Complexity Theory Alternation

Daniel Borchmann, Markus Krötzsch

Computational Logic

2016-01-05

 \odot

Alternation

Diagram for the computation by the Engine of the Numbers of Bernoulli. See Note G. (page 722 et seq.)																						
1	Nature of Operation.	Variables acted upon.	Variables receiving results.	Indication of change in the value on any Variable.	Statement of Results.	Data.			Working Variables.										Result Variables.			
Number of Operation.							¹ V ₂ O 0 2 2	¹ V ₃ О 0 4 п	0000 g	⁰ V ₅ O 0 0	⁰ Y ₆ ○ 0 0 0	°V7 0000	°V. 00000	⁰ V ₂ O 0 0 0	°V ₁₀ O 0 0 0 0	⁰ V ₁₁ O 0 0 0	°V ₁₂ O 0 0 0	•Y ₁₃ 0 0 0 0 0	[] B₁ in a decimalO ₂ 4 fraction.	² ^B B ³ in a Ok decimatOk fraction.	e la g	⁰ V ₂₁ O 0 0 B ₇
1 2 3 4 5 6 7	- + + + -	${}^{4}V_{4} - {}^{1}V_{1}$ ${}^{4}V_{5} + {}^{1}V_{1}$ ${}^{4}V_{5} + {}^{2}V_{4}$ ${}^{4}V_{11} + {}^{1}V_{2}$ ${}^{5}V_{13} - {}^{2}V_{11}$	¹ V ₄ , ¹ V ₅ , ¹ V ₆ ² V ₄ ² V ₅ ¹ V ₁₁ ² V ₁₁ ¹ V ₁₃ ¹ V ₁₉	$\begin{cases} 1\mathbf{V}_{5}^{*} = 2\mathbf{V}_{5}^{*} \\ 1\mathbf{V}_{1}^{*} = 1\mathbf{V}_{1}^{*} \\ 2\mathbf{V}_{5}^{*} = 0\mathbf{V}_{5}^{*} \\ 2\mathbf{V}_{4}^{*} = 0\mathbf{V}_{4}^{*} \\ \end{cases} \\ \begin{cases} 1\mathbf{V}_{11} = 2\mathbf{V}_{11} \\ 1\mathbf{V}_{2}^{*} = 1\mathbf{V}_{2}^{*} \\ 0\mathbf{V}_{11} = 1\mathbf{V}_{11}^{*} \\ 0\mathbf{V}_{12}^{*} = 1\mathbf{V}_{23}^{*} \\ 1\mathbf{V}_{1}^{*} = 1\mathbf{V}_{3}^{*} \\ 1\mathbf{V}_{1}^{*} = 1\mathbf{V}_{4}^{*} \end{cases}$	$\begin{array}{l} = 2 \ n & \\ = 2 \ n - 1 & \\ = 2 \ n - 1 & \\ = \frac{2 \ n - 1}{2 \ n - 1} & \\ = \frac{2 \ n - 1}{2 \ n - 1} & \\ = \frac{1}{2} \ \cdot \frac{2 \ n - 1}{2 \ n + 1} & \\ = -\frac{1}{2} \ \cdot \frac{2 \ n - 1}{2 \ n + 1} & \\ = n - 1 & (= 3) & \\ = n - 1 & (= 3) & \\ \end{array}$	1	2	5 	2 n 2 n - 1 0 	2 n 2 n+1 0 	2 n 				 n - 1	$ \frac{2m-1}{2m+1} \\ \frac{1}{2} \cdot \frac{2m-1}{2m+1} \\ \frac{1}{2} \cdot \frac{2m-1}{2m+1} \\ 0 $		$-\frac{1}{2}\cdot\frac{2n-1}{2n+1}-\lambda_{a}$				
8 9 10 11 12	+ × +	$V_6 + V_7$ $V_{11} \times {}^{3}V_{11}$ $V_{12} + V_{13}$	¹ V ₇ ³ V ₁₁ ¹ V ₁₂ ² V ₁₃ ² V ₁₀	$ \begin{cases} {}^{1}V_{21} = {}^{1}V_{21} \\ {}^{3}V_{11} = {}^{3}V_{11} \\ {}^{1}V_{22} = {}^{6}V_{12} \\ {}^{1}V_{13} = {}^{2}V_{13} \\ {}^{1}V_{39} = {}^{2}V_{10} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{cases} $	$\begin{array}{l} =2+0=2\\ =\frac{2\pi}{2}=\Lambda_{1}\\ =B_{1},\ \ \frac{2\pi}{2}=B_{1}\Lambda_{1}\\ =-\frac{1}{2},\ \frac{2\pi-1}{2\pi+1}+B_{1},\ \frac{2\pi}{2}\\ =s-2\left(=2\right)\end{array}$		2				 2 n 	2 2			 n - 2	$\frac{2 n}{2} = \Lambda_1$ $\frac{2 n}{2} = \Lambda_1$ \dots	$B_1, \frac{2\pi}{2} = B_1 \Lambda$	$\left\{-\frac{1}{2},\frac{2n-1}{2n+1}+B_1,\frac{2n}{2}\right\}$	B1			
