
Alternation

Complexity Theory
Alternation

Daniel Borchmann, Markus Krötzsch

Computational Logic

2016-01-05

cba

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-05 #1

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternation

(early computation path written by Ada Lovelace)

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-05 #2

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternation Extended New Year’s Review: Lectures 15–19

Extended New Year’s Review: Lectures 15–19

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-05 #3

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternation Alternation

Alternation

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-05 #4

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternation Alternation

Alternating Computations

Non-deterministic TMs:

Accept if there is an accepting run.

Used to define classes like NP

Complements of non-deterministic classes:

Accept if all runs are accepting.

Used to define classes like coNP

We have seen that existential and universal modes can also alternate:

Players take turns in games

Quantifiers may alternate in QBF

Is there a suitable Turing Machine model to capture this?

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-05 #5

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternation Alternation

Alternating Turing Machines

Definition 14.1

An alternating Turing machine (ATM)M = (Q ,Σ, Γ, δ, q0) is a Turing
machine with a non-deterministic transition function
δ : Q × Γ→ P(Q × Γ × { L,R }) whose set of states is partitioned into
existential and universal states:

Q∃: set of existential states Q∀: set of universal states

Configurations of ATMs are the same as for (N)TMs:
tape(s) + state + head position

A configuration can be universal or existential, depending on whether
its state is universal or existential

Possible transitions between configurations are defined as for NTMs

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-05 #6

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternation Alternation

Alternating Turing Machines: Acceptance

Acceptance is defined recursively:

Definition 14.2
A configuration C of an ATMM is accepting if one of the following is true:

C is existential and some successor configuration of C is accepting.

C is universal and all successor configurations of C are accepting.

M accepts a word w if the start configuration on w is accepting.

Note: configurations with no successor are the base case, since we have:

An existential configuration without any successor configurations is
rejecting.

A universal configuration without any successor configurations is
accepting.

Hence we don’t need to specify accepting or rejecting states explicitly.

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-05 #7

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternation Alternation

Alternating Turing Machines: Acceptance

Acceptance is defined recursively:

Definition 14.2
A configuration C of an ATMM is accepting if one of the following is true:

C is existential and some successor configuration of C is accepting.

C is universal and all successor configurations of C are accepting.

M accepts a word w if the start configuration on w is accepting.

Note: configurations with no successor are the base case, since we have:

An existential configuration without any successor configurations is
rejecting.

A universal configuration without any successor configurations is
accepting.

Hence we don’t need to specify accepting or rejecting states explicitly.

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-05 #7

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternation Alternation

Nondeterminism and Parallelism

ATMs can be seen as a generalisation of non-deterministic TMs:

An NTM is an ATM where all states are existential (besides the single
accepting state, which is always universal according to our definition).

ATMs can be seen as a model of parallel computation:

In every step, fork the current process to create sub-processes that
explore each possible transition in parallel

for universal states, combine the results of sub-processes with AND

for existential states, combine the results of sub-processes with OR

Alternative view: an ATM accepts if its computation tree, considered as an
AND-OR tree, evaluates to TRUE

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-05 #8

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternation Alternation

Nondeterminism and Parallelism

ATMs can be seen as a generalisation of non-deterministic TMs:

An NTM is an ATM where all states are existential (besides the single
accepting state, which is always universal according to our definition).

ATMs can be seen as a model of parallel computation:

In every step, fork the current process to create sub-processes that
explore each possible transition in parallel

for universal states, combine the results of sub-processes with AND

for existential states, combine the results of sub-processes with OR

Alternative view: an ATM accepts if its computation tree, considered as an
AND-OR tree, evaluates to TRUE

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-05 #8

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternation Alternation

Example: Alternating Algorithm for MinFormula

MinFormula

Input: A propositional formula ϕ.

Problem: Is ϕ the shortest formula that is satis-
fied by the same assignments as ϕ?

MinFormula can be solved by an alternating algorithm:

01 MinFormula(formula ϕ) :
02 universally choose ψ := formula shorter than ϕ

03 exist. guess I := assignment for variables in ϕ

04 if ϕI = ψI :
05 return FALSE
06 else :
07 return TRUE

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-05 #9

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternation Alternation

Example: Alternating Algorithm for MinFormula

MinFormula

Input: A propositional formula ϕ.

Problem: Is ϕ the shortest formula that is satis-
fied by the same assignments as ϕ?

MinFormula can be solved by an alternating algorithm:

01 MinFormula(formula ϕ) :
02 universally choose ψ := formula shorter than ϕ

03 exist. guess I := assignment for variables in ϕ

04 if ϕI = ψI :
05 return FALSE
06 else :
07 return TRUE

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-05 #9

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternation Alternation

Example: Alternating Algorithm for Geography

01 AltGeography(directed graph G, start node s) :
02 Visited := {s} // visited nodes
03 cur := s // current node
04 while TRUE :
05 // existential move:
06 if all successors of cur are in Visited:
07 return FALSE
08 existentially guess cur := unvisited successor of cur
09 Visited := Visited ∪ {cur}
10 // universal move:
11 if all successors of cur are in Visited:
12 return TRUE
13 universally choose cur := unvisited successor of cur
14 Visited := Visited ∪ {cur}

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-05 #10

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternation Alternation

Time and Space Bounded ATMs

As before, time and space bounds apply to any computation path in the
computation tree.

