
COMPLEXITY THEORY

Lecture 6: Nondeterministic Polynomial Time

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach

Knowledge-Based Systems

TU Dresden, 30th Oct 2023

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2023)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Stephan_Mennicke
https://iccl.inf.tu-dresden.de/web/Lukas Gerlach
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

The Class NP

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 2 of 27

Beyond PTime

• We have seen that the class PTime provides a useful model of “tractable” problems

• This includes 2-Sat and 2-Colourability

• But what about 3-Sat and 3-Colourability?

• No polynomial time algorithms for these problems are known

• On the other hand . . .

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 3 of 27

Verifying Solutions

For many seemingly difficult problems, it is easy to verify the correctness of a “solution”
if given.

• Satisfiability – a satisfying assignment

• k-Colourability – a k-colouring

• Sudoku – a completed puzzle

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 4 of 27

Verifiers

Definition 6.1: A Turing machine M which halts on all inputs is called a verifier
for a language L if

L = {w | M accepts (w#c) for some string c}

The string c is called a certificate (or witness) for w.

Notation: # is a new separator symbol not used in words or certificates.

Definition 6.2: A Turing machine M is a polynomial-time verifier for L if M is
polynomially time bounded and

L = {w | M accepts (w#c) for some string c with |c| ≤ p(|w|)}

for some fixed polynomial p.

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 5 of 27

Verifiers

Definition 6.1: A Turing machine M which halts on all inputs is called a verifier
for a language L if

L = {w | M accepts (w#c) for some string c}

The string c is called a certificate (or witness) for w.

Notation: # is a new separator symbol not used in words or certificates.

Definition 6.2: A Turing machine M is a polynomial-time verifier for L if M is
polynomially time bounded and

L = {w | M accepts (w#c) for some string c with |c| ≤ p(|w|)}

for some fixed polynomial p.

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 5 of 27

The Class NP

NP: “The class of dashed hopes and idle dreams.”1

More formally:
the class of problems for which a possible solution can be verified in P

Definition 6.3: The class of languages that have polynomial-time verifiers is
called NP.

In other words: NP is the class of all languages L such that:

• for every w ∈ L, there is a certificate cw ∈ Σ
∗, where

• the length of cw is polynomial in the length of w, and

• the language {(w#cw) | w ∈ L} is in P

1https://complexityzoo.net/Complexity_Zoo:N#np
Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 6 of 27

https://complexityzoo.net/Complexity_Zoo:N#np

The Class NP

NP: “The class of dashed hopes and idle dreams.”1

More formally:
the class of problems for which a possible solution can be verified in P

Definition 6.3: The class of languages that have polynomial-time verifiers is
called NP.

In other words: NP is the class of all languages L such that:

• for every w ∈ L, there is a certificate cw ∈ Σ
∗, where

• the length of cw is polynomial in the length of w, and

• the language {(w#cw) | w ∈ L} is in P

1https://complexityzoo.net/Complexity_Zoo:N#np
Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 6 of 27

https://complexityzoo.net/Complexity_Zoo:N#np

The Class NP

NP: “The class of dashed hopes and idle dreams.”1

More formally:
the class of problems for which a possible solution can be verified in P

Definition 6.3: The class of languages that have polynomial-time verifiers is
called NP.

In other words: NP is the class of all languages L such that:

• for every w ∈ L, there is a certificate cw ∈ Σ
∗, where

• the length of cw is polynomial in the length of w, and

• the language {(w#cw) | w ∈ L} is in P

1https://complexityzoo.net/Complexity_Zoo:N#np
Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 6 of 27

https://complexityzoo.net/Complexity_Zoo:N#np

More Examples of Problems in NP

Hamiltonian Path

Input: An undirected graph G

Problem: Is there a path in G that contains each vertex ex-
actly once?

k-Clique

Input: An undirected graph G

Problem: Does G contain a fully connected graph (clique)
with k vertices?

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 7 of 27

More Examples of Problems in NP

Subset Sum

Input: A collection of positive integers

S = {a1, . . . , ak} and a target integer t.

Problem: Is there a subset T ⊆ S such that
∑

ai∈T ai = t?

Travelling Salesperson

Input: A weighted graph G and a target number t.