13 14 15 16 17 18, 20 21 22 23	+ + × - + + × ×	${}^{1}V_{1} + {}^{1}V_{7}$ ${}^{2}V_{6} + {}^{2}V_{7}$ ${}^{1}V_{8} \times {}^{3}V_{11}$ ${}^{2}V_{6} - {}^{1}V_{1}$ ${}^{1}V_{1} + {}^{2}V_{7}$ ${}^{3}V_{6} + {}^{3}V_{7}$ ${}^{1}V_{9} \times {}^{4}V_{11}$ ${}^{1}V_{9} \times {}^{4}V_{12}$	¹ V ₈ ⁴ V ₁₁ ³ V ₆ ³ V ₇ ⁴ V ₁₁ ⁴ V ₁₂ ⁴ V ₁₂	$\begin{cases} 2V_7 = 3V_7 \\ 1V_1 = 1V_1 \\ 3V_6 = 3V_6 \\ 3V_7 = 2V_7 \\ 4V_{11} = 5V_{11} \\ 1V_{22} = 1V_{21} \\ 4V_{22} = 1V_{22} \\ 0V_{22} = 2V_{22} \end{cases}$	$\begin{array}{l} 2 = 2 - 1 \\ = 2 + 1 - 3 \\ \hline 3 \\ = 2 - 3 \\ \hline 3 \\ = 2 - 2 \\ = 3 + 1 \\ = 2 - 2 \\ \hline 3 + 1 = 4 \\ \hline - 2 - 2 \\ = 2 - 2 \\ \hline 3 - 4 \\ = 4 \\ - 2 - 2 \\ \hline 3 - 4 \\ = -2 \\ \hline 3 - 4 \\ - 2 - 2 \\ \hline 3 - 4 \\ - 2 - 2 \\ \hline 3 - 4 \\ - 2 - 2 \\ \hline 3 - 4 \\ - 2 - 2 \\ \hline 3 - 4 \\ - 2 - 2 \\ \hline 3 - 4 \\ - 2 - 2 \\ - 2 - 2 \\ \hline 3 - 4 \\ - 2 - 2 \\ - 2 - 2 \\ - 2 - 2 \\ - 2 - 2$			····	····		2n - 1 2n - 1 2n - 5 2n - 5 	4			 n - 3	$\begin{cases} \frac{2}{2}, \frac{2}{3}, \frac{n-1}{3} \\ \frac{2}{3}, \frac{2}{3}, \frac{n-2}{-3} \\ \frac{2}{3}, \frac{2}{-3}, \frac{2}{3} \end{cases}$	B ₂ A ₂ 0	$\{A_2 + B_1 A_1 + B_2 A_3\}$		Ba	A PARTY AND A P	
24 25		"V1+"V2	10.0	$ \begin{cases} {}^{4}\mathrm{V}_{13} = {}^{0}\mathrm{V}_{13} \\ {}^{0}\mathrm{V}_{24} = {}^{1}\mathrm{V}_{24} \\ {}^{1}\mathrm{V}_1 = {}^{1}\mathrm{V}_1 \\ {}^{1}\mathrm{V}_3 = {}^{1}\mathrm{V}_3 \\ {}^{4}\mathrm{V}_6 = {}^{0}\mathrm{V}_6 \\ {}^{6}\mathrm{V}_7 = {}^{0}\mathrm{V}_7 \end{cases} \end{cases} $	$= B;$ $= n + 1 = 4 + 1 = 5 \dots$ by a Variable-card. by a Variable card.	1				lows a re	0	0							-			B ₇

(early computation path written by Ada Lovelace)

© (1) 2015 Daniel Borchmann, Markus Krötzsch

Complexity Theory

Extended New Year's Review: Lectures 15–19

Alternation

Alternating Computations

Non-deterministic TMs:

- Accept if there is an accepting run.
- Used to define classes like NP

Complements of non-deterministic classes:

- Accept if all runs are accepting.
- Used to define classes like coNP

We have seen that existential and universal modes can also alternate:

- Players take turns in games
- Quantifiers may alternate in QBF

Is there a suitable Turing Machine model to capture this?

