \neg by \sim called negation as failure
$\triangleright \mathcal{K}=\{\operatorname{bird}(t w e e d y), f l y(X) \leftarrow \operatorname{bird}(X) \wedge \sim a b(X)\}$

Finitely Failed Search Trees

- A search tree is finitely failed
iff it is finite and each leaf is labelled as a failure
$\rightarrow \mathcal{K}^{\prime}=\{\quad a b(X) \leftarrow$ brokenWing (X),

$$
a b(X) \leftarrow \operatorname{ratite}(X)
$$

ratite $(X) \leftarrow$ ostrich (X),
ratite $(X) \leftarrow e m u(X)$,
$\operatorname{ratite}(X) \leftarrow \operatorname{kiwi}(X) \quad\}$

SLDNF-Resolution

- Let G be a goal clause consisting of positive and negative literals, \mathcal{K} a normal logic program, L be the selected literal in G and A be a ground atom
\triangleright If L is positive, then each SLD-resolvent of G using L and some new variant of a clause in \mathcal{K} is also an SLDNF-resolvent
\triangleright If L is a ground negative literal, i.e. $L=\sim A$, and the query $\leftarrow A$ finitely fails with respect to \mathcal{K} and SLDNF-resolution, then the SLDNF-resolvent of G is obtained from G by deleting L
\triangleright If L is a ground negative literal, i.e. $L=\sim A$, and the query $\leftarrow A$ suceeds with respect to \mathcal{K} and SLDNF-resolution, then the SLDNF-derivation of G fails
\triangleright If L is negative and non-ground, then without loss of generality we may assume that each literal in G is negative and non-ground. In this case G is said to be blocked
- Theorem Let \mathcal{K} be a normal logic program.

SLDNF-resolution is sound with respect to the completion of \mathcal{K}

TECHNISCHE

Classical Negation vs. Negation as Failure

\downarrow cross $\leftarrow \sim$ train

- cross $\leftarrow \neg$ train

Circumscription

- All approaches mentioned so far cannot handle disjunctions or $(\exists X) \operatorname{green}(X)$
- How can we compute their minimal models?
- Idea We want to conjecture that the tuples $\left(X_{1}, \ldots, X_{m}\right)$ which can be shown to satisfy an \boldsymbol{m}-ary relation p are all the tuples satisfying p
\triangleright According to McCarthy, we want to circumscribe p
- $G\{p \mapsto Q\}$ is the string obtained from the formula G by replacing each occurrence of p by the predicate variable Q
- The circumscription of p in G

$$
\operatorname{Circ}(G, p)=(G\{p \mapsto Q\} \wedge(\forall \bar{X})(Q(\bar{X}) \rightarrow p(\bar{X}))) \rightarrow(\forall \bar{X})(p(\bar{X}) \rightarrow Q(\bar{X}))
$$

- Note $\operatorname{Circ}(G, p)$ is a schema

Example 1

- Let $G=$ isblock $(a) \wedge$ isblock $(b) \wedge$ isblock (c)
- Then

$$
\begin{aligned}
\operatorname{Circ}(G, \text { isblock })= & ((Q(a) \wedge Q(b) \wedge Q(c)) \wedge(\forall X)(Q(X) \rightarrow \text { isblock }(X))) \\
& \rightarrow(\forall X)(\text { isblock }(X) \rightarrow Q(X))
\end{aligned}
$$

- This schema can be instantiated replacing $Q(X)$ by $(X \approx a \vee X \approx b \vee X \approx c)$, where \approx denotes syntactic equality
- Let G^{\prime} be the corresponding instance of $\operatorname{Circ}(G$, isblock)
- Note

$$
\begin{aligned}
& Q(a)=a \approx a \vee a \approx b \vee a \approx c \quad \equiv \quad\langle \rangle \\
& Q(b)=b \approx a \vee b \approx b \vee b \approx c \equiv c\rangle \\
& Q(c)=c \approx a \vee c \approx b \vee c \approx c \quad \equiv\langle \rangle
\end{aligned}
$$

