DEDUCTION SYSTEMS

Optimizations for Tableau Procedures

Sebastian Rudolph

Agenda

- Recap Tableau Calculus
- Optimizations
- Unfolding
- Absorption
- Dependency-Directed Backtracking
- Further Optimizations
- Classification
- Summary

Agenda

- Recap Tableau Calculus
- Optimizations
- Unfolding
- Absorption
- Dependency-Directed Backtracking
- Further Optimizations
- Classification
- Summary

Tableau Algorithm for $\mathcal{A L C}$ Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$

Tableau Algorithm for $\mathcal{A L C}$ Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) \rightsquigarrow makes rules simpler

Tableau Algorithm for $\mathcal{A L C}$ Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) \rightsquigarrow makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G=\langle V, E, L\rangle$

Tableau Algorithm for $\mathcal{A L C}$ Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) \rightsquigarrow makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G=\langle V, E, L\rangle$
- initialize G with a node v such that $L(v)=\{C\}$

Tableau Algorithm for $\mathcal{A L C}$ Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) \rightsquigarrow makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G=\langle V, E, L\rangle$
- initialize G with a node v such that $L(v)=\{C\}$
- extend G by applying tableau rules

Tableau Algorithm for $\mathcal{A L C}$ Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) \rightsquigarrow makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G=\langle V, E, L\rangle$
- initialize G with a node v such that $L(v)=\{C\}$
- extend G by applying tableau rules
- ப-rule non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (clash)

Tableau Algorithm for $\mathcal{A L C}$ Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) \rightsquigarrow makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G=\langle V, E, L\rangle$
- initialize G with a node v such that $L(v)=\{C\}$
- extend G by applying tableau rules
- ப-rule non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (clash)
- tableau construction successful, if no further rules are applicable and there is no contradiction

Tableau Algorithm for $\mathcal{A L C}$ Concepts and TBoxes

- check satisfiability of C by constructing an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) \rightsquigarrow makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G=\langle V, E, L\rangle$
- initialize G with a node v such that $L(v)=\{C\}$
- extend G by applying tableau rules
- ப-rule non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (clash)
- tableau construction successful, if no further rules are applicable and there is no contradiction
- C is satisfiable iff there is a successful tableau construction

Treatment of Knowledge Bases

we condense the TBox into one concept:
for $\mathcal{T}=\left\{C_{i} \sqsubseteq D_{i} \mid 1 \leq i \leq n\right\}, C_{\mathcal{T}}=\operatorname{NNF}\left(\prod_{1 \leq i \leq n} \neg C_{i} \sqcup D_{i}\right)$
we extend the rules of the $\mathcal{A L C}$ tableau algorithm:
\mathcal{T}-rule: for an arbitrary $v \in V$ with $C_{\mathcal{T}} \notin L(v)$,

$$
\text { let } L(v):=L(v) \cup\left\{C_{\mathcal{T}}\right\} .
$$

in order to take an ABox \mathcal{A} into account, initialize G such that

- V contains a node v_{a} for every individual a in \mathcal{A}
- $L\left(v_{a}\right)=\{C \mid C(a) \in \mathcal{A}\}$
- $\left\langle v_{a}, v_{b}\right\rangle \in E$ iff $r(a, b) \in \mathcal{A}$

Extensions of the Logic

- plus inverses $(\mathcal{A L C I})$: inverse roles in edge labels, definition and use of r-neighbors instead of r-successors in tableau rules
- plus functional roles ($\mathcal{A L C I F}$): merging of nodes to account for functionality
blocking guarantees termination:
- $\mathcal{A L C}$ subset-blocking
- plus inverses $(\mathcal{A L C I})$: equality blocking
- plus functional roles $(\mathcal{A L C I F})$: pairwise blocking

Agenda

- Recap Tableau Calculus
- Optimizations
- Unfolding
- Absorption
- Dependency-Directed Backtracking
- Further Optimizations
- Classification
- Summary

Optimizations

- Naïve implementation not performant enough
- \mathcal{T}-regel adds one disjunction per axiom to the corresponding node
- ontologies may contain > 1.000 axioms and tableaux may contain thousands of nodes

Optimizations

- Naïve implementation not performant enough
- \mathcal{T}-regel adds one disjunction per axiom to the corresponding node
- ontologies may contain > 1.000 axioms and tableaux may contain thousands of nodes
- realistic implementations use many optimizations
- (Lazy) unfolding
- Absorbtion
- Dependency directed backtracking
- Simplification and Normalization
- Caching
- Heuristics
- ...