Alternating Turing Machines

Definition 14.1

An alternating Turing machine (ATM) $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0)$ is a Turing machine with a non-deterministic transition function $\delta: Q \times \Gamma \rightarrow \mathfrak{P}(Q \times \Gamma \times \{L, R\})$ whose set of states is partitioned into existential and universal states:

- Q_{\exists} : set of existential states Q_{\forall} : set of universal states
- Configurations of ATMs are the same as for (N)TMs: tape(s) + state + head position
- A configuration can be universal or existential, depending on whether its state is universal or existential
- Possible transitions between configurations are defined as for NTMs

Alternating Turing Machines: Acceptance

Acceptance is defined recursively:

Definition 14.2

A configuration C of an ATM M is accepting if one of the following is true:

- *C* is existential and some successor configuration of *C* is accepting.
- *C* is universal and all successor configurations of *C* are accepting.

 \mathcal{M} accepts a word w if the start configuration on w is accepting.

Alternating Turing Machines: Acceptance

Acceptance is defined recursively:

Definition 14.2

A configuration C of an ATM \mathcal{M} is accepting if one of the following is true:

- *C* is existential and some successor configuration of *C* is accepting.
- *C* is universal and all successor configurations of *C* are accepting.

 \mathcal{M} accepts a word w if the start configuration on w is accepting.

Note: configurations with no successor are the base case, since we have:

- An existential configuration without any successor configurations is rejecting.
- A universal configuration without any successor configurations is accepting.

Hence we don't need to specify accepting or rejecting states explicitly.

Nondeterminism and Parallelism

ATMs can be seen as a generalisation of non-deterministic TMs:

An NTM is an ATM where all states are existential (besides the single accepting state, which is always universal according to our definition).

Nondeterminism and Parallelism

ATMs can be seen as a generalisation of non-deterministic TMs:

An NTM is an ATM where all states are existential (besides the single accepting state, which is always universal according to our definition).

ATMs can be seen as a model of parallel computation:

In every step, fork the current process to create sub-processes that explore each possible transition in parallel

- for universal states, combine the results of sub-processes with AND
- for existential states, combine the results of sub-processes with OR

Alternative view: an ATM accepts if its computation tree, considered as an AND-OR tree, evaluates to TRUE

Example: Alternating Algorithm for MINFORMULA

MINFORMULA

Input: A propositional formula φ .

Problem:Is φ the shortest formula that is satis-
fied by the same assignments as φ ?

Example: Alternating Algorithm for MINFORMULA

MINFORMULAInput:A propositional formula φ .Problem:Is φ the shortest formula that is satisfied by the same assignments as φ ?

MINFORMULA can be solved by an alternating algorithm:

- **01** MinFormula(formula φ) :
- 02 universally choose ψ := formula shorter than φ
- **03** exist. guess \mathcal{I} := assignment for variables in φ
- 04 if $\varphi^I=\psi^I$:
- 05 return FALSE
- 06 else :
- **07** return TRUE

Example: Alternating Algorithm for GEOGRAPHY

01 ALTGEOGRAPHY(directed graph G, start node s) : Visited := {s} // visited nodes 02 03 cur := s // current node 04 while TRUE : 05 // existential move: 06 if all successors of *cur* are in *Visited*: 07 return FAISE 80 existentially guess cur := unvisited successor of cur 09 Visited := Visited \cup {cur} 10 // universal move: 11 if all successors of *cur* are in *Visited*: 12 return TRUE 13 universally choose cur := unvisited successor of cur Visited := Visited \cup {cur} 14

Time and Space Bounded ATMs

As before, time and space bounds apply to any computation path in the computation tree.

Definition 14.3

Let \mathcal{M} be an alternating Turing machine and let $f : \mathbb{N} \to \mathbb{R}^+$ be a function.

