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Alternating Computations

Non-deterministic TMs:

Accept if there is an accepting run.

Used to define classes like NP

Complements of non-deterministic classes:

Accept if all runs are accepting.

Used to define classes like coNP

We have seen that existential and universal modes can also alternate:

Players take turns in games

Quantifiers may alternate in QBF

Is there a suitable Turing Machine model to capture this?

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-05 #5

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)


Alternation Alternation

Alternating Turing Machines

Definition 14.1

An alternating Turing machine (ATM)M = (Q ,Σ, Γ, δ, q0) is a Turing
machine with a non-deterministic transition function
δ : Q × Γ→ P(Q × Γ × { L,R }) whose set of states is partitioned into
existential and universal states:

Q∃: set of existential states Q∀: set of universal states

Configurations of ATMs are the same as for (N)TMs:
tape(s) + state + head position

A configuration can be universal or existential, depending on whether
its state is universal or existential

Possible transitions between configurations are defined as for NTMs
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Alternating Turing Machines: Acceptance

Acceptance is defined recursively:

Definition 14.2
A configuration C of an ATMM is accepting if one of the following is true:

C is existential and some successor configuration of C is accepting.

C is universal and all successor configurations of C are accepting.

M accepts a word w if the start configuration on w is accepting.

Note: configurations with no successor are the base case, since we have:

An existential configuration without any successor configurations is
rejecting.

A universal configuration without any successor configurations is
accepting.

Hence we don’t need to specify accepting or rejecting states explicitly.
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Nondeterminism and Parallelism

ATMs can be seen as a generalisation of non-deterministic TMs:

An NTM is an ATM where all states are existential (besides the single
accepting state, which is always universal according to our definition).

ATMs can be seen as a model of parallel computation:

In every step, fork the current process to create sub-processes that
explore each possible transition in parallel

for universal states, combine the results of sub-processes with AND

for existential states, combine the results of sub-processes with OR

Alternative view: an ATM accepts if its computation tree, considered as an
AND-OR tree, evaluates to TRUE
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Example: Alternating Algorithm for MinFormula

MinFormula

Input: A propositional formula ϕ.

Problem: Is ϕ the shortest formula that is satis-
fied by the same assignments as ϕ?

MinFormula can be solved by an alternating algorithm:

01 MinFormula(formula ϕ) :
02 universally choose ψ := formula shorter than ϕ

03 exist. guess I := assignment for variables in ϕ

04 if ϕI = ψI :
05 return FALSE
06 else :
07 return TRUE
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Example: Alternating Algorithm for Geography

01 AltGeography(directed graph G, start node s) :
02 Visited := {s} // visited nodes
03 cur := s // current node
04 while TRUE :
05 // existential move:
06 if all successors of cur are in Visited:
07 return FALSE
08 existentially guess cur := unvisited successor of cur
09 Visited := Visited ∪ {cur}
10 // universal move:
11 if all successors of cur are in Visited:
12 return TRUE
13 universally choose cur := unvisited successor of cur
14 Visited := Visited ∪ {cur}
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Time and Space Bounded ATMs

As before, time and space bounds apply to any computation path in the
computation tree.

Definition 14.3

LetM be an alternating Turing machine and let f : N→ R+ be a function.

M is f -time bounded if it halts on every input w ∈ Σ∗ and on every
computation path after ≤f(|w |) steps.

M is f -space bounded if it halts on every input w ∈ Σ∗ and on every
computation path using ≤f(|w |) cells on its tapes.

(Here we typically assume that Turing machines have a separate
input tape that we do not count in measuring space complexity.)
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Defining Alternating Complexity Classes

Definition 14.4

Let f : N→ R+ be a function.

ATime(f(n)) is the class of all languages L for which there is an
O(f(n))-time bounded alternating Turing machine deciding L, for
some k ≥ 1.

ASpace(f(n)) is the class of all languages L for which there is an
O(f(n))-space bounded alternating Turing machine deciding L.
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Common Alternating Complexity Classes

AP = APTime =
⋃
d≥1

ATime(nd) alternating polynomial time

AExp = AExpTime =
⋃
d≥1

ATime(2nd
) alternating exponential time

A2Exp = A2ExpTime =
⋃
d≥1

ATime(22nd

) alt. double-exponential time

AL = ALogSpace = ASpace(log n) alternating logarithmic space

APSpace =
⋃
d≥1

ASpace(nd) alternating polynomial space

AExpSpace =
⋃
d≥1

ASpace(2nd
) alternating exponential space

Example: Geography ∈ APTime
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Alternating Complexity Classes: Basic Properties

Nondeterminism: ATMs can do everything that the corresponding NTMs
can do, e.g., NP ⊆ APTime

Reductions: Polynomial many-one reductions can be used to show
membership in many alternating complexity classes, e.g.,
if L ∈ APTime and L′ ≤p L then L′ ∈ APTime.

In particular: PSpace ⊆ APTime (since Geography ∈ APTime)

Complementation: ATMs are easily complemented:

LetM be an ATM accepting language L(M)

LetM′ be obtained fromM by swapping existential and universal
states

Then L(M′) = L(M)

For alternating algorithms this means: (1) negate all return values, (2) swap
universal and existential branching points
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Example: Complement of MinFormula

Original algorithm:

01 MinFormula(formula ϕ) :
02 universally choose ψ := formula shorter than ϕ
03 exist. guess I := assignment for variables in ϕ
04 if ϕI = ψI :
05 return FALSE
06 else :
07 return TRUE

Complemented algorithm:

01 ComplMinFormula(formula ϕ) :
02 existentially guess ψ := formula shorter than ϕ
03 univ. choose I := assignment for variables in ϕ
04 if ϕI = ψI :
05 return TRUE
06 else :
07 return FALSE
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