Problem: Is there a simple path in G with weight ≤ t?

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 8 of 27

Complements of NP are often not known to be in NP

No Hamiltonian Path

Input: An undirected graph G

Problem: Is there no path in G that contains each vertex
exactly once?

Whereas it is easy to certify that a graph has a Hamiltonian path, there does not seem
to be a polynomial certificate that it has not.

But we may just not be clever enough to find one.

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 9 of 27

More Examples

Composite (non-prime) Number

Input: A positive integer n > 1

Problem: Are there integers u, v > 1 such that u · v = n?

Prime Number

Input: A positive integer n > 1

Problem: Is n a prime number?

Surprisingly: both are in NP (see Wikipedia “Primality certificate”)

In fact: Composite Number (and thus Prime Number) was shown to be in P

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 10 of 27

More Examples

Composite (non-prime) Number

Input: A positive integer n > 1

Problem: Are there integers u, v > 1 such that u · v = n?

Prime Number

Input: A positive integer n > 1

Problem: Is n a prime number?

Surprisingly: both are in NP (see Wikipedia “Primality certificate”)

In fact: Composite Number (and thus Prime Number) was shown to be in P

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 10 of 27

More Examples

Composite (non-prime) Number

Input: A positive integer n > 1

Problem: Are there integers u, v > 1 such that u · v = n?

Prime Number

Input: A positive integer n > 1

Problem: Is n a prime number?

Surprisingly: both are in NP (see Wikipedia “Primality certificate”)

In fact: Composite Number (and thus Prime Number) was shown to be in P

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 10 of 27

N is for Nondeterministic

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 11 of 27

Reprise: Nondeterministic Turing Machines

A nondeterministic Turing Machine (NTM)M = (Q,Σ,Γ, δ, q0, qaccept) consists of

• a finite set Q of states,

• an input alphabet Σ not containing ␣,

• a tape alphabet Γ such that Γ ⊇ Σ ∪ { ␣ }.

• a transition function δ : Q × Γ→ 2Q×Γ×{ L,R }

• an initial state q0 ∈ Q,

• an accepting state qaccept ∈ Q.

Note
An NTM can halt in any state if there are no options to continue
{ no need for a special rejecting state

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 12 of 27

Reprise: Runs of NTMs
An (N)TM configuration can be written as a word uqv where q ∈ Q is a state and uv ∈ Γ∗

is the current tape contents.

NTMs produce configuration trees that contain all possible runs:

accept: reject: reject (not halting):

qstartσ1 · · ·σn

qacc

qstartσ1 · · ·σn

,qacc

qstartσ1 · · ·σn

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 13 of 27

Example: Multi-Tape NTM

Consider the NTMM =
(
Q, {0, 1}, {0, 1, ␣}, q0,∆, qaccept

)
where

∆ =



(
q0,
(
−

−

)
, q0,
(
−

0

)
,
(

N
R

))
(
q0,
(
−

−

)
, q0,
(
−

1

)
,
(

N
R

))
(
q0,
(
−

−

)
, qcheck,

(
−

−

)
,
(

N
N

))
. . .

transition rules forMcheck


and whereMcheck is a deterministic TM deciding whether number on second tape is > 1
and divides the number on the first.

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 14 of 27

Example: Multi-Tape NTM

Consider the NTMM =
(
Q, {0, 1}, {0, 1, ␣}, q0,∆, qaccept

)
where

∆ =



(
q0,
(
−

−

)
, q0,
(
−

0

)
,
(

N
R

))
(
q0,
(
−

−

)
, q0,
(
−

1

)
,
(

N
R

))
(
q0,
(
−

−

)
, qcheck,

(
−

−

)
,
(

N
N

))
. . .

transition rules forMcheck


and whereMcheck is a deterministic TM deciding whether number on second tape is > 1
and divides the number on the first.

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 14 of 27

Example: Multi-Tape NTM

Consider the NTMM =
(
Q, {0, 1}, {0, 1, ␣}, q0,∆, qaccept

)
where

∆ =



(
q0,
(
−

−

)
, q0,
(
−

0

)
,
(

N
R

))
(
q0,
(
−

−

)
, q0,
(
−

1

)
,
(

N
R

))
(
q0,
(
−

−

)
, qcheck,

(
−

−

)
,
(

N
N

))
. . .

transition rules forMcheck


and whereMcheck is a deterministic TM deciding whether number on second tape is > 1
and divides the number on the first.