- ► \mathcal{M} is *f*-time bounded if it halts on every input $w \in \Sigma^*$ and on every computation path after $\leq f(|w|)$ steps.
- M is *f*-space bounded if it halts on every input w ∈ Σ* and on every computation path using ≤*f*(|w|) cells on its tapes.

(Here we typically assume that Turing machines have a separate input tape that we do not count in measuring space complexity.)

Defining Alternating Complexity Classes

Definition 14.4

- Let $f : \mathbb{N} \to \mathbb{R}^+$ be a function.
 - ATIME(f(n)) is the class of all languages \mathcal{L} for which there is an O(f(n))-time bounded alternating Turing machine deciding \mathcal{L} , for some $k \ge 1$.
 - ASPACE(f(n)) is the class of all languages \mathcal{L} for which there is an O(f(n))-space bounded alternating Turing machine deciding \mathcal{L} .

Common Alternating Complexity Classes

$$AP = APTIME = \bigcup_{d \ge 1} ATIME(n^{d})$$
$$AEXP = AEXPTIME = \bigcup_{d \ge 1} ATIME(2^{n^{d}})$$
$$A2EXP = A2EXPTIME = \bigcup_{d \ge 1} ATIME(2^{2^{n^{d}}})$$

alternating polynomial time

alternating exponential time

alt. double-exponential time

$$AL = ALOGSPACE = ASPACE(\log n)$$
$$APSPACE = \bigcup_{d \ge 1} ASPACE(n^d)$$
$$AEXPSPACE = \bigcup_{d \ge 1} ASPACE(2^{n^d})$$

alternating logarithmic space

alternating polynomial space

alternating exponential space

Example: Geography $\in APTIME$

© € 2015 Daniel Borchmann, Markus Krötzsch

Nondeterminism: ATMs can do everything that the corresponding NTMs can do, e.g., $NP \subseteq APT_{IME}$

Nondeterminism: ATMs can do everything that the corresponding NTMs can do, e.g., $NP \subseteq APT_{IME}$

Reductions: Polynomial many-one reductions can be used to show membership in many alternating complexity classes, e.g., if $\mathcal{L} \in \operatorname{APTIME}$ and $\mathcal{L}' \leq_p \mathcal{L}$ then $\mathcal{L}' \in \operatorname{APTIME}$.

Nondeterminism: ATMs can do everything that the corresponding NTMs can do, e.g., $NP \subseteq APTIME$

Reductions: Polynomial many-one reductions can be used to show membership in many alternating complexity classes, e.g., if $\mathcal{L} \in \operatorname{APTIME}$ and $\mathcal{L}' \leq_p \mathcal{L}$ then $\mathcal{L}' \in \operatorname{APTIME}$.

In particular: $PSPACE \subseteq APTIME$ (since Geography $\in APTIME$)

Nondeterminism: ATMs can do everything that the corresponding NTMs can do, e.g., $NP \subseteq APTIME$

Reductions: Polynomial many-one reductions can be used to show membership in many alternating complexity classes, e.g., if $\mathcal{L} \in \operatorname{APTIME}$ and $\mathcal{L}' \leq_p \mathcal{L}$ then $\mathcal{L}' \in \operatorname{APTIME}$.

In particular: $PSPACE \subseteq APTIME$ (since Geography $\in APTIME$)

Complementation: ATMs are easily complemented:

- Let \mathcal{M} be an ATM accepting language $\mathcal{L}(\mathcal{M})$
- Let *M'* be obtained from *M* by swapping existential and universal states
- Then $\mathcal{L}(\mathcal{M}') = \overline{\mathcal{L}(\mathcal{M})}$

For alternating algorithms this means: (1) negate all return values, (2) swap universal and existential branching points

Example: Complement of MINFORMULA

Original algorithm:

```
01 MINFORMULA(formula \varphi) :

02 universally choose \psi := formula shorter than \varphi

03 exist. guess I := assignment for variables in \varphi

04 if \varphi^I = \psi^I :

05 return FALSE

06 else :

07 return TRUE
```

Complemented algorithm:

```
01 COMPLMINFORMULA(formula \varphi) :

02 existentially guess \psi := formula shorter than \varphi

03 univ. choose I := assignment for variables in \varphi

04 if \varphi^I = \psi^I :

05 return TRUE

06 else :

07 return FALSE
```

© 1015 Daniel Borchmann, Markus Krötzsch