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Beyond PTime

* We have seen that the class PTime provides a useful model of “tractable” problems

This includes 2-Sat and 2-Colourability

But what about 3-Sat and 3-Colourability?

® No polynomial time algorithms for these problems are known
On the other hand . ..
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Verifying Solutions

For many seemingly difficult problems, it is easy to verify the correctness of a “solution”
if given.
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e Satisfiability — a satisfying assignment
® [-Colourability — a k-colouring
® Sudoku — a completed puzzle
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Verifiers

Definition 6.1: A Turing machine M which halts on all inputs is called a verifier
for a language L if

L = {w | M accepts (w#c) for some string ¢}

The string c is called a certificate (or witness) for w.

Notation: # is a new separator symbol not used in words or certificates.
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Verifiers

Definition 6.1: A Turing machine M which halts on all inputs is called a verifier
for a language L if

L = {w | M accepts (w#c) for some string ¢}

The string c is called a certificate (or witness) for w.

Notation: # is a new separator symbol not used in words or certificates.

Definition 6.2: A Turing machine M is a polynomial-time verifier for L if M is
polynomially time bounded and

L = {w | M accepts (w#c) for some string ¢ with |c| < p(jw|)}

for some fixed polynomial p.
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The Class NP

NP: “The class of dashed hopes and idle dreams.”

"https://complexityzoo.net/Complexity_Zoo:N#np
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The Class NP

NP: “The class of dashed hopes and idle dreams.”

More formally:
the class of problems for which a possible solution can be verified in P

Definition 6.3: The class of languages that have polynomial-time verifiers is
called NP.

"https://complexityzoo.net/Complexity_Zoo:N#np
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The Class NP

NP: “The class of dashed hopes and idle dreams.”

More formally:
the class of problems for which a possible solution can be verified in P

Definition 6.3: The class of languages that have polynomial-time verifiers is
called NP.

In other words: NP is the class of all languages L such that:
e for every w € L, there is a certificate ¢,, € Z*, where
e the length of ¢, is polynomial in the length of w, and
e the language {(w#c,,) |w e L}isin P

"https://complexityzoo.net/Complexity_Zoo:N#np
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More Examples of Problems in NP

Input:
Problem:

HamiLtoniaN PatH

An undirected graph G

Is there a path in G that contains each vertex ex-
actly once?

k-CLIQUE

Input:

Problem:

An undirected graph G

Does G contain a fully connected graph (clique)
with k vertices?
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More Examples of Problems in NP

SusseT Sum
Input: A collection of positive integers
S ={ay,...,a;} and a target integer r.

Problem: Is there a subset 7'C S such that }, .7 a; =17

TRAVELLING SALESPERSON
Input: A weighted graph G and a target number 7.

Problem: Is there a simple path in G with weight < #?
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Complements of NP are often not known to be in NP

No HamiLtoNiaAN PATH
Input:  An undirected graph G

Problem: Is there no path in G that contains each vertex
exactly once?

Whereas it is easy to certify that a graph has a Hamiltonian path, there does not seem
to be a polynomial certificate that it has not.

But we may just not be clever enough to find one.
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More Examples

ComposiTE (NoN-PRIME) NUMBER
Input: A positive integer n > 1

Problem: Are there integers u,v > 1 such that i - v = n?

Prime NumBER
Input: A positive integer n > 1

Problem: Is n a prime number?
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More Examples

ComposiTE (NoN-PRIME) NUMBER
Input: A positive integer n > 1

Problem: Are there integers u,v > 1 such that i - v = n?

Prime NumBER

Input: A positive integer n > 1

Problem: Is n a prime number?

Surprisingly: both are in NP (see Wikipedia “Primality certificate”)
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More Examples

ComposiTE (NoN-PRIME) NUMBER
Input: A positive integer n > 1

Problem: Are there integers u,v > 1 such that i - v = n?

Prime NumBER

Input: A positive integer n > 1

Problem: Is n a prime number?

Surprisingly: both are in NP (see Wikipedia “Primality certificate”)

In fact: Composite Number (and thus Prime Number) was shown to be in P
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N is for Nondeterministic
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Reprise: Nondeterministic Turing Machines

A nondeterministic Turing Machine (NTM) M = (Q,X,T, 6, qo, @accept) CONSists of

a finite set Q of states,

an input alphabet X not containing .,

a tape alphabet I' suchthatI' 2 X U {_}.

a transition function §: Q x I' — 2@™{LR}
an initial state gy € Q,

an accepting state gaccept € O.

Note
An NTM can halt in any state if there are no options to continue
~» no need for a special rejecting state
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Reprise: Runs of NTMs

An (N)TM configuration can be written as a word ugv where g € Q is a state and uv € I'*
is the current tape contents.