Optimizations

- Naïve implementation not performant enough
- \mathcal{T}-regel adds one disjunction per axiom to the corresponding node
- ontologies may contain > 1.000 axioms and tableaux may contain thousands of nodes
- realistic implementations use many optimizations
- (Lazy) unfolding
- Absorbtion
- Dependency directed backtracking
- Simplification and Normalization
- Caching
- Heuristics
- ...

Agenda

- Recap Tableau Calculus
- Optimizations
- Unfolding
- Absorption
- Dependency-Directed Backtracking
- Further Optimizations
- Classification
- Summary

Unfolding

- \mathcal{T}-rule is not necessary if \mathcal{T} is unfoldable, i.e., every axiom is:
- definitorial: form $A \sqsubseteq C$ or $A \equiv C$ for A a concept name ($A \equiv C$ corresponds to $A \sqsubseteq C$ and $C \sqsubseteq A$)
- acyclic: C uses A neither directly nor indirectly
- unique: only one such axiom exists for every concept name A

Unfolding

- \mathcal{T}-rule is not necessary if \mathcal{T} is unfoldable, i.e., every axiom is:
- definitorial: form $A \sqsubseteq C$ or $A \equiv C$ for A a concept name
($A \equiv C$ corresponds to $A \sqsubseteq C$ and $C \sqsubseteq A$)
- acyclic: C uses A neither directly nor indirectly
- unique: only one such axiom exists for every concept name A
- If \mathcal{T} is unfoldable, the TBox can be (unfolded) into a concept

Unfolding Example

- We check satisfiability of A w.r.t. the TBox \mathcal{T}

$$
\begin{aligned}
\mathcal{T} & : \\
A & \sqsubseteq B \sqcap \exists r . C \\
B & \equiv C \sqcup D \\
C & \sqsubseteq \exists r . D
\end{aligned}
$$

Unfolding Example

- We check satisfiability of A w.r.t. the TBox \mathcal{T}

A

$$
\begin{aligned}
& \mathcal{T}: \\
& A \sqsubseteq B \sqcap \exists r . C \\
& B \equiv C \sqcup D \\
& C \sqsubseteq \exists r . D
\end{aligned}
$$

Unfolding Example

- We check satisfiability of A w.r.t. the TBox \mathcal{T}

$$
\begin{aligned}
& \mathcal{T}: \\
& A \sqsubseteq B \sqcap \exists r . C \\
& B \equiv C \sqcup D \\
& C \sqsubseteq \exists r . D
\end{aligned}
$$

Unfolding Example

- We check satisfiability of A w.r.t. the TBox \mathcal{T}

$$
\begin{aligned}
& \mathcal{T}: \\
& A \sqsubseteq B \sqcap \exists r . C \\
& B \equiv C \sqcup D \\
& C \sqsubseteq \exists r . D
\end{aligned}
$$

Unfolding Example

- We check satisfiability of A w.r.t. the TBox \mathcal{T}

$$
\begin{array}{rlr}
& \mathcal{T}: \\
& A & A \sqsubseteq B \sqcap \exists r . C \\
\rightsquigarrow A \sqcap B \sqcap \exists r . C & B & \equiv C \sqcup D \\
\rightsquigarrow A \sqcap(C \sqcup D) \sqcap \exists r . C & C & C r . D \\
\rightsquigarrow A \sqcap((C \sqcap \exists r . D) \sqcup D) \sqcap \exists r .(C \sqcap \exists r . D) &
\end{array}
$$

Unfolding Example

- We check satisfiability of A w.r.t. the TBox \mathcal{T}

$$
\begin{array}{ll}
& \mathcal{T}: \\
& A \\
\rightsquigarrow A \sqcap B \sqcap \exists r . C & A \sqsubseteq B \sqcap \exists r . C \\
\rightsquigarrow A \sqcap(C \sqcup D) \sqcap \exists r . C & B \equiv C \sqcup D \\
\rightsquigarrow A \sqcap((C \sqcap \exists r . D) \sqcup D) \sqcap \exists r .(C \sqcap \exists r . D) & C \sqsubseteq \exists r . D
\end{array}
$$

- A is satisfiable w.r.t. \mathcal{T} iff

$$
A \sqcap((C \sqcap \exists r . D) \sqcup D) \sqcap \exists r .(C \sqcap \exists r . D)
$$

is satisfiable w.r.t. the empty TBox

Tableau Algorithm Example with Unfolding

We obtain the following contradiction-free tableau for the satisfiability of $U=A \sqcap((C \sqcap \exists r . D) \sqcup D) \sqcap \exists r .(C \sqcap \exists r . D)$:

$$
\begin{aligned}
L\left(v_{0}\right)= & \{U, A,(C \sqcap \exists r \cdot D) \sqcup D, \\
& \exists r \cdot(C \sqcap \exists r \cdot D), C \sqcap \exists r \cdot D, \\
& C, \exists r \cdot D\} \\
L\left(v_{1}\right)= & \{C \sqcap \exists r \cdot D, C, \exists r \cdot D\} \\
L\left(v_{2}\right)= & \{D\} \\
L\left(v_{3}\right)= & \{D\}
\end{aligned}
$$