Example 1 Continued

- Remember

$$
\begin{aligned}
G= & \text { isblock }(a) \wedge \text { isblock }(b) \wedge \text { isblock }(c) \\
G^{\prime} \equiv & (\forall X)(X \approx a \vee X \approx b \vee X \approx c \rightarrow \text { isblock }(X)) \\
& \rightarrow(\forall X)(\text { isblock }(X) \rightarrow X \approx a \vee X \approx b \vee X \approx c)
\end{aligned}
$$

- Let I be a Herbrand-interpretation (which interprets \approx as syntactic equality) such that $I \vDash\left\{G, G^{\prime}\right\}$.
$\triangleright\left[(\forall X)(X \approx a \vee X \approx b \vee X \approx c \rightarrow \text { isblock }(X)]^{\prime}=\top\right.$ iff for all $t \in \mathcal{T}(\mathcal{F})$ we find $[t \approx a \vee t \approx b \vee t \approx c \rightarrow \text { isblock }(t)]^{\prime}=\top(*)$
\triangleright case $t \in\{a, b, c\}$

$$
[t \approx a \vee t \approx b \vee t \approx c]^{l}=\top \text { and }[\text { isblock }(t)]^{l}=\top, \text { thus, }(*) \text { holds }
$$

\triangleright case $t \notin\{a, b, c\}$
$[t \approx a \vee t \approx b \vee t \approx c]^{I}=\perp$, thus, ($*$) holds

- Therefore, we obtain

$$
\left\{G, G^{\prime}\right\} \vDash(\forall X)(\text { isblock }(X) \rightarrow(X \approx a \vee X \approx b \vee X \approx c))
$$

Non-monotonicity

- Circumscription is non-monotonic
\triangleright Reconsider Example 1
$\triangleright\left\{G, G^{\prime}\right\} \models \neg$ isblock (d)
\triangleright Now let $H=G \wedge$ isblock (d)
\triangleright Then $\{H, \operatorname{Circ}(H$, isblock $)\} \not \vDash \neg$ isblock (d)

Example 2

- Let $G=p(a) \vee p(b)$
- Then

$$
\begin{aligned}
\operatorname{Circ}(G, p)= & ((Q(a) \vee Q(b)) \wedge(\forall X)(Q(X) \rightarrow p(X))) \\
& \rightarrow(\forall X)(p(X) \rightarrow Q(X))
\end{aligned}
$$

- This schema can be instantiated replacing $Q(X)$ by $X \approx a$, where \approx denotes syntactic equality
- We obtain

$$
\begin{aligned}
& G_{1} \quad((a \approx a \vee b \approx a) \wedge(\forall X)(X \approx a \rightarrow p(X))) \\
& \rightarrow(\forall X)(p(X) \rightarrow X \approx a) \\
& \equiv(\forall X)(X \approx a \rightarrow p(X)) \rightarrow(\forall X)(p(X) \rightarrow X \approx a) \\
& \equiv p(a) \rightarrow(\forall X)(p(X) \rightarrow X \approx a)
\end{aligned}
$$

Example 2 Continued

- Remember

$$
G=p(a) \vee p(b)
$$

and

$$
G_{1} \equiv p(a) \rightarrow(\forall X)(p(X) \rightarrow X \approx a)
$$

- $\operatorname{Circ}(G, p)$ can also be instantiated replacing $Q(X)$ by $X \approx b$ and we obtain

$$
G_{2} \equiv p(b) \rightarrow(\forall X)(p(X) \rightarrow X \approx b)
$$

- Note

$$
\left\{H_{1} \vee H_{2}, H_{1} \rightarrow H_{1}^{\prime}, H_{2} \rightarrow H_{2}^{\prime}\right\} \vDash H_{1}^{\prime} \vee H_{2}^{\prime}
$$

- Hence

$$
\left\{G, G_{1}, G_{2}\right\} \vDash(\forall X)(p(X) \rightarrow X \approx a) \vee(\forall X)(p(X) \rightarrow X \approx b)
$$