NTMs produce configuration trees that contain all possible runs:

accept: reject: reject (not halting):
Gstart01 " Oy Gstart01 """ Oy start0"1 *** Op
"'-..x “""i “"..)

comp. 1 infinite 1
’
nondet. “y pﬁlth ru{]
choice *
Y X,/
¢ ¢
¥ ' A
@ QY Uy : @ @
» L i
..... qacc ..iqaoc
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Example: Multi-Tape NTM

Consider the NTM M = (0, {0, 1},{0, 1, _}, g0, A, @accept) Where

(o (0)-40: (o). (&)
(o ()-0: (): (&)
A= (q (:):QChecka(:):(x))

transition rules for Mcheck

and where Mneck is a deterministic TM deciding whether number on second tape is > 1
and divides the number on the first.

lajolofaf [ [ [ [ [ [ [[[ [ /]----"

%
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Example: Multi-Tape NTM

Consider the NTM M = (0, {0, 1},{0, 1, _}, g0, A, @accept) Where

(o (0)-40: (o). (&)
(o ()-0: (): (&)
A= (q (:):QChecka(:):(x))

transition rules for Mcheck

and where Mneck is a deterministic TM deciding whether number on second tape is > 1
and divides the number on the first.
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Example: Multi-Tape NTM

Consider the NTM M = (0, {0, 1},{0, 1, _}, g0, A, @accept) Where

(o (0)-40: (o). (&)
(o ()-0: (): (&)
A= (q (:):QChecka(:):(x))

transition rules for Mcheck

and where Mneck is a deterministic TM deciding whether number on second tape is > 1
and divides the number on the first.
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Example: Multi-Tape NTM
Consider the NTM M = (0, {0, 1},{0, 1, _}, g0, A, @accept) Where
(q07 (:), q0, (6)7 (11\;))

(g0 (:)7Q(),(I),(]1\g/))
A=1 (g0, (:)-,QCheck,(:):(%))

transition rules for Mcheck
and where Mcneck is a deterministic TM deciding whether number on second tape is > 1
and divides the number on the first.

The machine M decides if the input is a composite number:
® guess a number on the second tape
® check if it divides the number on the first tape

® accept if a suitable number exists
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Time and Space Bounded NTMs

Q: Which of the nondeterministic runs do time/space bounds apply to?
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Time and Space Bounded NTMs

Q: Which of the nondeterministic runs do time/space bounds apply to?
A: To all of them!

Definition 6.4: Let M be a nondeterministic Turing machine and let f : N — R*
be a function.

(1) M is f-time bounded if it halts on every input w € ¥* and on every
computation path after <f(jw|) steps.

(2) M is f-space bounded if it halts on every input w € £* and on every
computation path using <f(Jw|) cells on its tapes.

(Here we typically assume that Turing machines have a separate input tape
that we do not count in measuring space complexity.)
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Nondeterministic Complexity Classes

Definition 6.5: Let f : N — R" be a function.
(1) NTime(f(n)) is the class of all languages L for which there is an O(f(n))-time
bounded nondeterministic Turing machine deciding L.
(2) NSpace(f(n)) is the class of all languages L for which there is an
O(f(n))-space bounded nondeterministic Turing machine deciding L.
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All Complexity Classes Have a Nondeterministic Variant

NPTime = U NTime(n)

d=1

NExp = NExpTime = |_|NTime(2"")

d>1
nd
N2Exp = N2ExpTime = U NTime(2*" )
d>1
NL = NLogSpace = NSpace(log n)

NPSpace = U NSpace(n®)

d=1

NExpSpace = U NSpace(Z"d)

d>1
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nondet. exponential time

nond. double-exponential time

nondet. logarithmic space

nondet. polynomial space

nondet. exponential space
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Equivalence of NP and NPTime

\ Theorem 6.6: NP = NPTime. \
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Equivalence of NP and NPTime

\ Theorem 6.6: NP = NPTime. \

Proof: We first show NP O NPTime:
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Equivalence of NP and NPTime

\ Theorem 6.6: NP = NPTime.

Proof: We first show NP > NPTime:
® Suppose L € NPTime.
® Then there is an NTM M such that

weL <= thereis an accepting run of M of length O(n?)

for some d.
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Equivalence of NP and NPTime

\ Theorem 6.6: NP = NPTime.

Proof: We first show NP > NPTime:
® Suppose L € NPTime.
® Then there is an NTM M such that

weL <= thereis an accepting run of M of length O(n?)

for some d.
® This path can be used as a certificate for w.
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Equivalence of NP and NPTime

| Theorem 6.6: NP = NPTime. \

Proof: We first show NP > NPTime:
® Suppose L € NPTime.
® Then there is an NTM M such that

weL <= thereis an accepting run of M of length O(n?)

for some d.
® This path can be used as a certificate for w.