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 14 of 27

Example: Multi-Tape NTM

Consider the NTMM =
(
Q, {0, 1}, {0, 1, ␣}, q0,∆, qaccept

)
where

∆ =



(
q0,
(
−

−

)
, q0,
(
−

0

)
,
(

N
R

))
(
q0,
(
−

−

)
, q0,
(
−

1

)
,
(

N
R

))
(
q0,
(
−

−

)
, qcheck,

(
−

−

)
,
(

N
N

))
. . .

transition rules forMcheck


and whereMcheck is a deterministic TM deciding whether number on second tape is > 1
and divides the number on the first.

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 14 of 27

Example: Multi-Tape NTM

Consider the NTMM =
(
Q, {0, 1}, {0, 1, ␣}, q0,∆, qaccept

)
where

∆ =



(
q0,
(
−

−

)
, q0,
(
−

0

)
,
(

N
R

))
(
q0,
(
−

−

)
, q0,
(
−

1

)
,
(

N
R

))
(
q0,
(
−

−

)
, qcheck,

(
−

−

)
,
(

N
N

))
. . .

transition rules forMcheck


and whereMcheck is a deterministic TM deciding whether number on second tape is > 1
and divides the number on the first.

The machineM decides if the input is a composite number:

• guess a number on the second tape

• check if it divides the number on the first tape

• accept if a suitable number exists

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 15 of 27

Time and Space Bounded NTMs

Q: Which of the nondeterministic runs do time/space bounds apply to?

A: To all of them!

Definition 6.4: Let M be a nondeterministic Turing machine and let f : N → R+

be a function.

(1) M is f -time bounded if it halts on every input w ∈ Σ∗ and on every
computation path after ≤f (|w|) steps.

(2) M is f -space bounded if it halts on every input w ∈ Σ∗ and on every
computation path using ≤f (|w|) cells on its tapes.

(Here we typically assume that Turing machines have a separate input tape
that we do not count in measuring space complexity.)

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 16 of 27

Time and Space Bounded NTMs

Q: Which of the nondeterministic runs do time/space bounds apply to?
A: To all of them!

Definition 6.4: Let M be a nondeterministic Turing machine and let f : N → R+

be a function.

(1) M is f -time bounded if it halts on every input w ∈ Σ∗ and on every
computation path after ≤f (|w|) steps.

(2) M is f -space bounded if it halts on every input w ∈ Σ∗ and on every
computation path using ≤f (|w|) cells on its tapes.

(Here we typically assume that Turing machines have a separate input tape
that we do not count in measuring space complexity.)

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 16 of 27

Nondeterministic Complexity Classes

Definition 6.5: Let f : N→ R+ be a function.

(1) NTime(f (n)) is the class of all languages L for which there is an O(f (n))-time
bounded nondeterministic Turing machine deciding L.

(2) NSpace(f (n)) is the class of all languages L for which there is an
O(f (n))-space bounded nondeterministic Turing machine deciding L.

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 17 of 27

All Complexity Classes Have a Nondeterministic Variant

NPTime =
⋃
d≥1

NTime(nd) nondet. polynomial time

NExp = NExpTime =
⋃
d≥1

NTime(2nd
) nondet. exponential time

N2Exp = N2ExpTime =
⋃
d≥1

NTime(22nd

) nond. double-exponential time

NL = NLogSpace = NSpace(log n) nondet. logarithmic space

NPSpace =
⋃
d≥1

NSpace(nd) nondet. polynomial space

NExpSpace =
⋃
d≥1

NSpace(2nd
) nondet. exponential space

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 18 of 27

Equivalence of NP and NPTime

Theorem 6.6: NP = NPTime.

Proof: We first show NP ⊇ NPTime:

• Suppose L ∈ NPTime.

• Then there is an NTMM such that

w ∈ L ⇐⇒ there is an accepting run ofM of length O(nd)

for some d.