The Main Result

- Theorem Let G^{\prime} be an instance of $\operatorname{Circ}(G, p)$.
G^{\prime} holds in all models of G which are minimal in $\{p\}$
- Proof

Consider $(G\{p \mapsto Q\} \wedge(\forall \bar{X})(Q(\bar{X}) \rightarrow p(\bar{X}))) \rightarrow(\forall \bar{X})(p(\bar{X}) \rightarrow Q(\bar{X}))$
\triangleright Let I be a model for G which is minimal in $\{p\}$
\triangleright Let p^{\prime} be a predicate symbol such that

$$
\left[G\left\{p \mapsto p^{\prime}\right\} \wedge(\forall \bar{X})\left(p^{\prime}(\bar{X}) \rightarrow p(\bar{X})\right)\right]^{\prime}=\top
$$

\triangleright To show $\left[(\forall \bar{X})\left(p(\bar{X}) \rightarrow p^{\prime}(\bar{X})\right)\right]^{\prime}=\top$
\rightarrow Suppose $\left[(\forall \bar{X})\left(p(\bar{X}) \rightarrow p^{\prime}(\bar{X})\right)\right]^{\prime}=\perp$
\rightarrow Hence $p^{\prime} \& p^{\prime \prime}$
\rightarrow Because $\left[(\forall \bar{X})\left(p^{\prime}(\bar{X}) \rightarrow p(\bar{X})\right)\right]^{\prime}=\top$ we find $p^{\prime \prime} \subseteq p^{\prime}$
\rightarrow We conclude $p^{\prime \prime} \subset p^{\prime}$
\Rightarrow Because $\left[G\left\{p \mapsto p^{\prime}\right\}\right]^{\prime}=\top$ we can construct a model I^{\prime} for G which is identical to I for all predicate letters different from p and with $p^{\prime \prime}=p^{\prime \prime}$
\rightarrow Because $\boldsymbol{p}^{\prime \prime}=\boldsymbol{p}^{\prime \prime} \subset p^{\prime}$ this contradicts the minimality of I in $\{p\}$

Remarks

- \boldsymbol{G} follows minimally from \mathcal{K} with respect to \boldsymbol{p}, written $\mathcal{K} \models\{p\} \quad G$, iff $\quad G$ holds in all models of \mathcal{K} which are minimal in $\{p\}$
- Corollary Let G^{\prime} be an instance of $\operatorname{Circ}(G, p)$. If $\left\{G, G^{\prime}\right\} \vDash \boldsymbol{H}$ then $\{G\} \vDash\{p\} \boldsymbol{H}$
- Circumscribing a predicate may lead to an unsatisfiable theory
- Under certain circumstances circumscription can be reduced to first order reasoning
- Many extensions are known

Default Logic

- Most objects of sort s have property p. Object o is of sort s.
\triangleright Does object o have property p ?
- Most birds are flying. Tweedy is a bird.
\triangleright Does Tweedy fly?
- A first order formalization:

$$
(\forall X)(\operatorname{bird}(X) \wedge \neg \operatorname{penguin}(X) \wedge \neg \operatorname{ostrich}(X) \wedge \ldots \rightarrow \operatorname{fly}(X)
$$

- Problems
\triangleright We do not know all exceptions
\triangleright We cannot conlude that Tweedy does not belong to one of the exceptions
- Idea We would like to conclude the Tweedy flies by default

Default Reasoning

- Unless any information to the contrary is known we assume that
\triangleright exceptions are not logical consequences (CWA)
\triangleright we finitely failed to prove exceptions (NAF)
\triangleright it is consistent to assume that . . . (Default Logic)
- Default rules $\operatorname{bird}(X)$: fly $(X) /$ fly (X)
- Exceptions $\quad\{\quad(\forall X)($ penguin $(X) \rightarrow \neg f l y(X))$, $(\forall X)(\operatorname{ostrich}(X) \rightarrow \neg f l y(X))$,
...
- But how is consistency defined?
- Few objects of sort s have property p :

$$
\operatorname{man}(X): \neg \operatorname{moon}(X) / \neg \operatorname{moon}(X)
$$