Tableau Algorithm Example with Unfolding

We obtain the following contradiction-free tableau for the satisfiability of $U=A \sqcap((C \sqcap \exists r . D) \sqcup D) \sqcap \exists r .(C \sqcap \exists r . D):$

$$
\begin{aligned}
L\left(v_{0}\right)= & \{U, A,(C \sqcap \exists r \cdot D) \sqcup D, \\
& \exists r \cdot(C \sqcap \exists r \cdot D), C \sqcap \exists r \cdot D, \\
& C, \exists r \cdot D\} \\
L\left(v_{1}\right)= & \{C \sqcap \exists r \cdot D, C, \exists r \cdot D\} \\
L\left(v_{2}\right)= & \{D\} \\
L\left(v_{3}\right)= & \{D\}
\end{aligned}
$$

Only one disjunctive decision left!

Lazy Unfolding

- computation of NNF together with unfolding may decrease performance, e.g.:
- satisfiability of $C \sqcap \neg C$ w.r.t. $\mathcal{T}=\{C \sqsubseteq A \sqcap B\}$
- unfolding: $C \sqcap A \sqcap B \sqcap \neg(C \sqcap A \sqcap B)$
- NNF + unfolding: $C \sqcap A \sqcap B \sqcap(\neg C \sqcup \neg A \sqcup \neg B)$

Lazy Unfolding

- computation of NNF together with unfolding may decrease performance, e.g.:
- satisfiability of $C \sqcap \neg C$ w.r.t. $\mathcal{T}=\{C \sqsubseteq A \sqcap B\}$
- unfolding: $C \sqcap A \sqcap B \sqcap \neg(C \sqcap A \sqcap B)$
- NNF + unfolding: $C \sqcap A \sqcap B \sqcap(\neg C \sqcup \neg A \sqcup \neg B)$
- better: apply NNF and unfolding if needed, via corresponding tableau rules:
- $A \equiv C \rightsquigarrow A \sqsubseteq C$ and $A \sqsupseteq C$
\sqsubseteq-rule: For $v \in V$ such that $A \sqsubseteq C \in \mathcal{T}, A \in L(v)$ and $C \notin L(v)$ let $L(v):=L(v) \cup C$.
\sqsupseteq-rule: For $v \in V$ such that $A \sqsupseteq C \in \mathcal{T}, \neg A \in L(v)$ and $\neg C \notin L(v)$ let $L(v):=L(v) \cup\{\neg C\}$.
\neg-rule: For $v \in V$ such that $\neg C \in L(v)$ and $\operatorname{NNF}(\neg C) \notin L(v)$, let $L(v):=L(v) \cup\{\operatorname{NNF}(\neg C)\}$.

Agenda

- Recap Tableau Calculus
- Optimizations
- Unfolding
- Absorption
- Dependency-Directed Backtracking
- Further Optimizations
- Classification
- Summary

Absorption

- What if \mathcal{T} is not unfoldable?
- Separate \mathcal{T} into \mathcal{T}_{u} (unfoldable part) and \mathcal{T}_{g} (GCIs, not unfoldable)
- \mathcal{T}_{u} is treated via \sqsubseteq - and \sqsupseteq-rules
- \mathcal{T}_{g} is treated via the \mathcal{T}-rule

Absorption

- What if \mathcal{T} is not unfoldable?
- Separate \mathcal{T} into \mathcal{T}_{u} (unfoldable part) and \mathcal{T}_{g} (GCIs, not unfoldable)
- \mathcal{T}_{u} is treated via \sqsubseteq - and \sqsupseteq-rules
- \mathcal{T}_{g} is treated via the \mathcal{T}-rule
- absorption decreases \mathcal{T}_{g} and increases \mathcal{T}_{u}
(1) take an axiom from $\mathcal{T}_{\text {g }}$, e.g., $A \sqcap B \sqsubseteq C$
(2) transform the axiom: $A \sqsubseteq C \sqcup \neg B$
(3) if \mathcal{T}_{u} contains an axiom of the form $A \equiv D \quad(A \sqsubseteq D$ and $D \sqsupseteq A)$, then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed; $A \sqsubseteq C \sqcup \neg B$ remains in \mathcal{T}_{g}