• This path can be used as a certificate for w.

• A DTM can check in polynomial time that a candidate certificate is a valid
accepting run.

Therefore NP ⊇ NPTime.

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 19 of 27

Equivalence of NP and NPTime

Theorem 6.6: NP = NPTime.

Proof: We first show NP ⊇ NPTime:

• Suppose L ∈ NPTime.

• Then there is an NTMM such that

w ∈ L ⇐⇒ there is an accepting run ofM of length O(nd)

for some d.

• This path can be used as a certificate for w.

• A DTM can check in polynomial time that a candidate certificate is a valid
accepting run.

Therefore NP ⊇ NPTime.

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 19 of 27

Equivalence of NP and NPTime

Theorem 6.6: NP = NPTime.

Proof: We first show NP ⊇ NPTime:

• Suppose L ∈ NPTime.

• Then there is an NTMM such that

w ∈ L ⇐⇒ there is an accepting run ofM of length O(nd)

for some d.

• This path can be used as a certificate for w.

• A DTM can check in polynomial time that a candidate certificate is a valid
accepting run.

Therefore NP ⊇ NPTime.

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 19 of 27

Equivalence of NP and NPTime

Theorem 6.6: NP = NPTime.

Proof: We first show NP ⊇ NPTime:

• Suppose L ∈ NPTime.

• Then there is an NTMM such that

w ∈ L ⇐⇒ there is an accepting run ofM of length O(nd)

for some d.

• This path can be used as a certificate for w.

• A DTM can check in polynomial time that a candidate certificate is a valid
accepting run.

Therefore NP ⊇ NPTime.

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 19 of 27

Equivalence of NP and NPTime

Theorem 6.6: NP = NPTime.

Proof: We first show NP ⊇ NPTime:

• Suppose L ∈ NPTime.

• Then there is an NTMM such that

w ∈ L ⇐⇒ there is an accepting run ofM of length O(nd)

for some d.

• This path can be used as a certificate for w.

• A DTM can check in polynomial time that a candidate certificate is a valid
accepting run.

Therefore NP ⊇ NPTime.

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 19 of 27

Equivalence of NP and NPTime

Theorem 6.6: NP = NPTime.

Proof: We now show NP ⊆ NPTime:

• Assume L has a polynomial-time verifierM with certificates of length at most p(n)
for a polynomial p.

• Then we can construct an NTMM∗ deciding L as follows:
(1) M∗ guesses a string of length p(n)
(2) M∗ checks in deterministic polynomial time if this is a certificate.

Therefore NP ⊆ NPTime. □

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 20 of 27

Equivalence of NP and NPTime

Theorem 6.6: NP = NPTime.

Proof: We now show NP ⊆ NPTime:

• Assume L has a polynomial-time verifierM with certificates of length at most p(n)
for a polynomial p.

• Then we can construct an NTMM∗ deciding L as follows:
(1) M∗ guesses a string of length p(n)
(2) M∗ checks in deterministic polynomial time if this is a certificate.

Therefore NP ⊆ NPTime. □

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 20 of 27

Equivalence of NP and NPTime

Theorem 6.6: NP = NPTime.

Proof: We now show NP ⊆ NPTime:

• Assume L has a polynomial-time verifierM with certificates of length at most p(n)
for a polynomial p.

• Then we can construct an NTMM∗ deciding L as follows:
(1) M∗ guesses a string of length p(n)
(2) M∗ checks in deterministic polynomial time if this is a certificate.

Therefore NP ⊆ NPTime. □

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 20 of 27

NP and coNP

Note: the definition of NP is not symmetric

• there does not seem to be any polynomial certificate for Sudoku unsolvability or
propositional logic unsatisfiability . . .

• converse of an NP problem is coNP

• similar for NExpTime and N2ExpTime

Other complexity classes are symmetric:

• Deterministic classes (coP = P etc.)

• Space classes mentioned above (esp. coNL = NL)

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 21 of 27

Deterministic vs. Nondeterminsitic Time

Theorem 6.7: P ⊆ NP, and also P ⊆ coNP.

(Clear since DTMs are a special case of NTMs)

It is not known to date if the converse is true or not.