Default Rules

- Let $\langle\mathcal{A}, \mathcal{L}, \models\rangle$ be a first order logic
- A default rule is any expression of the form $\boldsymbol{G}: \boldsymbol{G}_{1}, \ldots, \boldsymbol{G}_{\boldsymbol{n}} / \boldsymbol{H}$ or

$$
\frac{G: G_{1}, \ldots, G_{n}}{H}
$$

$\triangleright G$ is called prerequisite
$\triangleright G_{1}, \ldots, G_{n}$ are called justifications
$\triangleright H$ is called consequent

- A default rule is said to be closed iff all formulas occurring in it are closed
- It is said to be open iff it is not closed
\triangleright It is a scheme representing the set of its ground instances

Default Rules - Special Cases

- If \boldsymbol{G} is missing, then $\boldsymbol{G} \equiv\rangle$
- If $\boldsymbol{n}=0$, then this is a rule in $\langle\mathcal{A}, \mathcal{L}, \models\rangle$
- If $n=1$ and $G_{1}=H$, then the default rule is said to be normal
- If $n=1$ and $G_{1}=H \wedge H^{\prime}$, then the default rule is said to be semi-normal

Default Knowledge Bases

- A default knowledge base is a pair $\left\langle\mathcal{K}_{D}, \mathcal{K}_{W}\right\rangle$, where
$\triangleright \mathcal{K}_{D}$ is a set of at most countably many default rules and
$\triangleright \mathcal{K}_{W}$ is a set of at most countably many closed first order formulas over \mathcal{A}
- A default knowledge base is said to be closed iff all default rules occurring in it are closed
- It is said to be open iff it is not closed
- Example
$\mathcal{K}_{D}: \operatorname{spouse}(X, Y) \wedge$ htown $(Y) \approx Z: \operatorname{htown}(X) \approx Z / h t o w n(X) \approx Z$, $\operatorname{employer}(X, Y) \wedge \operatorname{location}(Y) \approx Z: \operatorname{htown}(X) \approx Z /$ htown $(X) \approx Z$
\mathcal{K}_{W} : spouse(jane, john), htown(john) \approx munich, employer(jane, tud), location(tud) \approx dresden, $(\forall X, Y, Z)(\operatorname{htown}(X) \approx Y \wedge \operatorname{htown}(X) \approx Z \rightarrow Y \approx Z)$

Extensions

- Let \mathcal{K} be a set of closed first-order formulas and $\left\langle\mathcal{K}_{D}, \mathcal{K}_{W}\right\rangle$ a closed default knowledge base
- Intuitively, an extension \mathcal{K} of $\left\langle\mathcal{K}_{D}, \mathcal{K}_{w}\right\rangle$ should have the properties:
$\triangleright \mathcal{K}_{W} \subseteq \mathcal{K}$
$\triangleright \mathcal{C}(\mathcal{K})=\mathcal{K}$
$\triangleright \mathcal{K}$ should be closed under the application of default rules
- Let $\Gamma(\mathcal{K})$ be the smallest set satisfying the following properties
$1 \mathcal{K}_{W} \subseteq \Gamma(\mathcal{K})$
$2 \mathcal{C}(\Gamma(\mathcal{K}))=\Gamma(\mathcal{K})$
3 If $G: G_{1}, \ldots, G_{n} / H \in \mathcal{K}_{\boldsymbol{D}}, G \in \Gamma(\mathcal{K})$ and for all $1 \leq \boldsymbol{j} \leq \boldsymbol{n}$ we find $\neg \boldsymbol{G}_{j} \notin \mathcal{K}$ then $H \in \Gamma(\mathcal{K})$
\mathcal{K} is said to be an extension of $\left\langle\mathcal{K}_{D}, \mathcal{K}_{W}\right\rangle$ iff $\Gamma(\mathcal{K})=\mathcal{K}$
- The set of extensions of $\left\langle\mathcal{K}_{D}, \mathcal{K}_{W}\right\rangle$ is a subset of the set of models for \mathcal{K}_{W}