4) otherwise, if \mathcal{T}_{u} contains an axiom of the form $A \sqsubseteq D$, then absorb $A \sqsubseteq C \sqcup \neg B$ resulting in $A \sqsubseteq D \sqcap(C \sqcup \neg B)$
(5) otherwise move $A \sqsubseteq C \sqcup \neg B$ to \mathcal{T}_{u}

Absorption

- What if \mathcal{T} is not unfoldable?
- Separate \mathcal{T} into \mathcal{T}_{u} (unfoldable part) and \mathcal{T}_{g} (GCIs, not unfoldable)
- \mathcal{T}_{u} is treated via \sqsubseteq - and \sqsupseteq-rules
- \mathcal{T}_{g} is treated via the \mathcal{T}-rule
- absorption decreases \mathcal{T}_{g} and increases \mathcal{T}_{u}
(9) take an axiom from \mathcal{T}_{g}, e.g., $A \sqcap B \sqsubseteq C$
(2) transform the axiom: $A \sqsubseteq C \sqcup \neg B$
(3) if \mathcal{T}_{u} contains an axiom of the form $A \equiv D \quad(A \sqsubseteq D$ and $D \sqsupseteq A)$, then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed; $A \sqsubseteq C \sqcup \neg B$ remains in \mathcal{T}_{g}

4) otherwise, if \mathcal{T}_{u} contains an axiom of the form $A \sqsubseteq D$, then absorb $A \sqsubseteq C \sqcup \neg B$ resulting in $A \sqsubseteq D \sqcap(C \sqcup \neg B)$
(5) otherwise move $A \sqsubseteq C \sqcup \neg B$ to \mathcal{T}_{u}

- If $A \equiv D \in \mathcal{T}_{u}$, try rewriting/absorption with other axioms in \mathcal{T}_{u}

Absorption

- What if \mathcal{T} is not unfoldable?
- Separate \mathcal{T} into \mathcal{T}_{u} (unfoldable part) and \mathcal{T}_{g} (GCIs, not unfoldable)
- \mathcal{T}_{u} is treated via \sqsubseteq - and \sqsupseteq-rules
- \mathcal{T}_{g} is treated via the \mathcal{T}-rule
- absorption decreases \mathcal{T}_{g} and increases \mathcal{T}_{u}
(1) take an axiom from $\mathcal{T}_{\text {g }}$, e.g., $A \sqcap B \sqsubseteq C$
(2) transform the axiom: $A \sqsubseteq C \sqcup \neg B$
(3) if \mathcal{T}_{u} contains an axiom of the form $A \equiv D \quad(A \sqsubseteq D$ and $D \sqsupseteq A)$, then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed; $A \sqsubseteq C \sqcup \neg B$ remains in \mathcal{T}_{g}

4) otherwise, if \mathcal{T}_{u} contains an axiom of the form $A \sqsubseteq D$, then absorb $A \sqsubseteq C \sqcup \neg B$ resulting in $A \sqsubseteq D \sqcap(C \sqcup \neg B)$
(5) otherwise move $A \sqsubseteq C \sqcup \neg B$ to \mathcal{T}_{u}

- If $A \equiv D \in \mathcal{T}_{u}$, try rewriting/absorption with other axioms in \mathcal{T}_{u}
- nondeterministic: $B \sqsubseteq C \sqcup \neg A$ also possible

Agenda

- Recap Tableau Calculus
- Optimizations
- Unfolding
- Absorption
- Dependency-Directed Backtracking
- Further Optimizations
- Classification
- Summary

Dependency-Directed Backtracking

- despite those optimizations, search space often to big
- let $v \in V$ with $\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \sqcap \exists r . \neg A \sqcap \forall r . A \in L(v)$

Dependency-Directed Backtracking

- despite those optimizations, search space often to big
- let $v \in V$ with $\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \sqcap \exists r . \neg A \sqcap \forall r . A \in L(v)$
v

$$
\begin{aligned}
\sqcap \text {-rule } \quad \mathrm{L}(\mathrm{v}):= & L(v) \cup\left\{\left(C_{1} \sqcup D_{1}\right), \ldots,\left(C_{n} \sqcup D_{n}\right),\right. \\
& \exists r . \neg A, \forall r . A\}
\end{aligned}
$$