• Put differently: “If it is easy to check a candidate solution to a problem, is it also
easy to find one?”

• Exaggerated: “Can creativity be automated?” (Wigderson, 2006)

• Unresolved since over 35 years of effort

• One of the major problems in computer science and math of our time

• 1,000,000 USD prize for resolving it (“Millenium Problem”)
(might not be much money at the time it is actually solved)

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 22 of 27

Status of P vs. NP

Many people believe that P , NP

• Main argument: “If NP = P, someone ought to have found some polynomial
algorithm for an NP-complete problem by now.”

• “This is, in my opinion, a very weak argument. The space of algorithms is very
large and we are only at the beginning of its exploration.” (Moshe Vardi, 2002)

• Another source of intuition: Humans find it hard to solve NP-problems, and hard to
imagine how to make them simpler – possibly “human chauvinistic bravado”
(Zeilenberger, 2006)

• There are better arguments, but none more than an intuition

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 23 of 27

Status of P vs. NP

Many outcomes conceivable:

• P = NP could be shown with a non-constructive proof

• The question might be independent of standard mathematics (ZFC)

• Even if NP , P, it is unclear if NP problems require exponential time in a strict
sense – many super-polynomial functions exist . . .

• The problem might never be solved

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 24 of 27

Status of P vs. NP

Many outcomes conceivable:

• P = NP could be shown with a non-constructive proof

• The question might be independent of standard mathematics (ZFC)

• Even if NP , P, it is unclear if NP problems require exponential time in a strict
sense – many super-polynomial functions exist . . .

• The problem might never be solved

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 24 of 27

Status of P vs. NP

Many outcomes conceivable:

• P = NP could be shown with a non-constructive proof

• The question might be independent of standard mathematics (ZFC)

• Even if NP , P, it is unclear if NP problems require exponential time in a strict
sense – many super-polynomial functions exist . . .

• The problem might never be solved

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 24 of 27

Status of P vs. NP

Many outcomes conceivable:

• P = NP could be shown with a non-constructive proof

• The question might be independent of standard mathematics (ZFC)

• Even if NP , P, it is unclear if NP problems require exponential time in a strict
sense – many super-polynomial functions exist . . .

• The problem might never be solved

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 24 of 27

Status of P vs. NP

Many outcomes conceivable:

• P = NP could be shown with a non-constructive proof

• The question might be independent of standard mathematics (ZFC)

• Even if NP , P, it is unclear if NP problems require exponential time in a strict
sense – many super-polynomial functions exist . . .

• The problem might never be solved

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 24 of 27

Status of P vs. NP

Current status in research:
• Results of a poll among 152 experts [Gasarch 2012]:

– P , NP: 126 (83%)
– P = NP: 12 (9%)
– Don’t know or don’t care: 7 (4%)
– Independent: 5 (3%)
– And 1 person (0.6%) answered: “I don’t want it to be equal.”

• Experts have guessed wrongly in other major questions before

• Over 100 “proofs” show P = NP to be true/false/both/neither:
https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 25 of 27

https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

A Simple Proof for P = NP

Clearly L ∈ P implies L ∈ NP

therefore L < NP implies L < P

hence L ∈ coNP implies L ∈ coP

that is coNP ⊆ coP

using coP = P coNP ⊆ P

and hence NP ⊆ P

so by P ⊆ NP NP = P

q.e.d.

?

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 26 of 27

A Simple Proof for P = NP

Clearly L ∈ P implies L ∈ NP

therefore L < NP implies L < P

hence L ∈ coNP implies L ∈ coP

that is coNP ⊆ coP

using coP = P coNP ⊆ P

and hence NP ⊆ P

so by P ⊆ NP NP = P

q.e.d.?

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 26 of 27

Summary and Outlook

NP can be defined using polynomial-time verifiers or polynomial-time nondeterministic
Turing machines

Many problems are easily seen to be in NP

NTM acceptance is not symmetric: coNP as complement class, which is assumed to be
unequal to NP

What’s next?

• NP hardness and completeness

• More examples of problems

• Space complexities

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 30th Oct 2023 Complexity Theory slide 27 of 27

	Nondeterministic Polynomial Time
	The Class NP
	N is for Nondeterministic