Another Characterization of Extensions

- Theorem Let $\left\langle\mathcal{K}_{D}, \mathcal{K}_{W}\right\rangle$ be a closed default knowledge base and \mathcal{K} be a set of sentences. Define

$$
\mathcal{K}_{0}=\mathcal{K}_{W}
$$

and for $i \geq 1$

$$
\begin{aligned}
\mathcal{K}_{i+1}=\mathcal{C}\left(\mathcal{K}_{i}\right) \cup\{H \mid & G: G_{1}, \ldots, G_{n} / H \in \mathcal{K}_{D} \\
& G \in \mathcal{K}_{i} \text { and } \\
& \left.\neg G_{j} \notin \mathcal{K} \text { for all } 1 \leq j \leq n\right\}
\end{aligned}
$$

Then, \mathcal{K} is an extension of $\left\langle\mathcal{K}_{D}, \mathcal{K}_{W}\right\rangle$ iff $\mathcal{K}=\bigcup_{i=0}^{\infty} \mathcal{K}_{i}$

- We have to guess extensions!
$-\mathcal{K}_{D}=\{\quad \operatorname{bird}(X): \operatorname{fly}(X) / \operatorname{fly}(X) \quad\}$
$\mathcal{K}_{w}=\{\operatorname{bird}($ tweedy $)\}$
- $\mathcal{K}=\mathcal{C}(\{\operatorname{bird}($ tweedy $)$, fly $($ tweedy $)\})$ is an extension

Another Example

$\mathcal{K}_{D}: \operatorname{spouse}(X, Y) \wedge \operatorname{htown}(Y) \approx Z: h t o w n(X) \approx Z / h t o w n(X) \approx Z$, $\operatorname{employer}(X, Y) \wedge \operatorname{location}(Y) \approx Z:$ htown $(X) \approx Z /$ htown $(X) \approx Z$
\mathcal{K}_{W} : spouse(jane, john), htown(john) \approx munich, employer(jane, tud), location(tud) \approx dresden, $(\forall X, Y, Z)(\operatorname{htown}(X) \approx Y \wedge \operatorname{htown}(X) \approx Z \rightarrow Y \approx Z)$

- Its extensions are

$$
\mathcal{C}\left(\mathcal{K}_{W} \cup\{\text { htown }(j a n e) \approx \text { munich }\}\right)
$$

and

$$
\mathcal{C}\left(\mathcal{K}_{W} \cup\{\text { htown }(\text { jane }) \approx \text { dresden }\}\right)
$$

Credolous vs. Sceptical Reasoning

- \boldsymbol{G} follows credolously from $\left\langle\mathcal{K}_{D}, \mathcal{K}_{W}\right\rangle$, in symbols $\left\langle\mathcal{K}_{D}, \mathcal{K}_{W}\right\rangle \models_{c} G$, iff there exists an extension \mathcal{K} of $\left\langle\mathcal{K}_{D}, \mathcal{K}_{W}\right\rangle$ such that $G \in \mathcal{K}$
- \boldsymbol{G} follows sceptically from $\left\langle\mathcal{K}_{D}, \mathcal{K}_{W}\right\rangle$, in symbols $\left\langle\mathcal{K}_{D}, \mathcal{K}_{W}\right\rangle \models_{s} G$, iff for all extensions \mathcal{K} of $\left\langle\mathcal{K}_{D}, \mathcal{K}_{W}\right\rangle$ we find $G \in \mathcal{K}$

Remarks

- Default logic is non-monotonic
- Extensions are always satisfiable
- Extensions may contain counter-intuitive facts

$$
\begin{aligned}
& \mathcal{K}_{W}=\{\text { broken }(\text { left }- \text { arm }) \vee \text { broken }(\text { right }- \text { arm })\} \\
& \mathcal{K}_{D}=\{: \operatorname{usable}(X) \wedge \neg \text { broken }(X) / \text { usable }(X)\}
\end{aligned}
$$