Dependency-Directed Backtracking

- despite those optimizations, search space often to big
- let $v \in V$ with $\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \sqcap \exists r . \neg A \sqcap \forall r . A \in L(v)$
v

$$
\begin{array}{llll}
\sqcap \text {-rule } & \mathrm{L}(\mathrm{v}): & & L(v) \cup\left\{\left(C_{1} \sqcup D_{1}\right), \ldots,\left(C_{n} \sqcup D_{n}\right),\right. \\
& & \exists r . \neg A, \forall r . A\} \\
\sqcup \text {-rule } & \mathrm{L}(\mathrm{v}): & := & L(v) \cup\left\{C_{1}\right\} \\
\vdots & \vdots & & \vdots \\
& & \\
& \text {-rule } & \mathrm{L}(\mathrm{v}):= & L(v) \cup\left\{C_{n}\right\}
\end{array}
$$

Dependency-Directed Backtracking

- despite those optimizations, search space often to big
- let $v \in V$ with $\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \sqcap \exists r . \neg A \sqcap \forall r . A \in L(v)$

$$
\begin{array}{llll}
\sqcap \text {-rule } & \mathrm{L}(\mathrm{v}):= & L(v) \cup\left\{\left(C_{1} \sqcup D_{1}\right), \ldots,\left(C_{n} \sqcup D_{n}\right),\right. \\
& & \exists r . \neg A, \forall r . A\} \\
\sqcup \text {-rule } & \mathrm{L}(\mathrm{v}):= & L(v) \cup\left\{C_{1}\right\} \\
\vdots & \vdots & & \vdots \\
& & \\
& \text {-rule } & \mathrm{L}(\mathrm{v}):= & L(v) \cup\left\{C_{n}\right\} \\
\exists \text {-rule } & \mathrm{L}(\mathrm{w}):= & \{\neg A\}
\end{array}
$$

Dependency-Directed Backtracking

- despite those optimizations, search space often to big
- let $v \in V$ with $\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \sqcap \exists r . \neg A \sqcap \forall r . A \in L(v)$

$$
\begin{array}{llll}
\sqcap \text {-rule } & \mathrm{L}(\mathrm{v}): & L(v) \cup\left\{\left(C_{1} \sqcup D_{1}\right), \ldots,\left(C_{n} \sqcup D_{n}\right),\right. \\
& & \exists r . \neg A, \forall r . A\} \\
\sqcup \text {-rule } & \mathrm{L}(\mathrm{v}):= & L(v) \cup\left\{C_{1}\right\} \\
\vdots & \vdots & & \vdots \\
& & & \\
& \text {-rule } & \mathrm{L}(\mathrm{v}):= & L(v) \cup\left\{C_{n}\right\} \\
\exists \text {-rule } & \mathrm{L}(\mathrm{w}):= & \{\neg A\} \\
\forall \text {-rule } & \mathrm{L}(\mathrm{w}):= & \{\neg A, A\} \text { clash }
\end{array}
$$

Dependency-Directed Backtracking

- despite those optimizations, search space often to big
- let $v \in V$ with $\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \sqcap \exists r . \neg A \sqcap \forall r . A \in L(v)$
v
\sqcap-rule $\mathrm{L}(\mathrm{v}):=\quad L(v) \cup\left\{\left(C_{1} \sqcup D_{1}\right), \ldots,\left(C_{n} \sqcup D_{n}\right)\right.$, $\exists r . \neg A, \forall r . A\}$
\sqcup-rule $\mathrm{L}(\mathrm{v}):=L(v) \cup\left\{C_{1}\right\}$

Dependency-Directed Backtracking

- despite those optimizations, search space often to big
- let $v \in V$ with $\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \sqcap \exists r . \neg A \sqcap \forall r . A \in L(v)$
v
\sqcap-rule $\mathrm{L}(\mathrm{v}):=L(v) \cup\left\{\left(C_{1} \sqcup D_{1}\right), \ldots,\left(C_{n} \sqcup D_{n}\right)\right.$, $\exists r . \neg A, \forall r . A\}$
\sqcup-rule $\mathrm{L}(\mathrm{v}):=L(v) \cup\left\{C_{1}\right\}$

Dependency-Directed Backtracking

- despite those optimizations, search space often to big
- let $v \in V$ with $\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \sqcap \exists r . \neg A \sqcap \forall r . A \in L(v)$

Dependency-Directed Backtracking

- despite those optimizations, search space often to big
- let $v \in V$ with $\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \sqcap \exists r . \neg A \sqcap \forall r . A \in L(v)$

Dependency-Directed Backtracking

- despite those optimizations, search space often to big
- let $v \in V$ with $\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \sqcap \exists r . \neg A \sqcap \forall r . A \in L(v)$