* A DTM can check in polynomial time that a candidate certificate is a valid
accepting run.

Therefore NP > NPTime.
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Equivalence of NP and NPTime

\ Theorem 6.6: NP = NPTime. \

Proof: We now show NP C NPTime:
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Equivalence of NP and NPTime

\ Theorem 6.6: NP = NPTime. \

Proof: We now show NP € NPTime:

® Assume L has a polynomial-time verifier M with certificates of length at most p(n)
for a polynomial p.
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Equivalence of NP and NPTime

| Theorem 6.6: NP = NPTime. \

Proof: We now show NP € NPTime:
® Assume L has a polynomial-time verifier M with certificates of length at most p(n)
for a polynomial p.
® Then we can construct an NTM M* deciding L as follows:

(1) M guesses a string of length p(n)
(2) M checks in deterministic polynomial time if this is a certificate.

Therefore NP € NPTime. |
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NP and coNP

Note: the definition of NP is not symmetric

® there does not seem to be any polynomial certificate for Sudoku unsolvability or

propositional logic unsatisfiability . . .
e converse of an NP problem is coNP
e similar for NExpTime and N2ExpTime

Other complexity classes are symmetric:
® Deterministic classes (coP = P etc.)
® Space classes mentioned above (esp. coNL = NL)
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Deterministic vs. Nondeterminsitic Time

Fheorem 6.7: P € NP, and also P € coNP. \

(Clear since DTMs are a special case of NTMs)

It is not known to date if the converse is true or not.

e Put differently: “If it is easy to check a candidate solution to a problem, is it also
easy to find one?”

® Exaggerated: “Can creativity be automated?” (Wigderson, 2006)
® Unresolved since over 35 years of effort
® One of the major problems in computer science and math of our time

® 1,000,000 USD prize for resolving it (“Millenium Problem”)
(might not be much money at the time it is actually solved)
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Status of P vs. NP

Many people believe that P # NP

® Main argument: “If NP = P, someone ought to have found some polynomial
algorithm for an NP-complete problem by now.”

® “This is, in my opinion, a very weak argument. The space of algorithms is very
large and we are only at the beginning of its exploration.” (Moshe Vardi, 2002)

® Another source of intuition: Humans find it hard to solve NP-problems, and hard to
imagine how to make them simpler — possibly “human chauvinistic bravado”
(Zeilenberger, 2006)

® There are better arguments, but none more than an intuition
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Status of P vs. NP

Many outcomes conceivable:
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Status of P vs. NP

Many outcomes conceivable:
® P = NP could be shown with a non-constructive proof
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Status of P vs. NP

Many outcomes conceivable:
® P = NP could be shown with a non-constructive proof
® The question might be independent of standard mathematics (ZFC)

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 24 of 27



Status of P vs. NP

Many outcomes conceivable:
® P = NP could be shown with a non-constructive proof
® The question might be independent of standard mathematics (ZFC)

e Evenif NP # P, it is unclear if NP problems require exponential time in a strict
sense — many super-polynomial functions exist . ..
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Status of P vs. NP

Many outcomes conceivable:
® P = NP could be shown with a non-constructive proof
® The question might be independent of standard mathematics (ZFC)

e Evenif NP # P, it is unclear if NP problems require exponential time in a strict
sense — many super-polynomial functions exist . ..

The problem might never be solved
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Status of P vs. NP

Current status in research:

® Results of a poll among 152 experts [Gasarch 2012]:
— P # NP: 126 (83%)
P =NP: 12 (9%)
Don’t know or don’t care: 7 (4%)
Independent: 5 (3%)
And 1 person (0.6%) answered: “l don’t want it to be equal.”

® Experts have guessed wrongly in other major questions before

® Qver 100 “proofs” show P = NP to be true/false/both/neither:
https://www.win.tue.nl/~gwoegi/P-versus-NP.htm
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A Simple Proof for P =

Clearly
therefore
hence

that is

using coP =P
and hence

so by P C NP
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implies
implies
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L¢P

L € coP

g.e.d.
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NP
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L ¢ NP
L € coNP
coNP C coP
coNP C P
NP CP
NP =P

implies
implies

implies

Complexity Theory

L e NP

L¢P

L € coP
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Summary and Outlook

NP can be defined using polynomial-time verifiers or polynomial-time nondeterministic
Turing machines

Many problems are easily seen to be in NP

NTM acceptance is not symmetric: coNP as complement class, which is assumed to be
unequal to NP

What’s next?
® NP hardness and completeness
® More examples of problems
® Space complexities
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