- There are many approaches extending default logic

Answer Set Programming

- Example
\triangleright Every student with a GPA of at least 3.8 is eligible
\triangleright Every minority student with a GPA of at least 3.6 is eligible
\triangleright Students with a GPA under 3.8 who do not belong to a minority are not eligible
\triangleright The students whose eligibility is not determined by these rules are interviewed by the scholarship committee
$\triangleright \mathcal{K}_{1}=\{\operatorname{eligible}(X) \quad \leftarrow \operatorname{highGPA}(X)$, eligible $(X) \quad \leftarrow \quad$ minority $(X) \wedge$ fairGPA (X), \neg eligible $(X) \leftarrow \neg$ highGPA $(X) \wedge \neg$ minority (X), interview $(X) \quad \leftarrow \quad \sim \operatorname{eligible}(X) \wedge \sim \neg \operatorname{eligible}(X) \quad\}$
$\wedge_{2}=\mathcal{K}_{2} \quad$ fairGPA(john) \leftarrow, $\neg h i g h G P A(j o h n) \leftarrow\}$
- What happens with John?

Rules and Programs

- Rules
$L_{1} \vee \ldots \vee L_{k} \vee \sim L_{k+1} \vee \ldots \vee \sim L_{I} \leftarrow L_{I+1} \wedge \ldots \wedge L_{m} \wedge \sim L_{m+1} \wedge \ldots \wedge \sim L_{n}$
$\triangleright L_{i}$ are propositional literals
$\triangleright \boldsymbol{0} \leq \boldsymbol{k} \leq \boldsymbol{I} \leq \boldsymbol{m} \leq \boldsymbol{n}$
\triangleright If $\boldsymbol{k}=\boldsymbol{I}=\mathbf{0}$ then rules are called constraints
- A program is a set of rules
$\triangleright \mathcal{K}_{1} \cup \mathcal{K}_{2}$

Answer Sets

- Remember rules

$$
L_{1} \vee \ldots \vee L_{k} \vee \sim L_{k+1} \vee \ldots \vee \sim L_{I} \leftarrow L_{I+1} \wedge \ldots \wedge L_{m} \wedge \sim L_{m+1} \wedge \ldots \wedge \sim L_{n}
$$

- Let \mathcal{M} be a satisfiable set of literals and \mathcal{K} be a program where $k=I$ and $n=m$, i.e., rules are of the form

$$
L_{1} \vee \ldots \vee L_{k} \leftarrow L_{l+1} \wedge \ldots \wedge L_{m}
$$

$\triangleright \mathcal{M}$ is said to be closed under \mathcal{K} if for every rule of \mathcal{K} we find that $\left\{L_{1}, \ldots, L_{k}\right\} \cap \mathcal{M} \neq \emptyset$ whenever $\left\{L_{I+1}, \ldots, L_{m}\right\} \subseteq \mathcal{M}$
$\triangleright \mathcal{M}$ is said to be an answer set for \mathcal{K} if \mathcal{M} is minimal among the sets closed under \mathcal{K}

- Example $\mathcal{K}_{3}=\{$

\triangleright What are the answer sets of \mathcal{K}_{3} ?
\triangleright What happens if we add the constraint $\leftarrow s$?

Reducts and Answer Sets

- Let \mathcal{K} be a program and \mathcal{M} a satisfiable set of literals
- The reduct $\left.\mathcal{K}\right|_{\mathcal{M}}$ of \mathcal{K} relative to \mathcal{M} is the set of rules
such that

$$
L_{1} \vee \ldots \vee L_{k} \leftarrow L_{I+1} \wedge \ldots \wedge L_{m}
$$

$L_{1} \vee \ldots \vee L_{k} \vee \sim L_{k+1} \vee \ldots \vee \sim L_{I} \leftarrow L_{I+1} \wedge \ldots \wedge L_{m} \wedge \sim L_{m+1} \wedge \ldots \wedge \sim L_{n}$ occurs in $\mathcal{K},\left\{L_{k+1}, \ldots, L_{l}\right\} \subseteq \mathcal{M}$ and $\left\{L_{m+1}, \ldots, L_{n}\right\} \cap \mathcal{M}=\emptyset$