- exponentially big search space is traversed

Dependency-Directed Backtracking

- goal: recognize bad branching decisions quickly and do not repeat them

Dependency-Directed Backtracking

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping

Dependency-Directed Backtracking

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping
- backjumping works roughly as follows:
- concepts in the node label are tagged with a set of integers (dependency set) allowing to identify the concept's "origin"
- initially, all concepts are tagged with \emptyset
- tableau rules combine and extend these tags
- \sqcup-rule adds the tag $\{d\}$ to the existing tag, where d is the \sqcup-depth (number of \sqcup-rules applied by now)
- when encountering a contradiction, the labels alow to identify the origin of the concepts causing the contradiction
- jump back to the last relevant application of a \sqcup-rule

Dependency-Directed Backtracking

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping
- backjumping works roughly as follows:
- concepts in the node label are tagged with a set of integers (dependency set) allowing to identify the concept's "origin"
- initially, all concepts are tagged with \emptyset
- tableau rules combine and extend these tags
- \sqcup-rule adds the tag $\{d\}$ to the existing tag, where d is the \sqcup-depth (number of \sqcup-rules applied by now)
- when encountering a contradiction, the labels alow to identify the origin of the concepts causing the contradiction
- jump back to the last relevant application of a \sqcup-rule
- irrelevant part of the search space is not considered

Dependency-Directed Backtracking Example

$\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \sqcap \exists r . \neg A \sqcap \forall r . A \in L(v) \quad$ tagged with \emptyset

Dependency-Directed Backtracking Example

$\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \sqcap \exists r . \neg A \sqcap \forall r . A \in L(v) \quad$ tagged with \emptyset
\(\begin{aligned} \quad \sqcap -rule \quad \mathrm{L}(\mathrm{v}):= \& L(v) \cup\left\{\left(C_{1} \sqcup D_{1}\right), ···,\left(C_{n} \sqcup D_{n}\right),\right.
\& \exists r . \neg A, \forall r . A\} \quad all with \emptyset\end{aligned}\)

Dependency-Directed Backtracking Example

```
\(\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \sqcap \exists r . \neg A \sqcap \forall r . A \in L(v) \quad\) tagged with \(\emptyset\)
    \(\sqcap\)-rule \(\mathrm{L}(\mathrm{v}):=L(v) \cup\left\{\left(C_{1} \sqcup D_{1}\right), \ldots,\left(C_{n} \sqcup D_{n}\right)\right.\),
    \(\exists r . \neg A, \forall r . A\} \quad\) all with \(\emptyset\)
    \(\sqcup\)-rule \(\mathrm{L}(\mathrm{v}):=L(v) \cup\left\{C_{1}\right\} \quad C_{1}\) tagged with \(\{1\}\)
    \(\sqcup\)-rule \(\mathrm{L}(\mathrm{v}):=L(v) \cup\left\{C_{n}\right\}\)
    \(C_{n}\) tagged with \(\{n\}\)
```


Dependency-Directed Backtracking Example

Dependency-Directed Backtracking Example

Dependency-Directed Backtracking Example

Dependency-Directed Backtracking Example

- $\operatorname{tag}(A) \cup \operatorname{tag}(\neg A)=\emptyset$

Dependency-Directed Backtracking Example

$\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \sqcap \exists r . \neg A \sqcap \forall r . A \in L(v) \quad$ tagged with \emptyset

${ }^{v}$	\square-rule	L(v)	:=	$L(v) \cup\left\{\left(C_{1} \sqcup D_{1}\right)\right.$,	$\ldots,\left(C_{n} \sqcup D_{n}\right),$
				$\exists r . \neg A, \forall r . A\}$	all with \emptyset
	\sqcup-rule	L(v)	=	$L(v) \cup\left\{C_{1}\right\}$	C_{1} tagged with $\{1\}$
r	:	:		\vdots	
\downarrow	\sqcup-rule	L(v)	:=	$L(v) \cup\left\{C_{n}\right\}$	C_{n} tagged with $\{n\}$
w	\exists-rule	L(w)	:=	$\{\neg A\}$	A, r tagged with \emptyset
	\forall-rule	L(w)	:=	$\{\neg A, A\}$ clash	$\neg A$ tagged with mit \emptyset

- $\operatorname{tag}(A) \cup \operatorname{tag}(\neg A)=\emptyset$
- None of the \sqcup-rules has contributed to the cotradiction

Dependency-Directed Backtracking Example

$\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \sqcap \exists r . \neg A \sqcap \forall r . A \in L(v) \quad$ tagged with \emptyset