Definition 14.3

LetM be an alternating Turing machine and let f : N→ R+ be a function.

M is f -time bounded if it halts on every input w ∈ Σ∗ and on every
computation path after ≤f(|w |) steps.

M is f -space bounded if it halts on every input w ∈ Σ∗ and on every
computation path using ≤f(|w |) cells on its tapes.

(Here we typically assume that Turing machines have a separate
input tape that we do not count in measuring space complexity.)

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-05 #11

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternation Alternation

Defining Alternating Complexity Classes

Definition 14.4

Let f : N→ R+ be a function.

ATime(f(n)) is the class of all languages L for which there is an
O(f(n))-time bounded alternating Turing machine deciding L, for
some k ≥ 1.

ASpace(f(n)) is the class of all languages L for which there is an
O(f(n))-space bounded alternating Turing machine deciding L.

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-05 #12

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternation Alternation

Common Alternating Complexity Classes

AP = APTime =
⋃
d≥1

ATime(nd) alternating polynomial time

AExp = AExpTime =
⋃
d≥1

ATime(2nd
) alternating exponential time

A2Exp = A2ExpTime =
⋃
d≥1

ATime(22nd

) alt. double-exponential time

AL = ALogSpace = ASpace(log n) alternating logarithmic space

APSpace =
⋃
d≥1

ASpace(nd) alternating polynomial space

AExpSpace =
⋃
d≥1

ASpace(2nd
) alternating exponential space

Example: Geography ∈ APTime

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-05 #13

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternation Alternation

Alternating Complexity Classes: Basic Properties

Nondeterminism: ATMs can do everything that the corresponding NTMs
can do, e.g., NP ⊆ APTime

Reductions: Polynomial many-one reductions can be used to show
membership in many alternating complexity classes, e.g.,
if L ∈ APTime and L′ ≤p L then L′ ∈ APTime.

In particular: PSpace ⊆ APTime (since Geography ∈ APTime)

Complementation: ATMs are easily complemented:

LetM be an ATM accepting language L(M)

LetM′ be obtained fromM by swapping existential and universal
states

Then L(M′) = L(M)

For alternating algorithms this means: (1) negate all return values, (2) swap
universal and existential branching points

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-05 #14

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternation Alternation

Alternating Complexity Classes: Basic Properties

Nondeterminism: ATMs can do everything that the corresponding NTMs
can do, e.g., NP ⊆ APTime

Reductions: Polynomial many-one reductions can be used to show
membership in many alternating complexity classes, e.g.,
if L ∈ APTime and L′ ≤p L then L′ ∈ APTime.

In particular: PSpace ⊆ APTime (since Geography ∈ APTime)

Complementation: ATMs are easily complemented:

LetM be an ATM accepting language L(M)

LetM′ be obtained fromM by swapping existential and universal
states

Then L(M′) = L(M)

For alternating algorithms this means: (1) negate all return values, (2) swap
universal and existential branching points

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-05 #14

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternation Alternation

Alternating Complexity Classes: Basic Properties

Nondeterminism: ATMs can do everything that the corresponding NTMs
can do, e.g., NP ⊆ APTime

Reductions: Polynomial many-one reductions can be used to show
membership in many alternating complexity classes, e.g.,
if L ∈ APTime and L′ ≤p L then L′ ∈ APTime.

In particular: PSpace ⊆ APTime (since Geography ∈ APTime)

Complementation: ATMs are easily complemented:

LetM be an ATM accepting language L(M)

LetM′ be obtained fromM by swapping existential and universal
states

Then L(M′) = L(M)

For alternating algorithms this means: (1) negate all return values, (2) swap
universal and existential branching points

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-05 #14

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternation Alternation

Alternating Complexity Classes: Basic Properties

Nondeterminism: ATMs can do everything that the corresponding NTMs
can do, e.g., NP ⊆ APTime

Reductions: Polynomial many-one reductions can be used to show
membership in many alternating complexity classes, e.g.,
if L ∈ APTime and L′ ≤p L then L′ ∈ APTime.

In particular: PSpace ⊆ APTime (since Geography ∈ APTime)

Complementation: ATMs are easily complemented:

LetM be an ATM accepting language L(M)

LetM′ be obtained fromM by swapping existential and universal
states

Then L(M′) = L(M)

For alternating algorithms this means: (1) negate all return values, (2) swap
universal and existential branching points

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-05 #14

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Alternation Alternation

Example: Complement of MinFormula

Original algorithm:

01 MinFormula(formula ϕ) :
02 universally choose ψ := formula shorter than ϕ
03 exist. guess I := assignment for variables in ϕ
04 if ϕI = ψI :
05 return FALSE
06 else :
07 return TRUE

Complemented algorithm:

01 ComplMinFormula(formula ϕ) :
02 existentially guess ψ := formula shorter than ϕ
03 univ. choose I := assignment for variables in ϕ
04 if ϕI = ψI :
05 return TRUE
06 else :
07 return FALSE

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-05 #15

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

	Alternation
	Extended New Year's Review: Lectures 15–19
	Alternation