- In $\left.\mathcal{K}\right|_{\mathcal{M}}$ the symbol \sim does not occur anymore
- \mathcal{M} is said to be an answer set for \mathcal{K} iff \mathcal{M} is an answer set for $\left.\mathcal{K}\right|_{\mathcal{M}}$
- Examples $\{\boldsymbol{p} \leftarrow \sim \boldsymbol{q}\}$

$$
\begin{aligned}
& \{\neg p \leftarrow \sim p\} \\
& \{p \leftarrow \sim \neg p\} \\
& \{q \leftarrow p \wedge \sim q, p \leftarrow, q \leftarrow\}
\end{aligned}
$$

What happens if we delete $q \leftarrow$ from the last example?

Predicate Symbols, Constants and Variables

- We allow n-ary predicate symbols ranging over constants and variables
- We view rules containing variable occurrences as schemas
- $\mathcal{K}_{1}=\{\operatorname{eligible}(X) \leftarrow \operatorname{highGPA}(X)$, eligible $(X) \quad \leftarrow \quad$ minority $(X) \wedge$ fairGPA (X), $\neg \operatorname{eligible}(X) \quad \leftarrow \quad \neg \operatorname{highGPA}(X) \wedge \neg$ minority (X), interview $(X) \quad \leftarrow \quad \sim \operatorname{eligible}(X) \wedge \sim \neg \operatorname{eligible}(X) \quad\}$
$\mathcal{K}_{2}=\{$ fairGPA(john) \leftarrow, $\neg h i g h G P A(j o h n) \leftarrow\}$
- Its only answer set is:
\{fairGPA(john), ᄀhighGPA(john), interview(john)\}
- What happens if we add \neg minority (john) \leftarrow ?
- Answer set programming is non-monotonic!

Programming with Answer Sets

- A Hamiltonian cycle is a cyclic tour through a graph visiting each vertex exactly once
- The problem of finding a Hamiltonian cycle is known to be NP-complete
- Let G be a graph with vertices $0, \ldots, n$
- Consider an alphabet with
$\triangleright \mathcal{F}=\{0, \ldots, n\}$ and
$\triangleright \mathcal{R}=\{$ reachable, in $\}$
- Idea
\triangleright WLOG let 0 be the starting vertex of the tour
\triangleright reachable(i) represents the fact that vertex i is reachable from 0
$\triangleright i n(i, j)$ represents the fact that the edge from i to j is in the cycle
\triangleright Specify a program such that for each answer set \mathcal{M} we find: $\{\langle u, v\rangle \mid \operatorname{in}(u, v) \in \mathcal{M}\}$ is the set of edges in the Hamiltonian cycle

Computing Hamiltonian Cycles

- Program
$\triangleright\{\operatorname{in}(u, v) \vee \neg i n(u, v) \leftarrow \mid\langle u, v\rangle \in G\}$
$\triangleright\{\leftarrow \operatorname{in}(u, v) \wedge \operatorname{in}(u, w) \mid\langle u, v\rangle,\langle u, w\rangle \in G$ and $v \not \approx w\}$
$\triangleright\{\leftarrow i n(v, u) \wedge i n(w, u) \mid\langle v, u\rangle,\langle w, u\rangle \in G$ and $v \nsim w\}$
$\triangleright\{$ reachable $(u) \leftarrow \operatorname{in}(0, u) \mid\langle 0, u\rangle \in G\}$
$\triangleright\{$ reachable $(v) \leftarrow$ reachable $(u) \wedge i n(u, v) \mid\langle u, v\rangle \in G\}$
$\triangleright\{\leftarrow \sim \operatorname{reachable}(u) \mid 0 \leq \boldsymbol{u} \leq \boldsymbol{n}\}$
- You have to show that the answer sets of this program correspond to Hamiltonian cycles!

Computing Answer Sets

- Paradigm shift
\triangleright Logic and constraint programming \rightsquigarrow answer substitution
\triangleright Answer set programming \rightsquigarrow model, i.e., answer set
- Quite successful in recent years
- Systems
\triangleright Smodels
\triangleright Dlv
\triangleright DeReS
\triangleright Clasp