${ }^{v}$	\sqcap-rule	L(v)	:=	$L(v) \cup\left\{\left(C_{1} \sqcup D_{1}\right)\right.$,	$\ldots,\left(C_{n} \sqcup D_{n}\right),$
				$\exists r . \neg A, \forall r . A\}$	all with \emptyset
	\sqcup-rule	L(v)	:=	$L(v) \cup\left\{C_{1}\right\}$	C_{1} tagged with $\{1\}$
r	:	\vdots		\vdots	
\downarrow	\sqcup-rule	L(v)	:=	$L(v) \cup\left\{C_{n}\right\}$	C_{n} tagged with $\{n\}$
w	\exists-rule	L(w)	:=	$\{\neg A\}$	A, r tagged with \emptyset
	\forall-rule	L(w)	:=	$\{\neg A, A\}$ clash	$\neg A$ tagged with mit \emptyset

- $\operatorname{tag}(A) \cup \operatorname{tag}(\neg A)=\emptyset$
- None of the \sqcup-rules has contributed to the cotradiction
- Output false (unsatisfiable)

Agenda

- Recap Tableau Calculus
- Optimizations
- Unfolding
- Absorption
- Dependency-Directed Backtracking
- Further Optimizations
- Classification
- Summary

Further Optimizations

- Simplification and Normalization
- quick recognition of trivial contradictions
- normalization, z.B., $A \sqcap(B \sqcap C) \equiv \sqcap\{A, B, C\}, \forall r . C \equiv \neg \exists r . \neg C$
- simplification, e.g., $\sqcap\{A, \ldots, \neg A, \ldots\} \equiv \perp, \exists r . \perp \equiv \perp, \forall r . \top \equiv \top$

Further Optimizations

- Simplification and Normalization
- quick recognition of trivial contradictions
- normalization, z.B., $A \sqcap(B \sqcap C) \equiv \sqcap\{A, B, C\}, \forall r . C \equiv \neg \exists r . \neg C$
- simplification, e.g., $\sqcap\{A, \ldots, \neg A, \ldots\} \equiv \perp, \exists r . \perp \equiv \perp, \forall r . \top \equiv \top$
- caching
- prevents the repeated construction of equal subtrees
- $L(v)$ initialized with $\left\{C_{1}, \ldots, C_{n}\right\}$ via \exists - and \forall-rules
- check if satisfiability status is cached, otherwise
- check satisfiability of $C_{1} \sqcap \ldots \sqcap C_{n}$, update the cache

Further Optimizations

- Simplification and Normalization
- quick recognition of trivial contradictions
- normalization, z.B., $A \sqcap(B \sqcap C) \equiv \sqcap\{A, B, C\}, \forall r . C \equiv \neg \exists r . \neg C$
- simplification, e.g., $\sqcap\{A, \ldots, \neg A, \ldots\} \equiv \perp, \exists r . \perp \equiv \perp, \forall r . \top \equiv \top$
- caching
- prevents the repeated construction of equal subtrees
- $L(v)$ initialized with $\left\{C_{1}, \ldots, C_{n}\right\}$ via \exists - and \forall-rules
- check if satisfiability status is cached, otherwise
- check satisfiability of $C_{1} \sqcap \ldots \sqcap C_{n}$, update the cache
- heuristics
- try to find good orders for the "don't care" nondeterminism
- e.g., $\sqcap, \forall, \sqcup, \exists$

Further Optimizations

- Simplification and Normalization
- quick recognition of trivial contradictions
- normalization, z.B., $A \sqcap(B \sqcap C) \equiv \sqcap\{A, B, C\}, \forall r . C \equiv \neg \exists r . \neg C$
- simplification, e.g., $\sqcap\{A, \ldots, \neg A, \ldots\} \equiv \perp, \exists r . \perp \equiv \perp, \forall r . \top \equiv \top$
- caching
- prevents the repeated construction of equal subtrees
- $L(v)$ initialized with $\left\{C_{1}, \ldots, C_{n}\right\}$ via \exists - and \forall-rules
- check if satisfiability status is cached, otherwise
- check satisfiability of $C_{1} \sqcap \ldots \sqcap C_{n}$, update the cache
- heuristics
- try to find good orders for the "don't care" nondeterminism
- e.g., $\sqcap, \forall, \sqcup, \exists$
- ...

Agenda

- Recap Tableau Calculus
- Optimizations
- Unfolding
- Absorption
- Dependency-Directed Backtracking
- Further Optimizations
- Classification
- Summary

Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification

- compute all subclass relationships between atomic concepts in \mathcal{T}

Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification

- compute all subclass relationships between atomic concepts in \mathcal{T}
- check for $\mathcal{T} \models C \sqsubseteq D$ can be reduced to checking satisfiability of \mathcal{T} together with the ABox $(C \sqcap \neg D)(a)$ (or, equivalenty: $C(a),(\neg D)(a))$
\rightsquigarrow if T is satisfiable: subsumption does not hold (as we have constructed a counter-model)
\rightsquigarrow if T is unsatisfiable: subsumption holds (no counter-model exists)

Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification

- compute all subclass relationships between atomic concepts in \mathcal{T}
- check for $\mathcal{T} \models C \sqsubseteq D$ can be reduced to checking satisfiability of \mathcal{T} together with the ABox $(C \sqcap \neg D)(a)$ (or, equivalenty: $C(a),(\neg D)(a))$
\rightsquigarrow if T is satisfiable: subsumption does not hold (as we have constructed a counter-model)
\rightsquigarrow if T is unsatisfiable: subsumption holds (no counter-model exists)
- naïve approach needs n^{2} subsumption checks for n concept names
- normally cached in the concept hierarchy graph

Concept Hierarchy Graph

Optimizing Classification

most wide-spread technique is called enhanced traversal

Optimizing Classification

most wide-spread technique is called enhanced traversal

- hierarchy is created incrementally by introducing concept after concept

Optimizing Classification

most wide-spread technique is called enhanced traversal

- hierarchy is created incrementally by introducing concept after concept
- top-down phase: recognize direct superconcepts
- bottom-up phase: recognize direct subconcepts

Optimizing Classification

most wide-spread technique is called enhanced traversal

- hierarchy is created incrementally by introducing concept after concept
- top-down phase: recognize direct superconcepts
- bottom-up phase: recognize direct subconcepts
- transitivity of \sqsubseteq used to save checks

- If $A \sqsubseteq B$ and $C \sqsubseteq D$ hold,
- then $B \sqsubseteq C \longrightarrow A \sqsubseteq D$
- and $A \nsubseteq D \longrightarrow B \nsubseteq C$

Enhanced Traversal Example

already created hierarchy:

Enhanced Traversal Example

already created hierarchy:

Goal: insertion of JointDisease
Top-Down Phase:

- JointDisease $\sqsubseteq^{?}$ Disease

Bottom-Up Phase:

Enhanced Traversal Example

already created hierarchy:

Goal: insertion of JointDisease
Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease $\sqsubseteq^{\text {? }}$ JuvDisease

Bottom-Up Phase:

Enhanced Traversal Example

already created hierarchy:

Goal: insertion of JointDisease
Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease Z JuvDisease
- JointDisease $\sqsubseteq^{\text {? }}$ Arthritis

Bottom-Up Phase:

Enhanced Traversal Example

already created hierarchy:

Goal: insertion of JointDisease
Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease Z JuvDisease
- JointDisease Z Arthritis
- JointDisease $\sqsubseteq^{\text {? }}$ Joint

Bottom-Up Phase:

Enhanced Traversal Example

already created hierarchy:

Goal: insertion of JointDisease
Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease Z JuvDisease
- JointDisease Z Arthritis
- JointDisease \mathbb{E} Joint

Bottom-Up Phase:

- JuvArthritis $\sqsubseteq^{?}$ JointDisease

Enhanced Traversal Example

already created hierarchy:

Goal: insertion of JointDisease
Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease Z JuvDisease
- JointDisease Z Arthritis
- JointDisease \mathbb{E} Joint

Bottom-Up Phase:

- JuvArthritis \sqsubseteq JointDisease
- JuvDisease $\sqsubseteq^{?}$ JointDisease

Enhanced Traversal Example

already created hierarchy:

Goal: insertion of JointDisease
Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease Z JuvDisease
- JointDisease Z Arthritis
- JointDisease \mathbb{E} Joint

Bottom-Up Phase:

- JuvArthritis \sqsubseteq JointDisease
- JuvDisease \mathbb{Z} JointDisease
- Arthritis $\sqsubseteq^{\text {? }}$ JointDisease

Enhanced Traversal Example

already created hierarchy:

Goal: insertion of JointDisease
Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease Z JuvDisease
- JointDisease Z Arthritis
- JointDisease \mathbb{E} Joint

Bottom-Up Phase:

- JuvArthritis \sqsubseteq JointDisease
- JuvDisease \mathbb{Z} JointDisease
- Arthritis \sqsubseteq JointDisease

Agenda

- Recap Tableau Calculus
- Optimizations
- Unfolding
- Absorption
- Dependency-Directed Backtracking
- Further Optimizations
- Classification
- Summary

Summary

- we have a tableau algorithm for $\mathcal{A L C I F}$ knowledge bases
- ABox treated like for $\mathcal{A L C}$
- number restrictions are treated similar to functionality and existential quantifiers
- termination via cycle detection
- becomes harder as the logic becomes more expressive
- naive tableau algorithm not sufficiently performant
- diverse optimizations improve average case
- specific methods for classification
- enhanced traversal
- tableaux algorithms or variants modifications thereof are the basis of OWL reasoners

